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LUSTERNIK-SCHNIRELMANN CATEGORY AND PRODUCTS OF
LOCAL SPACES

MANFRED STELZER

(communicated by Luchezar Avramov)

Abstract
Let X, Y be finite 1-connected p-local CW-complexes. We

show that cat(X × Y ) = cat(X) + cat(Y ) holds if p is large
and the loop space homology of X,Y satisfies a certain flat-
ness assumption.

1. Introduction

It has been well known for a long time that the L.S. category of a product of two
spaces X,Y satisfies the inequality cat(X × Y ) 6 cat(X) + cat(Y ) and that there
are examples of spaces for which the inequality is strict. But for simply connected
rational spaces X0, Y0 of finite type there is, by a result of Félix, Halperin and
Lemaire [FHL], always the equality cat(X0 × Y0) = cat(X0) + cat(Y0). On the other
hand, Iwase constructed recently [I], for each prime p, a two-cell complex Qp with
cat(Qp × Sn) = cat(Qp) = 2 for some n. This equation still holds after localization
at p.

The aim of this paper is to prove that a generalization of the theorem of [FHL]
holds for a class of spaces which are somehow intermediate between rational spaces
and Iwase’s counterexample to Ganea’s conjecture. Denote by Z(p) the integers local-
ized at the prime p and let α(n, p) = min(n+ 2p− 3, np− 1).

Theorem 1.1. Let X,Y be p-local n-connected, n > 1 CW-complexes of finite Z(p)-
type. Suppose that dimX + dimY 6 α(n, p) and that H̃∗(ΩX,Z(p)), H̃∗(ΩY,Z(p))
are free R-modules for R a quotient ring of Z(p) and ∗ 6 dimX + dimY − 1. Then
cat(X × Y ) = cat(X) + cat(Y ).

Corollary 1.2. Let R be a quotient ring of Z(p) and let P `(R) be the Moore space
with top cell in dimension `. Suppose that Y is as in 1.1 and that dimY + ` 6 α(n, p).
Then cat(P `(R)× Y ) = cat(Y ) + 1.

So in the class of spaces considered above a mod p version of Ganea’s conjecture
holds. Note that wedges, fat wedges and products of the spaces P `(R) satisfy the
condition on the loop space homology in 1.1.
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The behaviour of L.S. category with respect to localization is not fully understood.
There are infinite complexes X for which the category of the localization X(p) is less
than m for all p but cat(X) = m [R]. For finite complexes no such examples are
known; see [C]. That a result like 1.1 should hold was conjectured by Hess in [He].
The homotopy category of p-local CW-complexes in the range specified in 1.1 is
isomorphic to a homotopy category of dg Lie algebras [A1]. Moreover, the loop space
homology of such a space X is isomorphic to the homology of the universal enveloping
algebra of the dg Lie algebra representing the homotopy type of X.

The strategy to the proof of 1.1 which follows the lines of the rational case in [FHL]
and [He] will be described now. The first step is to give, for spaces as in 1.1, an
interpretation of cat à la Félix and Halperin in terms of minimal models over Z(p).
Here we rely heavily on the work of Scheerer and Tanré and we just have to interpret
their results which they formulated for Lie and coalgebras. In the next main step we
establish a local version of a famous rational result due to Hess. It follows from this
theorem that one can compute cat in the category of dg modules over the minimal
algebra model. It is only here where the assumption on the loop space homology in
1.1 is needed. In the last step we transport the computation of cat in a category
of cochain complexes over Z(p). It is shown that cat equals a generalized Toomer
invariant. This is done using duality as in [FHL]. Then a direct computation gives
the product formula.

The adaptation of the proof of the rational theorem to the local situation faces two
main technical obstacles. The first is the need to work with n-type approximations
from the very beginning. So the construction of various (minimal) models has to be
based on the notion of an n-equivalence. For this reason, we have to investigate the
localization, with respect to n-equivalences, of the unbounded derived category and
certain homotopy categories of algebras. The second is that there are obstructions,
due to the action of the Bockstein operators on the loop space homology, for a proof
of a general p-local version of Hess’s theorem. These obstructions are not present if
one works over the ground field Fp. So we have to use lifting arguments and here the
assumptions made in 1.1 come in.

The organization of the paper is as follows. Some homotopy theory of unbounded
differential graded modules over a differential graded algebra is developed in Section 2.
We study certain localizations of the standard model category, and construct minimal
models in various settings. We suggest that the reader skip Section 2 at first reading
and passes back to it when needed. The basics of tame and mild homotopy theory in
various algebraic categories are recalled in Section 3. In addition, we study n-types
in this setting. In Section 4 we show how to compute cat using differential graded Lie
and (co)algebras. The aim of Section 5 is to construct and study a certain extension
of minimal algebras which represents a generalized Ganea fibration. In Section 6 it is
shown that this extension splits as a dg algebra if and only if it splits as a dg module
over a minimal algebra. The main theorem is proved in Section 7 using a generalized
Toomer invariant and duality.

We assume familiarity with the language of homotopical algebra and especially
with the theory of model categories and (co)fibration categories. The classical sources
for the former are [Q1, Q2]. There are now some more recent books on this sub-
ject [GJ, Hi, Ho]. For the latter, we refer to Baues’ book [B].
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2. Homotopy theory for differential graded modules over dif-
ferential graded algebras and n-types

We work over a commutative ground ring R with unit. A graded R-module is a fam-
ily M = (M i)i∈Z of R-modules and we write |x| = i for the degree of x ∈M i. A dif-
ferential on M is a linear map d of degree 1 such that d2 = 0. The category of cochain
complexes, i.e., graded modules with a differential, will be denoted by Coch(R).
The suspension of M ∈ Coch(R) is the cochain complex sM defined by sMi = Mi−1

and dsx = −sdx. A differential graded algebra, or DGA, is a cochain complex A
with an associative multiplication and a unit 1 ∈ A0, such that dA(xy) = dA(x)y +
(−1)|x|x dA(y) holds. A left module over a DGA is a cochain complex M with an
A-action A⊗M →M , a⊗m→ am, such that dM (am) = dA(a)m+ (−1)|a|a dM (m)
holds. Denote the category of A-modules by A-mod. (See [F1] for more information
about this category.) In particular, most of the proof of the following theorem can be
found there. The same result is also stated in [Ro] in Théorème 4.6 but without the
characterization of the cofibrations. For the case in which A is the ground ring R, the
theorem appears in [Ho] where it is noted that the cofibrations can be described as
below. Since [F1] is not published and hard to get we give below a sketch of some of
Félix’s arguments.

Theorem 2.1. There is a closed model category on A-mod with we = quisms, i.e.,
maps inducing isomorphisms in cohomology, fib = surjective morphisms,and the class
cof is defined via the left lifting property with respect to the class we∩ fib.

The class cof has an internal description as the closure under retracts of semi-free
extensions:

Definition 2.2. An extension P of an A-module M which is isomorphic to an exten-
sion of the form M ⊕A⊗ V with

V =
⊕

k>0

Vk

R-free and

d(Vn) ⊆M ⊕A⊗
( ⊕

k6n−1

Vk

)
,

is called a semi-free extension of M .

Proof of 2.1. It has been shown in [F1] that A-mod with we, fib as above and cof =
semi-free extensions constitutes a model category (not closed in general). The theorem
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follows since we and fib are obviously closed under retracts. This suffices by [Q1,
Proposition 5.2]. We sketch now the construction of the two factorizations. Let

f : M → N

be any morphism in A-mod and let U be the free R-module on N and k : U → N the
obvious map. Consider the semi-free extension and the extension p of f

M
i→M ⊕A⊗ (U ⊕ sU)

p→ N

with differential D defined as D(u) = su and p is given as p(u) = k(u), p(su) = dk(u).
Since the A-module A⊗ (U ⊕ sU) is contractible by an A-linear homotopy and p is
clearly surjective, the construction gives the factorization into a trivial cofibration
and a fibration.

Next we construct the factorization f = q ◦ j with cofibration j and trivial fibration
q. For this we use the factorization f = p ◦ i from above as a first step. Let V0 be the
free R-module on a set of representatives of the cokernel of f∗ : H∗(M)→ H∗(N) and
k0 : V0 → N the obvious map. Now construct a semi-free extension and an extension
q0 of p

M
j0→M ⊕A⊗ (U ⊕ sU ⊕ V0)

q0→ N

with D(v) = 0 and q0(v) = k0(v) for v ∈ V0. Note that q0 induces an epimorphism in
homology. In the next step, let sV1 be the free R-module on a set of representatives
of the kernel of the map induced by q0 on homology and

k1 : sV1 →M ⊕A⊗ (U ⊕ sU ⊕ V0)

the obvious map. Consider

M
j1→M ⊕A⊗ (U ⊕ sU ⊕ V0 ⊕ V1)

q1→ N

with differential acting as D(v) = k1(sv) and q1(v) = w with a w such that dM (w) =
q0k1(sv). Now proceed by induction to kill the kernel of qn∗ and take the colimit.
Using the fact that homology commutes with direct limits, one sees that q = q∞ is a
weak equivalence.

In case the ground ring R is a principal ideal domain and A = R, the cofibrations
simplify (see the theorem below). Recall that an R-module M is called flat if the
tensor product with M is an exact functor. Write Tor(M) for the torsion submodule
of M and fl-Coch(R) for the category of flat cochain complexes.

Proposition 2.3. Suppose that R is a principal ideal domain. Then a closed model
category is defined on Coch(R) and fl-Coch(R) by we = quisms, fib = surjective mor-
phisms, cof = injective morphisms with free cokernel.

Sketch of proof. First note that cof is closed under retracts since R is hereditary. Next
we claim that every f ∈ cof is a semi-free extension of im f . To see this, decompose
V = cokernel f as follows: V0 = {v ∈ V | dv = 0}; then V0 is a direct summand in V ,
hence free since R is hereditary. The complement V1 = V ⊥0 maps to V0 under d and
hence V0, V1, define a semi-free extension of im f . The theorem for Coch(R) follows
now from 2.1. For fl-Coch(R) note that a flat module over a p.i.d. is the same thing
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as a torsion free module. The functor Q from Coch(R) to fl-Coch(R) which sends Cn
to Cn/Tor(Cn) is adjoint to the inclusion functor. So colimits in fl-Coch(R) can be
defined by taking colimits in Coch(R) and then applying Q. Note that a cokernel of
a cofibration agrees with the usual cokernel in Coch(R). Finally, the construction of
the two factorizations given above can be done in fl-Coch(R) and the verification of
the other axioms requires no new arguments.

For the applications which we have in mind, it is often sufficient to approximate
a given object only up to a certain degree. The class of n-equivalences will induce a
theory of n-types on fl-Coch(R). For the rest of this section R will be a p.i.d.

Definition 2.4. A map in fl-Coch(R) f : L→ K is called a weak n-equivalence, if
H∗(f ;π) is an isomorphism for ∗ 6 n and all R-module coefficients π. If, in addition,
Hn+1(f ;π) is a monomorphism for all π, then we call f an n-equivalence. We call
K n-equivalent to zero if H6n(K;π) = 0 for all π. Let f : L→ K be a morphism
in fl-Coch(R). An n-model of f consists of a free cochain complex V , concentrated
in degrees less than n+ 2 and such that Hn+2(V ) is torsion, together with a map
t : sV → L, and an n-equivalence g : Ct → K with g|L = f , where Ct is the cone on
t. An n-model of 0→ K is an n-model of K.

Observe that a cochain map f is an n-equivalence if and only if the cone on f is
n-equivalent to zero. The use of variable coefficients may seem strange at first sight.
But note that a chain map between free chain complexes which have homology groups
of finite type is n-connected, i.e., it induces an isomorphism in homology up to degree
n and an epimorphism in degree n+ 1, if and only if the map induced on the R-linear
dual is an n-equivalence. This can be seen by a diagram chase using the universal
coefficient theorem.

Theorem 2.5. For each n ∈ Z, the category fl-Coch(R) with wen = weak n-equiv-
alences, fibn = surjective cochain maps, and cofn defined by LLP with respect to
fibn ∩ wen, defines a closed model category on fl-Coch(R).

It is possible to derive Theorem 2.5 from general facts on localization in model cat-
egories to be found in [Hi], but we prefer to give an elementary homemade treatment.
For the proof we need some preparations. We start with:

Lemma 2.6.

α) A morphism f : V → K in fl-Coch(R) is a weak n-equivalence if and only if
f∗ : H6n(V )→ H6n(K) and f∗ : TorHn+1(V )→ TorHn+1(K) are isomor-
phisms.

β) Suppose that Hn+1(V ) is torsion and H>n+2(V ) is torsion free. Then

f : V → K in fl-Coch(R)

is an n-equivalence if and only if it is a weak n-equivalence.
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Proof of α). The commuting diagram

Hi(V )⊗ π
f∗⊗π

²²

// // Hi(V ;π)

f∗

²²

// // Hi+1(V ) ∗ π
f∗∗π

²²
Hi(K)⊗ π // // Hi(K;π) // // Hi+1(K) ∗ π

shows (←) by H ∗ π = TorH ∗ π, and (→) by H ∗R/λR = {x ∈ H | λ · x = 0}, if
λ ∈ R/0 (for each module H).

Proof of β). Put i = n+ 1 in the diagram above. We get zero on the top right, thus
only injectivity of f∗ ⊗ π is to be shown, by the 5-lemma. The last property of f∗

in α) and the first of V imply that f∗ : Hn+1(V )→ Hn+1(K) is injective and has
torsion free cokernel, so that Ker(f∗ ⊗ π) = Coker(f∗ ∗ π) = 0.

Proposition 2.7.

a) Every K ∈ fl-Coch(R) possesses an n-model, for each n.
b) Suppose that K is m-equivalent to zero with m 6 n, and that H6n(K) and

TorHn+1(K) are finitely generated. Then there is an n-model g : V → K such
that V is finitely generated and concentrated in dimensions between m and n+ 1.

Proof of a). Choose free resolutions Gi−1 ½ F i ³ Hi(K), i 6 n, and Gn ½ Fn+1 ³
TorHn+1(K). Define the short complex Vi = (Gi−1 ½ F i), i 6 n+ 1, and let V =
⊕Vi. There is an obvious cochain map g : V → K which induces isomorphisms in
H6n and maps Hn+1(V ) isomorphic onto TorHn+1(K). Then by 2.6.α), g is a weak
n-equivalence, and hence by 2.6.β) an n-equivalence.

Proof of b). By assumption, we can choose F i = 0 for i < m and finitely generated
for i 6 n+ 1. Since Hm(K) is torsion free by 2.6.α), applied in the case V = 0, and
finitely generated it is free. It follows that Gm−1 = 0.

Recall that the cone on a cochain map f : L→ K is the complex Cf = K ⊕ s−1L
with differential acting as

∂(k, s−1l) = (∂K(k) + f(l),−s−1∂L(l)).

The following elementary lemma enables us to prove a relative version of 2.7.

Lemma 2.8. Let f : L→ K and η : V → Cf be cochain maps.
Consider

Ct
g

ÃÃA
AA

AA
AA

A V

η

²²
L

OO

f // K

k′k ÂÂ@
@@

@@
@@

@
k // Cf

k′

²²

q // s−1L

sV

t

OO

Cη

with k, k′, q parts of the cofiber sequences of f respectively η. Then there is t such that
f extends to a map g from Ct to K with Cg ∼= Cη.
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Proof. Write η = (η1, η2) : V → K ⊕ s−1L = Cf . Let t := sη2s
−1 and g := (f,−η1).

It is easy to check that this defines cochain maps and that indeed Cg ∼= Cη.

Proposition 2.9.

a) Every f : L→ K in fl-Coch(R) has an n-model, for each n.

b) Suppose that f is an (m− 1)-equivalence m 6 n and that

H6n(Cf ) and TorHn+1(Cf )

are finitely generated. Then there is an n-model of f , t : sV → L such that V is
finitely generated and concentrated in dimensions between m and n+ 1.

Proof of a). Use 2.7.a) to find an n-model η : V → Cf . Then Cη is n-equivalent to
zero and by 2.8 there are t and g with Cg ∼= Cη. Thus g is an n-equivalence.

Proof of b). The proof is now clear.

The next lemma gives a sufficient condition, for the assumption in b) above to
hold, depending only on L and K.

Lemma 2.10. Let f : L→ K be a cochain map in fl-Coch(R). If

H6n+1(L), TorHn+2(L) and H6n+1(K)

are all finitely generated, then H6n(Cf ) and TorHn+1(Cf ) are finitely generated as
well.

Proof. This follows directly from the long exact sequence in cohomology, together
with the fact that an exact sequence 0→ A→ B → C induces an exact sequence
0→ TorA→ TorB → TorC.

Definition 2.11. A complex V is called n-cofibrant if V is free, Hn+1(V ) is torsion,
and H>n+2(V ) = 0. A map i is an n-cofibration if it is injective and V = Coker i is
n-cofibrant.

Proposition 2.12. An n-cofibration has the left lifting property with respect to any
p ∈ fibn ∩n-equivalences.

Proof. The obstruction for a lifting is a homotopy class of a map from V to Cp. So
it is enough to prove that all such classes are trivial. Since V is free it is a direct
sum of short complexes Vi concentrated in dimensions i, i+ 1. Thus we have to show
[Vi, Cp] = 0. For i > n+ 2 we haveHi(Vi) = Hi(V ) = 0, so that Vi ' 0. For i 6 n+ 1,
each α : Vi → Cp is trivial in cohomology since Cp is n-equivalent to zero. Thus α ' 0
by the following elementary fact: Let Vi−1 be free and short of degree i− 1, i and
α : Vi−1 → Y with Hi(α) = 0 and Hi−1(Y ) = 0. Then α ' 0.

Proposition 2.13. The class cofn consists of the n-cofibrations i : K → Ct such that

t : sV → K lifts to an n-model U
ψ
³ K with ψ ∈ fibn ∩n-equivalences.



282 MANFRED STELZER

Proof. Suppose that i ∈ cofn. Let U
ψ
³ K be an n-model with ψ ∈ fibn ∩n-equiv-

alences. Then the map Cψ → 0 is a weak n-equivalence.
Consider

U
ψ // // K // j //

²²
i

²²

Cψ

²²
Ct //

g
>>||||||||
0.

Since i ∈ cofn a lift g exists. Write g|V : V → K ⊕ s−1U as (g1, g2).
It is now easy to check that g2 defines a cochain map t with ψ ◦ t ' t, where the

homotopy is given by g1. Now lift this homotopy to obtain a lift of t.
For the other direction, suppose that p ∈ fibn ∩ wen and consider:

K
g //

²²
i

²²

N

p
²²²²

Ct
f //

σ

==||||||||
0.

Choose n-models U
ψ
³ K, W

ϕ
³ N with ψ,ϕ ∈ fibn ∩n-equivalences, and lift g to

g : U →W such that g ◦ ψ = ϕ ◦ g. Let t : sV → U lift t. Then ψ extends to a cochain
map ψ : Ct → Ct. The composition p ◦ ϕ is an n-equivalence. By 2.12 there is a lift
σ : Ct →W of f ◦ ψ to g. It is then easy to check that

σ = (ϕ ◦ σ|V, g) : Ct = V ⊕K → N

defines a lift of f .

Proof of 2.5. We verify the axioms in [Q1]. The axioms M0 and M5 are clear.

M3: The only point which needs proof is that cofn is stable under cobase change. To
see this we use 2.13. Let i : A ½ Ct ∈ cofn and f : A→ B induce j : A→ Cf◦t.

Choose n-models U
ψ
³ A, W

ϕ
³ B with ψ,ϕ ∈ fibn ∩n-equivalences. Use 2.12

to lift f to f : U →W and let t lift t.Then f ◦ t lifts f ◦ t. Hence j is in cofn by
2.13.

M2i): Given f : L→ K, let CsK be the acyclic complex with differential induced

by idsk, and CsK
P³ K the obvious map. Then L⊕ CsK (f,P )

³ K is in fibn. The
inclusion L ½ L⊕ CsK is in cofn by 2.13, for example, and clearly in wen as
well.

M2ii): Let f : L→ K be given, and choose an n-model U
ψ
³ L, ψ ∈ fibn ∩n-equiva-

lences. Apply 2.9 to f ◦ ψ to find t : sV → U , and a factorization of f ◦ ψ into

U
j
↪→ Ct

q→ K with j ∈ cofn by 2.13 and q ∈ n-equivalences. This induces a fac-

torization of f into L
i
↪→ Ct

p→ K, where i ∈ cofn by 2.13 and p ∈ n-equivalences
by the 5-lemma. At last add the cone on sK to Ct to produce a fibration.



LUSTERNIK-SCHNIRELMANN CATEGORY AND PRODUCTS OF LOCAL SPACES 283

M1: One part follows by definition of cofn. For the other, consider

K
g //

²²
i

²²

M

p
²²²²

K ⊕ V f // N

with i ∈ cofn ∩ wen and p ∈ fibn. Factorize i as in M2i) into a trivial cofibration
j and a fibration q. Then q is in wen and so idK⊕V can be lifted; i.e., q has a
section. So it is sufficient to show that a lift exists for every free extension with
an acyclic complex. But this is obvious.

M4: Note first that each i ∈ cofn ∩ wen is an n-equivalence. This can be seen as
follows: Consider i : A ½ Ct and an n-model U,ψ of A as above. Let t lift t
and write j for the inclusion of U in Ct. Moreover, let ψ be the induced map
from Ct to Ct. Since ψ is an n-equivalence, it follows from the 5-lemma that
ψ ∈ wen. So ψ ◦ j = i ◦ ψ is in wen by M5. But then j is in fact an n-equivalence
by 2.6. It follows that the common cofiber of i and j is n-equivalent to zero.
Hence i is an n-equivalence. The second part of M4 is now clear. For the first,
let p ∈ fibn ∩ wen and q a base change along f : A→ B. Moreover, we write K
for the kernel of p. By consideration of the long exact sequence induced of p, we
see that H6n(K;π) = 0 and that the boundary operator is trivial in dimension
n. Hence the same is true for q, by a diagram chase. So M4 is now proved.

M6: It is immediate that fibn,wen and cofn are closed under retracts. We now
apply [Q1, Proposition 5.2].

We turn to minimal models for maps in fl-Coch(R) with R local.

Definition 2.14. Suppose R is a local p.i.d. with maximal idealM and residue field
K, and let f : L→ K be a map in fl-Coch(R).

A factorization of f into

L
f //

i %%KKKKKKKKKK K

q
yyssssssssss

Ct = L⊕ V
such that i is an n-cofibration, q is an n-equivalence, and V is finitely generated is
called a minimal n-model of f , if the differential induced on K⊗ V is trivial.

Proposition 2.15. Let R be a local p.i.d. and f : L→ K a (m− 1)-equivalence (m <
n) such that H6n(Cf ) and TorHn+1(Cf ) are finitely generated. Then f has an n-
minimal model which is unique up to isomorphism.

Proof. The existence part follows from 2.7 and 2.9. Note that by the structure the-
orem for finitely generated modules over a p.i.d., every free resolution in 2.7.b) can

be chosen to be a direct sum of the following two types: i) R, and ii) R
ξj

½ R with ξ
a generator of the maximal ideal M. The resulting factorization is clearly minimal.
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Suppose that we are given two n-minimal models of f . Consider

L // i2 //
²²
i1

²²

L⊕ V ′ //

q2

²²

L⊕ V ′ ⊕ CsK
q3

²²²²
L⊕ V q1 // K K,

where the split extension with the acyclic complex CsK makes q3 into a fibra-
tion. By 2.12 there is a lift of q1 to L⊕ V ′ ⊕ CsK. Projection to L⊕ V ′ defines a
weak n-equivalence L⊕ V η1→ L⊕ V ′. By symmetry there is also a weak n-equivalence
L⊕ V ′ η2→ L⊕ V . It follows from 2.6 that V and V ′ with the induced differentials are
n-equivalent via the induced maps η1, η2. Take coefficients in K and note, since the
differential is trivial mod M, that

V ⊗K η1⊗K−−−→ V ′ ⊗K
is an isomorphism up to degree n and a monomorphism in degree n+ 1. But the
same is true for η2 ⊗K and since V ⊗K is of finite dimension in each degree, V ⊗K
is found to be isomorphic to V ′ ⊗K. To lift this isomorphism to V just note that
η1 is in each degree a map between finite equidimensional free R-modules whose
determinant is not divisible by ξ.

Let A be an augmented dg algebra over the local p.i.d. R.

Definition 2.16. A minimal n-model over A for a map of A-modules f : M → N is
given by a factorization of f into

M
f //

i ÃÃA
AA

AA
AA

A N

P

ϕ

>>~~~~~~~

such that M
i
↪→ P is a semi-free extension with trivial differential on

K⊗A P/M ' K⊗ V,
and ϕ is an n-equivalence.

Assume that A is R-free with augmentation ideal I concentrated in dimensions
> 2. An n-minimal model with K⊗ V bounded below and of finite type has a fil-
tration which is quite useful and will be described now. It gives a kind of Postnikov
decomposition for f . Since the module P of a given model is semi-free it is of the
form M ⊕A⊗ V . Suppose that the finite type complex V with the induced differen-
tial is concentrated in dimensions > s. Let Vs denote the saturation of the complex
V in dimension s, i.e., the smallest pure subcomplex which contains all elements in
dimensions 6 s (here S is a pure submodule of T means that aS = aT ∩ S for all
a ∈ R). Note that Vs is concentrated in degrees s and s+ 1 and consists in dimension
s+ 1 of all elements which are in the image of the boundary operator up to a power
of ξ. The module Vs is a direct factor in V , because V/Vs is flat by purity and of
finite type by assumption hence free. Define the filtration of index s by M ⊕A⊗ Vs.
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It is easy to check that this submodule is closed under the differential. Suppose that
M ⊕A⊗ V<k is defined. Let Vk stand for the saturation in dimension k of V/V<k
and put

M ⊕A⊗ V6k := M ⊕A⊗ V<k ⊕A⊗ Vk.
This defines a differential filtration of P .

Theorem 2.17. Suppose that A is R-free of cohomological finite type and that the
augmentation ideal I of A is concentrated in dimensions > 1. Let f : M → N be
a (m− 1)-equivalence in A-mod with M,N R-free of finite type. Then f has an
n-minimal model over A which is unique up to isomorphism for each n.

Proof. By 2.15 there is an m-minimal model of cochain complexes

M
f //

i %%KKKKKKKKKK N

M ⊕
t
Vm = Ct

ϕ

99ssssssssss

with Vm concentrated in dimensions m,m+ 1.
The map t induces a map of A modules t̃ : A⊗ Vm →M and a semi-free extension

M
f //

''OOOOOOOOOOOO N.

Cet = M ⊕A⊗ Vm
ϕ

77oooooooooooo

The cochain map ψ extends to an A-module map ϕ. Because A⊗ Vm = Vm in dimen-
sions 6 m+ 1, the map ϕ is still an m-equivalence. The minimality of the extension
is then clear. Now proceed inductively.

For the uniqueness statement suppose that M
i′½ M ⊕A⊗ V ′ ϕ

′
→ N is another

minimal n-model. We construct inductively an isomorphism from the n-minimal
model above. We may assume that Vm is nontrivial. Let k be the smallest integer such
that V ′k is not trivial. We claim that m = k and that M ⊕A⊗ Vm is isomorphic to
M ⊕A⊗ V ′m. This will start the induction. Suppose that m 6 k. There is a cochain
map gm which lifts ϕm up to cochain homotopy in:

M
i′ //

i

²²

M ⊕A⊗ V
ϕ′

²²
M ⊕ Vm

gm

77ppppppppppp ϕm // N.

To see this, factor ϕ′ into a cochain equivalence and a fibration and apply 2.12. Since
ϕm, ϕ

′ are both m-equivalences the same is true for gm. Because I is concentrated
in dimensions > 2, gm maps in fact to M ⊕ V ′6m. Denote the map induced from
Vm to V ′ by gm it is an m-equivalence by the 5-lemma. Reducing mod M we find
that V ⊗K is isomorphic to V ′ ⊗K in dimension m by minimality. But then the
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same is true over R using the determinant as above. By 2.6 the torsion subgroups of
Hm+1(Vm) and Hm+1(V ′m) are isomorphic via gm. At last extend gm by A-linearity
to all of M ⊕A⊗ Vm. For the inductive step assume that an isomorphism is found
in filtration < s and repeat the argument above to find one in filtration s.

3. (Co)algebras and Lie algebras in tame homotopy theory

Let r > 2 and let Algr(R) and Coalgr(R) denote the category of r-reduced (co)com-
mutative and (co)associative differential graded (co)algebras over R which are free as
R-modules. Let Lier−1(R) denote the category of (r − 1)-reduced r > 2 differential
graded Lie algebras over R, and Lier−1(R) the subcategory of objects which are free
as R-modules. Note that the differential in Lier−1(R) and Coalgr(R) has degree −1,
but it has degree 1 in Algr(R). The subcategories which have objects of finite type
will be denoted by a prefix f . We will suppose, if nothing else is mentioned, that
R ⊆ Q and 1

2 ,
1
3 ∈ R so that there is no torsion in free Lie algebras.

There is (see [ST3]) a pair of adjoint functors

L : Coalgr(R) −→←− Lier−1(R) :C
defined as follows:

Definition 3.1. For L ∈ Lier−1(R) let (C(L), d) := (S(sL), d), where S is the sym-
metric graded coalgebra functor. The differential d is the sum of two coderivations
di, de characterized by:

di(sx) = −sdLx
de(sx⊗ sy + (−1)|sx| |sy]|sy ⊗ sx) = (−1)|sx|2s[x, y].

Definition 3.2. For C ∈ Coalgr(R) let (L(C), d) := (L(s−1C̄), d), where C̄ is the
submodule of elements of positive degree, L is the free graded Lie algebra functor
and d is the sum of two derivations di, de characterized by:

di(s−1x) = −s−1dC(x),

de(s−1x) =
∑

i

(−1)|x
′
i|[s−1x′i, s

−1x′′i ],

where 4(x) =
∑
i x
′
i ⊗ x′′i is the reduced diagonal of x.

The authors in [ST3] studied only the case R = Z, but there is no problem to have
general R ⊆ Q. Taking the R-linear dual in each degree on C(L) defines a functor to a
category of flat algebras, which sends f -Lier−1(R) to f -Algr(R). We will denote this
cochain algebra by C∗(L). It is a graded version of the Chevalley-Eilenberg complex
of cochains on a Lie algebra.

It was shown in [D, ST3] that on Lier−1(R), Coalgr(R) there are closed model
category structures respectively cofibration category structures, which we will explain
now. Moreover, it was proved that the adjoint pair (C,L) induces an equivalence on
the homotopy categories.

Let R0 = R ⊆ R1 ⊆ R2 · · · be a system of subrings of Q. We say that R∗ is mild
with respect to r > 2, if each prime p, which satisfies (p− 1) (r − 1) 6 k is invertible
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in Rk. The ring system is called tame for r > 3, if all primes p with 2p− 3 6 k are
invertible in Rk and tame for r = 2, if the ring system is mild with respect to r = 2.

A large part of the literature in tame homotopy theory considers only the case
r > 3. We will make use in the following of some results which are only published for
tame ring systems with r > 3, if the same proof works for r = 2. The closed model
category in Lier−1(R), which is given by the mild ring system R∗, is defined as follows:

we = f s.t. Hr−1+k(f ;Rk) is an isomorphism for all k > 0,
fib = f s.t. f is surjective in dimensions > r − 1,Hr−1+k(ker f) is an

Rk-module, and CokerHr+k(f) is without p torsion for
1
p
∈ Rk,

cof = f which have the LLP with respect to fib∩ we .

See [D] for a proof.
On Coalgr(R) the mild ring system R∗ induces the structure of a cofibration cat-

egory (see [ST3] for a proof and [B] for information on (co)fibration categories) as
follows:

we = f s.t. L(f) ∈ we in Lier−1(R),
cof = f s.t. f is injective with free cokernel.

The categories f -Coalgr(R) and f -Algr(R) are equivalent by the functor, which
takes an object A to the degree wise R-linear dual A∗.

We will use this equivalence to induce a homotopy structure on f -Algr(R). Note
that a morphism g in f -Algr(R) is surjective if and only if g∗ ∈ cof.

In the rest of this section we will study minimal models for morphisms in
f -Algr(R). Let ΛV denote the free graded commutative algebra over R on the graded
module V . We suppose that R is Z(p) or Z/p = K from now on.

Definition 3.3. Let f : M → N be a morphism in Algr(R). A factorization of f into

M
f //

i $$IIIIIIIII N

M ⊗ ΛV

ϕ

::uuuuuuuuu

is called a minimal n-model for f if the following holds:
a) V is free of finite type and concentrated dimensions between r and n+ 1.
b) Hn+1(V ) is torsion where the cohomology is taken with respect to the differen-

tial d induced on the indecomposables V = QΛV , and

d⊗K : V ⊗K→ V ⊗K
is trivial.

c) ϕ is an n-equivalence.

In cases where there is danger of confusion, we will also speak of a multiplicative
minimal model. Exactly as in the case of A-modules, one shows that a minimal model
has a Postnikov decomposition. We write ΛV6k for it.
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Theorem 3.4. Suppose that f : M → N is an (m− 1)-equivalence in f -Algr(R).
There is then a minimal n-model for f such that V is concentrated in dimensions
between m and n+ 1.

Sketch of proof. The proof is almost the same as the one give for 2.17. One constructs
inductively minimal cochain `-models m 6 ` 6 n; then adjointness induces a minimal
extension in f -Algr(R) and the induced map to N is still an `-equivalence since
everything is r-reduced.

A minimal n-model of the unit map R→ N will be called minimal n-model of N .
We turn now to the question of uniqueness of minimal models.

The argument in the theorem below uses the following description of homotopy
groups in Coalgr(R) and Lier−1(R): The homotopy groups of an object C in the
cofibration category Coalgr(R) are defined as homotopy classes of maps from sphere
objects S(n) which have one R-free primitive generator in dimension n and are trivial
otherwise to a fibrant model of C. These groups may be identified with the homology
of the primitives of any fibrant model. Similarly, in the model category Lier−1(R),
the homotopy groups of any object are isomorphic to the homology groups of any
fibrant model. Under the equivalence of homotopy categories induced by L and C,
these groups become identified. Note that there is a shift of dimensions involved.

Theorem 3.5. Suppose that (r − 1)p− 1 > r + k for some k. Then a minimal
n-model of f : M → N in f -Algr(R) is unique up to isomorphism if n 6 r + k.

Proof. Let CsN denote the cone on sN in Coch(R), and ΛCsN the free dg algebra
on it. By our assumption on p,H∗(ΛCsN ;π) = 0 for ∗ 6 n+ 1. This can be seen as
follows: The dg algebra ΛCsN is isomorphic via the natural inclusion, in dimensions
6 rp− 1, to the free graded algebra with divided powers on CsN . But this algebra is
well known to be acyclic. Hence the cohomology of ΛCsN with arbitrary coefficients
vanishes in dimensions 6 rp− 2. The assertion follows since we have

rp− 2 > (r − 1)p > r + k + 1 > n+ 1

by assumption. Thus we can alter a minimal n-model of f to M
i1½ M ⊗ ΛY1 ⊗

ΛCsN
eϕ1→ N such that ϕ̃1 is an epimorphism and an n-equivalence. So if two minimal

n-models are given to us we may use 2.12 to get g in

M ⊗ ΛY1 ⊗ ΛCsN
fϕ1

''OOOOOOOOOOOO

M

i1
77oooooooooooo

i2 ''OOOOOOOOOOOO N.

M ⊗ ΛY2

g

OO

ϕ2

77oooooooooooo

The map g induces g : ΛY1 → ΛY2 which is also an n-equivalence. It is enough to show
that g is an isomorphism. To see this consider the R-linear dual g∗ in f -Coalgr(R)
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with the cofibration category defined by the ring system

R = R0 = R1 · · ·Rk, Rk+1 = Q · · · .
There is a Whitehead theorem in Coalgr(R) (see 3.6 below) from which it follows that
g∗ induces an isomorphism on homotopy groups up to dimension n. This argument
uses the fact, proved in 3.8, that the dual of a minimal n-model is fibrant. The homo-
topy groups of (ΛY1)∗, (ΛY2)∗ up to dimension n are identified with the homology of
the primitives (Y ∗1 ), (Y ∗2 ) with the induced differential. By minimality this differen-
tial is trivial when tensored with K. Using these facts, a diagram chase shows that g∗

induces an isomorphism (Y2)∗ ⊗K→ (Y1)∗ ⊗K in dimensions 6 n. Since everything
is of finite type the same is true over Z(p). Furthermore, g∗ is a monomorphism in
dimension n+ 1 by another look at the relevant diagram. But by symmetry and the
finite type of Y1 and Y2, g

∗ is in fact an isomorphism. This proves the theorem.

Theorem 3.6.

α) Let f : L→ L′ be a (n− 1)-connected map in Lier−1(Z(p)). Suppose that
(r − 1)p− 1 > n holds. Then C(f) is n-connected and C∗(f) is an n-equivalence.

β) Let f : C → C ′ be a n-connected map in Coalgr(Z(p)). Suppose that (r − 1)p−
1 > n holds. Then L(f) is (n− 1)-connected.

Proof. We will prove α and leave β as an exercise. Consider the convergent spec-
tral sequences which are defined by the primitive filtration of C(L) and C(L′). The
E1 terms are given as the homology with respect to the internal differentials di. This
is the homology of the abelian Lie algebras underlying L and L′. Thus it is enough to
show that the map induced on the E1 terms is n-connected. So we may assume that
L and L′ are abelian. In this case the symmetric tensors of length k Sk(sL) form a
subcomplex. Moreover, for k < p this complex is a natural retract of the complex of
all tensors of length k T k(sL). That T k(sf) is n-connected follows from the Künneth
theorem. Hence Sk(sf) is also n-connected for k < p. Note that the module S>p(V )
is zero in dimensions 6 rp− 1 if V is r-reduced. It follows that S(sf) is n-connected
if n+ 1 6 rp− 2. But rp− 3 > (r − 1)p− 1 and so the claim on C(f) is proved. Using
the universal coefficient theorem, we see that C(f ;W ) induces on cohomology an iso-
morphism for ∗ 6 n and a monomorphism for ∗ = n+ 1 for all modules W . Finally,
observe that to detect an n-equivalence between flat Z(p)-complexes it is sufficient to
look at finitely generated coefficients or, even more special, at cyclic ones. This follows
from the commutation of homology with direct limits and the structure theorem for
finitely generated modules over a p.i.d. For W cyclic it is immediate that Hom(B,W )
is isomorphic to Hom(B,Z(p))⊗W if B is free. This gives us the second claim and
the theorem is proved.

Let τ6n : Lier−1(Z(p))→ Lier−1(Z(p)) the n-th truncation functor. The Lie-algebra
τ6n(L) equals L in degrees 6 n and L/Ker ∂ in degree n+ 1. In all other degrees it
is defined to be zero.

Corollary 3.7. Let f : L→ L′ be a morphism in Lr−1(Z(p)) which induces an iso-
morphism in homology in degrees 6 n− 1. Suppose the ring system R0 = Z(p) = · · · =
Rk, Rk+1 = Q is mild with respect to r and r + k = n. Then the map C∗(τ6n−1f) is
an n-equivalence in fl-Coch(Z(p)).
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Proof. The map τ6n−1f is (n− 1)-connected in Lr−1(Z(p)).

Lemma 3.8. Let ΛV be a minimal n-model, and f : ΛV → C∗LB a morphism of
dg algebras with B ∈ Coalgr(Z(p)). Then im f ⊆ im C∗(qn−1) with qn−1 the canonical
map qn−1 : LB → τ6n−1(LB).

Proof. Write V = ⊕ni=rVi and let ΛV<j be the dg algebra generated by V = ⊕j−1
i=r Vi.

For ΛV<n there is nothing to prove. Set Vn = (V 0
n

δ→ V 1
n ). Then again it is clear that

f(V 0
n ) ⊆ im C∗qn−1. Recall that Hn+1(Vn, δ) is torsion and is finitely generated. So

every element v1 ∈ V 1
n is in im δ up to a power of p. Let v1 ∈ V 1

n and write pk · v1 =
δv0. Then, since dv0 − δv0 ∈ ΛV<n, it follows that f(pkv1) ∈ im C∗(qn−1). But C∗LB
is torsion free and im C∗(qn−1) is a direct factor. So we must have f(v1) ∈ im C∗(qn−1)
which proves the lemma.

Recall that an object X in a cofibration category is fibrant if any trivial cofibration
with domain X has a retraction.

Theorem 3.9. Let ΛV be a minimal n-model and Z(p) = R0 = · · · = Rk, Rk+1 = Q
mild for r and r + k = n. Then (ΛV )∗ ∼= SV ∗ is fibrant in the cofibration category
defined on Coalgr(Z(p)) by R∗.

Proof. We show that η exists in

A
g //

²²
i

²²

SV ∗

ε∗

²²
B

f
//

η
=={{{{{{{{
Z(p)

for i ∈ cof ∩ we in Coalgr(Z(p)) and ε the unit. Dualize the diagram and consider the
diagram of dg algebras:

Z(p)
f∗ //

²²
i

²²

B∗

i∗

²²
ΛV

g∗
//

η
<<zzzzzzzzz
A∗.

We will show that η exists. Suppose this to be true for a moment. Dualize again and
consider

A
j //

²²
i

²²

A∗∗

i∗∗

²²

g∗∗ // SV ∗

ε∗

²²
B

j
// B∗∗

f∗∗
//

η∗
<<yyyyyyyyy
Z(p),

where j is the inclusion in the double dual and we have identified all object of finite
type with their double duals. Although A∗∗, B∗∗ are not coalgebras in general, it is
easy to check that η∗ ◦ j is a map of dg coalgebras which lifts f . So we see that it is
enough to show that η exists.
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Consider

Z(p)
f∗ //

ε

²²

B∗
ψB //

i∗

²²

C∗LB
C∗L(i)

²²

C∗(qn−1) // C∗(τ6n−1LB)

C∗(τ6n−1L(i))

²²
ΛV

g∗ // A∗ C∗LA
ψA

oo C∗(τ6n−1LB),
C∗(qn−1)oo

where ψ is the dual of the unit of the adjunction. We construct η by induction on j
in ΛV<j . Note that ψ admits a cochain map σ with ψ ◦ σ = id.

Suppose η is found on ΛV<j , j 6 n. Consider

ΛV<j
bη<j //

²²

²²

C∗(τ6j−1LB)

C∗(τ6j−1L(i))
²²²²

ΛV<j ⊕ Vj bgj

//

bηj

77oooooooooooo
C∗(τ6j−1LA),

where ĝj , respectively η̂<j , are the maps of dg algebras induced by σA ◦ g∗, respec-
tively σB ◦ η<j . By 3.8 ĝj maps to im(C∗(qj−1)). By 3.7 C∗(τ6j−1L(i)) is a j-equiv-
alence. Since C∗(τ6j−1L(i)) is an epimorphism in degrees 6 j, the proof of 2.12 shows
that the cochain map η̂j exists. The induced map of dg algebras η̂6j gives us η on
ΛV6j by η6j := ψB ◦ C∗(qj−1) ◦ η̂6j . Now put A = SV ∗ to see that SV ∗ is also fibrant
in the sense of a cofibration category.

We have done most of the work in proving the theorem below. A nonproper fibra-
tion category consists of a category C endowed with two distinguished classes of
morphisms fib and we, called fibrations and weak equivalences, such that all of Baues
axioms for a fibration category except possibly the properness axiom F2(a) are sat-
isfied (see [B, p. 7]).

Theorem 3.10. The category f -Algr(Z(p)) with p mild with respect to n = r + k is a
nonproper fibration category with the following classes: fib = epimorphisms, we = f
such that L(f∗) induces an isomorphism in H6n−1.

Proof. It is immediate that F1, which is the usual two-out-of-three property for we,
holds. Clearly, pullbacks exist in f -Algr(Z(p)) and if we pullback a fibration q along
a map f , then the induced map q is also a fibration. For the rest of F2, we must show
that if q ∈ we∩ fib then also q ∈ we∩ fib. To see this, note that taking the Z(p)-linear
dual turns pullbacks into pushouts and fibrations into cofibrations in f -Coalgr(Z(p)).
Moreover, the functor L preserves pushouts since it is a left adjoint. An easy 5-
lemma argument shows that H6n−1(L(q∗)) is an isomorphism if this is true for q.
For F3 we must factor a given map f into q ◦ g with q ∈ fib and g ∈ we. It follows
from 3.6.β) that an n-equivalence is a weak equivalence. A factorization of a map
f into an n-equivalence i followed by a fibration can be constructed by tensoring
with C(s(target(f))) as was shown in the proof of 3.5. For F4 we must show the
existence of a cofibrant model M(X)

q→ X with q ∈ we∩ fib. The proof of 3.9 shows
that a minimal n-model, for a given object X, is cofibrant. Finally, the same operation
which was used in F3 turns the model map into a fibration.
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4. Computation of cat using minimal models

Let Lm−1
r−1 (R) denote the subcategory of Lier−1(R) whose objects are free Lie

algebras and generated in dimensions 6 m− 1. Let CWm
r (R) stand for the cate-

gory of R-local CW-complexes with cells in dimensions between r and m. The main
result of Anick in [A1] is that the homotopy categories of Lm−1

r−1 (R) and CWm
r (R)

are equivalent, if R ⊆ Q and the least prime p which is not invertible in R sat-
isfies m 6 α(r − 1, p). Recall that α(n, p) = min(n+ 2p− 3, np− 1). The universal
enveloping algebra ULV of the dg Lie algebra, which corresponds to a given CW-
complex X, is a valid Adams-Hilton model over R of X. But more is true. It was
shown by Anick that the diagonal map on ULV for which LV are the primitives is
homotopic to the geometric diagonal. The homotopy theory on Lm−1

r−1 (R), used by
Anick, is given by an explicit cylinder object. In [ST2] the authors reproduce the
main theorem of [A1], and show that the homotopy category of Lm−1

r−1 (R) injects
into the tame homotopy category of Lier−1(R) for suitable ring systems. In [ST1],
this is used to deduce a theorem which shows how to compute cat for Z ∈ CWm

r (R)
in Coalgr(R) and Lm−1

r−1 (R). Let us remark that what we said above about the case
r = 2 still holds here.

Let R∗, r be a tame ring system such that R ⊇ Ri for i 6 k and write r + k = m.
The following theorem is implicit in [ST1], because it was proved in Theorem 4 that
the fibration corresponding to j (see below) is an n-LS-fibration in the sense of [ST4].
By definition, such fibrations p̃n come with maps s, t over the base from and to the
n-th Ganea fibration pn such that pn ◦ t ' p̃n and p̃n ◦ s ' pn. Thus n-LS-fibrations
over Z detect cat(Z) in the same way as the Ganea fibrations.

Theorem 4.1. Suppose that the least prime p ∈ R ⊆ Q, which is not invertible in R
satisfies m 6 α(r − 1, p) for m ∈ N. If Z ∈ CWm

r (R) is represented in homotopy by
LV ∈ Lm−1

r−1 (R) then cat(Z) 6 n if and only if j : PnC(LV )→ C(LV ) has a section
up to homotopy in the tame homotopy category defined by R∗ on Coalgr(R).

Here Pn stands for the n-th term in the primitive filtration of a coalgebra. To make
this theorem useful for us, it is convenient to relate cat and n-types. The following
elementary lemma will do the job.

Lemma 4.2. Let Z be a 1-connected CW-complex of dimension m and E
p
³ Z a

fibration with fibre F . Denote the Postnikov systems of E,Z by Em, Zm, and let
pm be the map induced on them. Further, let pmm−1 denote the (m− 1)-th Postnikov
section of the map pm. Then p has a section if and only if pmm−1 admits a section up
to homotopy.

Proof. One direction follows from naturality up to homotopy of Postnikov sec-
tions [W]. For the other, note that every section up to homotopy of pmm−1 lifts to
a homotopy section of pm since the only obstruction sits in Hm+1(Zm;πm(F )). This
group is zero because Zm is m-equivalent to Z. Since Zm, Em are obtained up to
homotopy by attaching cells of dimensions > m+ 2 to Z,E every homotopy section
of pm induces a section of p.

We will apply 4.2 to the Ganea fibration or more generally to an n-LS-fibration.
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Now let LV ∈ Lm−1
r−1 (Z(p)) be of finite type and represent Z ∈ CWm

r (Z(p)) in homo-

topy. We assume that α(r − 1, p) > m. Consider PnC(LV )
j→ C(LV ) and the dual

C∗(LV )
j∗

³ C∗(LV )/In+1. The symbol In+1 denotes the n+ 1 power of the augmen-
tation ideal I. An m-minimal model

ψ : ΛX −→ C∗(LV )

induces
ψn : ΛX/In+1 −→ C∗(LV )/In+1.

Proposition 4.3. The morphism ψn is an m-equivalence.

Proof. First, note that the homotopy groups, computed in the fibration category on
f -Algr(Z(p)), or equivalently in the cofibration category Coalgr(Z(p)), with respect to
Z(p) = R0 = · · · = Rm, Rm+1 = Q· · ·, of ΛX, C∗(LV ), are isomorphic in dimensions 6
m to H∗(X∗), respectively H∗(sLV ). To see this, observe that SX∗ and C(τ6m−1LV )
are fibrant, the former by 3.8 the latter by essentially the same proof. Represent the
t-sphere by the trivial coalgebra S(t) with one generator in dimension t, and note
that homotopy classes of maps from S(t), t 6 m, to SX∗, respectively C(LV ), may
be identified with homotopy classes of chain maps. From this the claim follows. By
the Whitehead theorem, ψ∗ induces an isomorphism on these homotopy groups. To
finish the argument, look at the spectral sequences obtained by filtering ΛX/In+1

and C∗(LV )/In+1 by the images of Ij and j 6 n. The differential on E0 of these
spectral sequences is given by the tensor product of the differentials induced on X
respectively (sLV )∗. The theorems of Künneth and of universal coefficients show that
E0(ψn) is an m-equivalence. Hence the same holds for E∞(ψn) and the proposition
is proved.

Let Z be an object in CWm
r (Z(p)) that is represented by LV ∈ Lm−1

r−1 (Z(p)). More-
over, let (i, ϕ) in

ΛX
ψ //

pn+1

²²²²

i

xxppppppppppp
C∗(LV )

j∗

²²

ΛX ⊗ ΛY

ϕ &&NNNNNNNNNNN

ΛX/In+1
ψn // C∗(LV )/In+1

be an (m− 1)-minimal model of the quotient map pn+1.

Proposition 4.4. Using the conventions above, cat(Z) 6 n if and only if ΛX ½
ΛX ⊗ ΛY admits a retraction of dg algebras.

Proof. Both SX∗ and SX∗ ⊗ SY ∗ are fibrant in the cofibration category defined on
Coalgr(Z(p)) by

R0 = Z(p) = · · · = Rm−r, Rm−r+1 = Q.

The homotopy category of this cofibration category is isomorphic to the homotopy
category of tame spaces [ST3]. The coalgebra SX∗ represents the m-th Postnikov
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section of C(LV ). Moreover, the map i∗ represents pmm−1 for p the fibration associated

with PnC(LV )
j→ C(LV ). Now apply 4.1 and 4.2.

5. A model for ΛX → ΛX/In+1

Let (ΛX, d) be a minimal m-model of C∗(LV ) with LV ∈ Lm−1
r−1 (Z(p)) of finite type

and m 6 α(r − 1, p).
Furthermore, let

ΛX
pn+1 //

²²
i

²²

ΛX/In+1

ΛX ⊗ [Z(p) ⊕ Y n]
ϕ

66nnnnnnnnnnnn

be a minimal ΛX-module m-model for pn+1, and suppose that n > 2.
Define a bigrading on the objects in the diagram above by setting |ΛiX| = i and

|Y n| = n. From now on we will call the usual cohomological degree the dimension
and the degree defined above the degree.

Write D|Y n = δ + τ with

τ : Y n −→ Λ+X ⊗ [Z(p) ⊕ Y n]
and

δ : Y n −→ Y n.

Lemma 5.1. The m-model over ΛX can be chosen such that τ(Y n) ⊆ In+1 ⊕ I ⊗ Y n
and ϕ(Y n) = 0 holds.

Proof. Recall the construction of the minimal m-model over ΛX from Section 2
and note that if the map f which is modeled is surjective one can replace (up to
shift of dimension) Cf by Ker f in 2.8 and 2.9. Hence the maps of cochain com-
plexes tr+k : sVr+k → ΛX ⊗ [Z(p) ⊕ Y n<r+k], which define the minimal model, can be
chosen to map to Kerϕ<r+k. So ϕ(Y n) = 0 is now clear. The first assertion fol-
lows by induction on k, using the fact that Kerϕ<r+k in dimensions > r + k + 1
equals In+1 ⊕ I ⊗ Y n<r+k by inductive hypothesis and because Y<r+k is concentrated
in dimensions 6 r + k. So tr+k maps to In+1 ⊕ I ⊗ Y n<r+k and since τ|Yr+k

is induced
by tr+k the first assertion is also clear.

We are going to construct a multiplicative minimal m-model in f -Algr(Z(p)) out of
this module model. For Y n, δ as above, let L(s−1Y n)∗, δ∗ be the free dg Lie algebra
on the desuspension of the dual complex. Define a second grading on L(s−1Y n)∗

and on C∗(L(s−1Y n)∗) as follows: Let Γ1 ⊇ Γ2 · · · be the lower central series of
L(s−1Y n)∗, and ⊕k>1Γk/Γk+1 the associated graded object which is well known
to be isomorphic to L(s−1Y n)∗ as a Z(p)-module. This defines a decomposition of
(sL(s−1Y n)∗)∗ ∼= ⊕k>1s(Γk/Γk+1)∗. Now put |s(Γk/Γk+1)∗| = n+ (n− 1) (k − 1) =
Mk and extend this grading to C∗(L(s−1Y n)∗) by setting |x1 ∧ · · · ∧ xj | =

∑j
t=1 |xt|

for xt ∈ s(L(s−1Y n)∗)∗.
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The linear, respectively quadratic, part of the differential ∂ = ∂1 + ∂2 in ΛY :=
C∗(L(s−1Y n)∗) then satisfies

∂1 : YMk −→ YMk ,

∂2 : YMk −→
⊕

i+j=k

YMi ∧ YMj .

Since ∂1 is induced by δ the differential graded algebra ΛY is minimal because δ ⊗
Z/p = 0.

Lemma 5.2. The inclusion of cochain complexes Y n, δ → ΛY, ∂ induces an isomor-
phism in cohomology H∗(Y )

∼=→ H∗(ΛY ).

Proof. If the ground ring is the field Z/p, then the differential on L(s−1Y n)∗ is trivial
and the lemma is well known. From this the case R = Z(p) follows easily.

We will need the technical lemmas below:

Lemma 5.3. Let ΛY be as above.
α) If ∂2y = 0 mod ps for y ∈ Y then y ∈ Y n mod ps.
β) If ∂2v = 0 mod ps for v ∈ Λ2Y then there is y ∈ Y with ∂2y = v mod ps.

Proof of α). We have H∗(ΛY ;Z/p) ∼= Y n ⊗ Z/p by 5.2. So y = y1 + px1 + ∂z1 with
y1 ∈ Y n and x1, z1 ∈ ΛY . Since ∂1 = 0 mod p, we find, by comparing coefficients,
that in fact y = y1 + pz1 with z1 ∈ Y . Now ∂2y1 + p∂2z1 = ∂2y = 0 mod ps. Since
∂2y1 = 0, we see that ∂2z1 = 0 mod ps−1. So there is y2 ∈ Y n and z2 ∈ Y with z1 =
y2 + pz2 and so on. We arrive at y =

∑s
i=1 p

i−1yi mod ps.

Proof of β). Again using 5.2, we find y0 ∈ Y and z1 ∈ Λ2Y with ∂2y + pz1 = v. Since
∂2
2 = 0 on ΛY , we find that ∂2z1 = 0 mod ps−1. So there are y1 ∈ Y and z2 ∈ Λ2Y

with ∂2y1 + pz2 = z1 and so on. This gives us v = ∂2(
∑s−1
i=0 p

iyi) mod ps.

Filtering ΛX ⊗ [Z(p) ⊕ Y n] and ΛX/In+1 by degree defines convergent spectral
sequences. The part of a differential d which raises degree by i− 1 will be denoted
by di.

Lemma 5.4. The map ϕ⊗ Z/p induces an isomorphism respectively monomorphism
on Ep,q2 of the spectral sequences with Z/p coefficients for p+ q 6 m respectively p+
q 6 m+ 1.

Proof. Let ΛX ⊗ [Z(p) ⊕ Y n ⊕ V n>m] be a ∞ minimal ΛX-model for ΛX/In+1 with
V n>m concentrated in dimensions > m+ 1. It is shown in [FHJLT, pp. 312–315]
that there is a minimal ΛX ⊗ Z/p-module model for ΛX/In+1 ⊗ Z/p, such that the
differential of this model is of the formD = ∂2 + ω, where ∂2 is of bidegree (1, 0) and ω
raises degree by more than two. Moreover, the differential ∂2 defines a minimal model
for the module ΛX/In+1 ⊗ Z/p with differential d2. Here d2 denotes the reduction
mod p of the quadratic part of the differential induced on ΛX/In+1. So this model
induces an isomorphism on E2 in each bidegree. By uniqueness up to isomorphism
the same is true for ΛX ⊗ [Z(p) ⊕ Y n ⊕ V n>m]⊗ Z/p. But since V n>m is concentrated
in dimensions > m+ 1 the assertion of the lemma follows.
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Lemma 5.5. Let σ ∈ ΛX ⊗ [Z(p) ⊕ Y n]⊗ Z/p be a cocycle of degree > j and dimen-
sion i with j > n+ 1 and i 6 m+ 1. Then there is τ ∈ ΛX ⊗ [Z(p) ⊕ Y n]⊗ Z/p with
|τ | = degree τ > j − 1 and Dτ = σ. If j > n+ 2 then τ can be chosen as an element
of the (m− 1)-model ΛX ⊗ [Z(p) ⊕ Y n6m−1]⊗ Z/p.

Proof. Write σ =
∑
s>j σ

s with |σs| = s. So σj is a D2 cocycle where D2 stands for
the quadratic part of the differential. Since j > n, σj is dead in the E2 term. By
5.4, there is τ1 ∈ ΛX ⊗ [Z(p) ⊕ Y n]⊗ Z/p with |τ1| > j − 1 and D2τ1 = σj (E0 = E1

by minimality). Next consider σ −Dτ1 which is of degree > j + 1 and continue. The
process stops since the degree function is bounded above in each dimension. We end
up with the element τ =

∑s
i=1 τi. Suppose that j > n+ 2. Since ΛX ⊗ [Z(p) ⊕ Y n]

and ΛX ⊗ [Z(p) ⊕ Y n6m−1] differ in dimensions 6 m+ 1 only by Vm which is of degree
n the element τ is in ΛX ⊗ [Z(p) ⊕ Y n6m−1]⊗ Z/p.

Let R be a quotient ring of Z(p). So R is Z(p) or Z/pt. We define o(R) to be 0 or
pt respectively. The next lemma is a lifted version of 5.5.

Lemma 5.6. Assume that the cohomology groups of dimension 6 m of (Y n, ∂1) and
(X, d1) are both R-free. Let σ ∈ (ΛX ⊗ [Z(p) ⊕ Y n], D) be a cocycle mod o(R) of
degree > j and dimension i. Suppose that j > n+ 1 and i 6 m+ 1. Then there is τ
with |τ | > j − 1 and Dτ = σ mod o(R). If j > n+ 2 then τ can be chosen in ΛX ⊗
[Z(p) ⊕ Y n6m−1].

Proof. We write αi for the degree i part of α ∈ ΛX ⊗ [Z(p) ⊕ Y n]. Suppose first that
o(R) = pt for some t. By 5.5 there are τ1, η1 with |τ1| > j − 1 and Dτ1 = σ + pη1.
Comparing coefficients, we see |η1| > j − 1. In case o(R) = p there is nothing left to
do. By our assumption on ∂1 and d1, we have

pηj−1
1 = D1(τ

j−1
1 ) = 0 mod pt.

It follows that

0 = D2(τ1) = D(σ + pη1) = D(pη1) mod pt = D(pη>j
1 ) mod pt.

Hence we find
D(η>j

1 ) = 0 mod pt−1.

Apply 5.5 to η>j
1 and repeat the argument to find τ2, η2 and so on. Then

Dτ = D(
∑t−1
i=0(−1)ipiτi+1) = σ mod pt

and |τ | > j − 1. Next suppose o(R) = 0. In this case D1 = 0, coming from the filtra-
tion by the degree. We claim that Ep,q2 ⊗ Z/p = 0 for p > n and p+ q 6 m+ 1. This
is a consequence of 5.4 and the universal coefficient theorem. But Ep,q2 is of finite type
so the claim holds without tensoring by Z/p. Now repeat the argument given in 5.5
to find τ . Also the last assertion can be seen as in 5.5 above.

We remark that if the last lemma could be proved without the assumption on d1, ∂1,
then the main theorem could be proved without the assumption on H̃∗(ΩZ;Z(p)). A
sufficient condition for this (which however is not always satisfied) is that the map ϕ
induced on the E1 terms of the spectral sequences above is an m-equivalence. See also
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the work of Halperin and Tanré in [HT], where the authors consider the situation over
a field. We have been unable to find a translation of this condition into terms of more
common topological invariants, so we settle with our assumption on H̃∗(ΩZ;Z(p)).

Since the inclusion of Y n, ∂1 into ΛY induces an isomorphism in cohomology, it
is not hard to show that the differential on ΛX ⊗ [Z(p) ⊕ Y n] and the map ϕ extend
to ΛX ⊗ ΛY . The next theorem says that this extension can be chosen to be quite
simple. Moreover, if the condition on the loop space homology in 5.6 is satisfied,
then the behaviour of this differential with respect to the filtration by degree can be
estimated. This will be the key for the proof that cat equals M -cat. The proof of the
next theorem is a generalization of the proof of Lemma 3 in [He].

Theorem 5.7. Let (X, d1), (Y n, ∂1) be the complexes introduced at the beginning of
the section. Suppose that cohomology groups of these complexes are R-free for a fixed
quotient R of Z(p). Then there exists a differential D on ΛX ⊗ ΛY6m−1 with the
following properties:

α) D extends the differential on ΛX ⊗ [Z(p) ⊕ Y n6m−1].

β) The extension ϕ of ϕ which is defined by setting ϕ|YMk
6m−1

= 0 for k > 1, is a

morphism of differential graded algebras.

γ) D|YMk
6m−1

= 1⊗ ∂ + ω with ω(YMk) ⊆ [I ⊗ [Z(p) ⊕ Y 6Mk ]>Mk+1 for k > 1.

Proof. We will do the construction inductively on Y 6Mk

6r+`−1. Suppose that for some
k > 1, ` > 1, D is defined with all properties. Note that YMk

r = 0 for k > 1, which
gives the start for the induction. One easily reduces to the case of an extension with

a complex Z(p)(y
pt

→ y), respectively Z(p)(y), concentrated in dimensions r + ` and
r + `+ 1, respectively r + `, and of degree Mk. We do the proof for the first case and
the other is similar.

Write ∂y = ∂1y + ∂2y = pty + ∂2y with ∂2y ∈ [Λ2Y <Mk ]Mk+1. Let D∂2y = ∂∂2y +
ω∂2y = ∂1∂2 + ω∂2y = −∂2∂1y + ω∂2y = ω∂2y mod pt. Write ω∂2y = τ1 + τ2 with
τi ∈ I ⊗ ΛiY and |τi| > Mk + 1. This can be done by induction. We have 0 = D2∂2y =
Dτ1 +Dτ2mod pt.

Note that

Dτ1 ∈ ΛX ⊗ Λ2Y,

Dτ2 − ∂2τ2 ∈ ΛX ⊗ Λ62Y,

∂2τ2 ∈ ΛX ⊗ Λ3Y.

It follows that ∂2τ2 = 0 mod pt.

Next write τ2 =
∑
i µivi with vi ∈ Λ2Y and where µi runs through a base of I.

Then we get ∂2vi = 0 mod pt for all i. By 5.3 there are yi ∈ Y 26ji6Mk with vi = ∂2yi
mod pt. Since the dimension of the yi is less than r + `, we can apply our inductive



298 MANFRED STELZER

hypothesis on them. We find

D∂2y −D
∑
i(−1)||µi||µiyi

= ω∂2y −
∑
i(−1)||µi||dµiyi −

∑
i µi Dyi mod pt

= τ1 + τ2 −
∑
i(−1)||µi||dµiyi − τ2 −

∑
i µiωyi −

∑
i µi∂1yi mod pt

= σ0 + σ1 mod pt

with σi ∈ ΛX ⊗ ΛiY 6Mk . (||x|| denotes the dimension of x.)
We claim that |σi| > Mk + 1. Since |τ2| > Mk + 1, we have |µi · vi| > Mk + 1. So

|µi · yi| > Mk + 1. But since ∂1y = d1yi = 0 mod pt, |ω(yi)| > |yi| and |τ1| > Mk + 1
all summands of σ0, σ1 have degree > Mk + 1.

Next write σ1 =
∑
i µj ỹj with µj again a base of I. From Dσ0 +Dσ1 = 0 mod pt

it follows that ∂2σ1 = 0 mod pt and this shows us that ỹj ∈ Y n mod pt by 5.3.
So we can choose σ0 + σ1 ∈ [I ⊗ [Z(p) ⊕ Y n]>Mk+1. Then ϕ(σi) = 0 and so there is
η ∈ Kerϕ with |η| > Mk + 1 and Dη = σ0 + σ1 mod pt by 5.6.

Putting everything together we find D(∂2y −
∑
i µiyi − η) = 0] mod pt with the

whole argument of degree > Mk + 1.
So we can define

Dy = ∂2y −
∑

i

µiyi − η + pty,

Dy = −D(∂2y −
∑

i

µiyi − η)/pt.

Since all terms in Dy − pty map to zero under ϕ, setting ϕ(y) := 0, ϕ(y) := 0 defines
a map of differential graded algebras.

Proposition 5.8. The map ϕ : ΛX ⊗ ΛY6m−1 → ΛX/In+1 is an (m− 1)-equiv-
alence.

Proof. Consider

Y n // // ΛY

Y n6m−1

OO

OO

// // ΛY6m−1.

OO

OO

Since Y n → ΛY induces an isomorphism in cohomology and Y n6m−1,ΛY6m−1 differ
from Y n,ΛY only in dimensions > m it is clear that Y n6m−1 → ΛY6m−1 is a weak
(m− 1)-equivalence. But by 2.6 it is also an (m− 1)-equivalence.

Consider now:

ΛX ⊗ [Z(p) ⊕ Y n6m−1]
ϕ //

²²
i

²²

ΛX/In+1.

ΛX ⊗ ΛY6m−1

ϕ

66lllllllllllll

The map ϕ is an (m− 1)-equivalence and also i by an argument with algebraic Serre
spectral sequences. In general, if g and f ◦ g are (m− 1)-equivalences it does not follow
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that f is an (m− 1)-equivalence too. But there is a way out since ΛX and ΛX ⊗
ΛY6m−1 are cofibrant in the fibration category f -Algr(Z(p)) for a ring system with
Ri = Z(p), i 6 m. Let ϕ̂ : ΛX ⊗ ΛY6m−1 ⊗ ΛZm → ΛX/In+1 be a cofibrant minimal
m-model of pn+1 : ΛX → ΛX/In+1. (We could take ΛX ⊗ ΛY6m, but we will not
need this fact.) Note that ϕ is a weak (m− 1)-equivalence. Consider the map of
differential graded algebras

ΛY6m−1
j
↪→ ΛY6m−1 ⊗ ΛZm

with the induced differential. We claim that it is enough to show that this map is an
(m− 1)-equivalence. To see this, consider

ΛX ⊗ ΛY6m−1
ϕ //

²²
j

²²

ΛX/In+1

ΛX ⊗ ΛY6m−1 ⊗ ΛZm
bϕ // ΛX/In+1

and observe that ϕ is an (m− 1)-equivalence if j is an (m− 1)-equivalence. An appli-
cation of the easy part of the Zeeman comparison theorem to the algebraic Serre
spectral sequences of the extensions of ΛX in the diagram above shows that j is an
(m− 1)-equivalence if j is an (m− 1)-equivalence. This proves the claim. Dualize
and recall the Whitehead theorem 3.6 and the identification of the homotopy groups
with the homology of the primitives of a fibrant model. Since there are no homotopy
groups in dimension m for (ΛY6m−1)∗, the map j∗ is (m− 1)-connected in homotopy
hence in homology, and ϕ is an (m− 1)-equivalence.

Remark 5.9. Under the assumption that the cohomology groups of (X, d1) and (Y n, ∂1)
are R-free, it can be shown that there is an isomorphism

H∗,∗(ΛX̄ ⊗ [R⊕ Ȳ n], D̄2) ∼= Ext∗,∗
UL̄

(R, Ȳ n).

Here the bar stands for reduction mod o(R), and L̄ = (s−1X)∗ with bracket given by
d̄2, and the representation of L̄ in Ȳ n is induced by D̄2. Moreover, this representa-
tion corresponds to the holonomy representation, with R coefficients, of the fibration
defined by ΛX → ΛX/In+1. The proof for the first assertion is almost the same as
in [FHJLT] with some modifications to be found in [H]. Since the proof of 5.7 is
central for the whole paper, this shows again the intimate relation between cat and
holonomy. In the same direction, in [ST4] certain fibrations which are characterized
by means of their holonomy representation were found to detect cat in the same way
as the Ganea fibration.

6. Module retractions versus algebra retractions

We keep the notions of the last section and suppose α(r − 1, p) > m. The main
result of this section is

Theorem 6.1. Suppose that the inclusion ΛX → ΛX ⊗ ΛY6m−1 admits a ΛX-mod-
ule retraction r, and (X, d1), (Y6m−1, ∂1) both have R-free cohomology. Then the
inclusion admits a retraction of dg algebras.
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The proof, which is an integral version of the one given by Hess in [He],
needs some preparations. First note that Y6m−1 is concentrated in degrees < Mp

since α(r − 1, p) > m.
Now let k < p, φ : Y 6Mk → ΛX ⊗ Y6m−1 a Z(p)-module map, and

r : ΛX ⊗ ΛY6m−1 → ΛX

a ΛX-module retraction. Define an algebra map (not commuting with the differential
in general)

ρ : ΛX ⊗ ΛY 6Mk

6m−1 → ΛX

and a ρ-derivation

θ : ΛX ⊗ ΛY 6Mk

6m−1 → ΛX

as follows:
α) ρ|X := id and ρ|YMj = 1

j · r ◦ φ;

β) θ|X := 0 and θ|YMj := j · ρ− φ.

Note that j is a unit in Z(p) since j 6 k < p was assumed.
The proof of the following lemma is identical to the one given in [He] over Q and

is therefore omitted.

Lemma 6.2. Suppose that Dφ = j · ρD − θD holds on Y
Mj

6m−1 for j 6 k. Then the
following holds on ΛX ⊗ ΛY 6Mk

6m−1:
i) rθ = 0,
ii) ρD = dρ,
iii) θD = Dθ.

In particular, 6.2 gives an equation, in terms of φ and r which makes ρ a retraction
of dg algebras. The next proposition generalizes Theorem 2. in [He].

Proposition 6.3. If ΛX ⊗ ΛY6m−1 is as above and r is given, then there is

φ : Y 6Mp−1
6m−1 → [ΛX ⊗ ΛY6m−1]>n

such that Dφ = j · ρD − θD holds on Y
Mj

6m−1 for j 6 p− 1.

Proof. Again we argue inductively on the degree and the dimension of the exten-
sions in Y6m−1. The case Y n6m−1 can be done in one step: Define φ|Y n

6m−1
:= id.

Then ρy = ry and θy = ry − y. Since θ and ρ are ΛX linear, we have that on A :=
ΛX ⊗ [Z(p) ⊕ Y n6m−1],

ρ = r,

θ = r − idA .

Since A is invariant under D, it follows that:

DφyZ = ρDy − θDy, y ∈ Y n6m−1.

Now suppose φ is constructed on YMk

<r+`, k > 1, ` > 1. We assume that R = Z/pt,
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again the case R = Z(p) is easier. Let y ∈ YMk

r+` with ||y|| = r + `. So ∂1y = pty. Write
D = ∂1 + τ , then τy ∈ ΛX ⊗ ΛY 6Mk

<r+` . Furthermore, d(k · ρτy − θτy) = 0 modpt.

Claim. ϕ(k · ρτy − θτy) = 0.

Write τy = ψ0 + ψ1 + ψ2, with ψ0 ∈ I, ψ1 ∈ I ⊗ Y 6Mk

<r+` and ψ2 ∈ Λ2Y <Mk

6r+` , and all
three terms have degree > Mk + 1 by 5.7. The rest of the argument showing the claim
is now exactly as in the proof of Theorem 2 in [He].

It follows that there are α1, α2 ∈ Kerϕ of degree > n with

Dα1 = kρτy − θτy + ptα2.

Define φ(y) := α1, φ(y) := α2.
Then

Dφy = kρτy − θτy + ptα2

= kρ(Dy − ∂1y)− θ(Dy − ∂1y) + ptα2

= kρDy − kρptȳ − θDy + θptȳ + ptα2

= kρDy − ptrα2 − θDy + ptθȳ + ptα2

= kρDy − ptrα2 − θDy + ptrα2 − ptα2 + ptα2

= kρDy − θDy.
The same holds for y by a similar calculation using 6.2.

Proof of 6.1. The theorem is a direct consequence of 6.2 and 6.3.

Proposition 6.4. Suppose that the cohomology of (X, d1) R-free. Then the same
holds for (Y6m, ∂1).

We have to rely on certain results of Scheerer and Tanré in [ST1, ST4]. The proof
would be straightforward, if ΛX → ΛX ⊗ ΛY6m−1 represented the (m− 1)-Postnikov
section of the n-th Ganea fibration over Z. But this is already wrong over Q. There is
an additional wedge product of rational spheres (see [F2]). Let R∗ be a ring system
which is tame with respect to r > 2. Recall from [D] that an (r − 1)-connected space
X is tame with respect to R∗, r if πr+k(X) is a module over Rk. Tame spaces are the
fibrant objects in the model category constructed by Dwyer. So every space admits
a universal arrow to a tame space. Note that the finite Postnikov sections which we
have used so far, to compute cat(X) for a finite p-local complex, are all tame with
respect to a suitable ring system.

Proof of 6.4. Recall that ΛX represents the m-th Postnikov section of Z, and ΛX →
ΛX ⊗ ΛY6m the (m− 1)-th Postnikov section of the map representing LPnCLV →
LV . Using the identification of H∗(X∗, d∗1) for ∗ 6 m with the homotopy groups of Z
in dimensions 6 m, we see that it is enough to show the following: If the homotopy
groups of Z are R-free for ∗ 6 m, then the same is true for the space W which
represents LPnCLV . To see this consider the exact sequence in Lier−1(Z(p)). The
map q represents an n-LS-fibration by [ST1, Proposition 3.1]. The looping of an
n-LS-fibration splits. Hence it is enough to show that the tame space representing
Kn has R-free homotopy groups for ∗ 6 m. It is proved in [ST1, Proof of 3.1] that
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the space representing Kn in tame homotopy is a retract of Σ((ΩZ ×A)/ΩZ). Here
A is the tame space represented by L(s−1PnCLV/Pn−1CLV ) with linear differential
s−1∂, and ∂ is induced by the differential ∂ of CLV . We claim that ΣΩZ and A both
decompose into a wedge product of Moore spaces and all factors P s+1(G) for s 6 m
have type G = R. The decomposition of tame suspensions into Moore spaces is a
general fact of tame homotopy theory. So only the assertion of the type needs proof.
For ΣΩZ this follows from our assumption on the homotopy groups of Z. For A, note
that the Z(p)-dual of PnCLV/Pn−1CLV is m-equivalent to ΛnX, d1. For n < p the
reduced cohomology of ΛnX, d1 is R-free in dimension 6 m by our assumption on d1.
But this suffices because m 6 α(r − 1, p) was assumed. Next, recall that

Σ(ΩZ ×A/ΩZ) ' ΣΩZ ∧A ∨ ΣA

and that the property of being a wedge product of Moore spaces of a given type is
invariant under the operations of taking smash products and retracts by [CMN] (we
use p > 2 here). Furthermore, if ΣΩZ and A have only type R factors in dimensions
6 m, the same is true for smash products and retracts. So there are only type RMoore
spaces in dimensions 6 m in the decomposition of the space representing Kn.

Remark 6.5. The key of the proof of 6.1 is to gain some control on the behaviour of
the differential and the map ϕ with respect to the filtration by degree. If we want
to relate our results to cat in CWm

r (Z(p)), then this filtration is forced on us by 4.1.
Over Z/p there is no linear part in the differential, and consequently (d2)2 = 0 which
makes it possible to do perturbation theory on d2. Since this is not true over Z(p)

((d2)2 + d1d3 + d3d1 = 0), we need an assumption on d1 to lift these perturbation
arguments. But in general the bigrading does not induce a bigrading on cohomology
with respect to any finite approximation of d. To put it in another way, in contrast to
the situation over Q, the filtrations which determine coformality [N] and cat differ.
To make this point clearer, let us define another grading on a minimal m-model
which we call the L-grading. For any minimal extension, induced by an extension
with the short complex Xk= X ′

k
δ→ X ′′

k , define |X ′
k| = 1 and |X ′′

k | = 2. This induces
a grading on ΛX, and the part of the differential d(2) which is quadratic with respect
to it satisfies (d(2))2 = 0. So the cohomology with respect to d(2) is bigraded. The
differential d(2) determines the Lie-bracket on the homotopy Lie algebra H∗(X∗, d∗1).
In contrast, d2 does determine the Lie-bracket on homotopy with various coefficients
and the multiplicative extensions which show up in the universal coefficient sequences
for these Lie algebras. So d2 determines the whole coherent sequence of Lie algebras
in the sense of Anick [A2]. Denote the differential ideal in ΛX which is given by
elements of L-degree > n by Jn.

Define the invariant L-cat to be the least integer for which a ΛX retraction r exists
in

ΛX
p̄n+1 //

²²

²²

ΛX/Jn+1.

ΛX ⊗ ΛY

ϕ

77ppppppppppp
r

OO (∗)

Note that the minimal model of a Z(p)-local Moore space, if it has torsion in homology,
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has L-cat = 2. It can be shown that the invariant L-cat is closely related to spherical
cat as defined by Scheerer and Tanré in [ST5].

7. Duality, the Toomer invariant and M-cat

Let R be a commutative ring and A a differential graded algebra over R.
Suppose that A is filtered by a sequence of differential graded ideals

A = I0 ⊇ I1 ⊇ · · ·
with Ii · Ij ⊆ Ii+j . Recall that every dg A-module M has a semi-free cofibrant A-
module model P →M .

Definition 7.1. LetM be a dg A-module and P a cofibrant model ofM . Let qk : P →
P/Ik+1 be the quotient morphism.
• The Toomer invariant eA(M) is the least number k such that qk has a retraction

up to homotopy in Coch(R) and it is ∞ if no such number exists.
• The module category M -catA(M) of M is the least number k such that qk has

a retraction up to homotopy in A-mod and it is ∞ if no such number exists.

Let LV ∈ Lm−1
r−1 (Z(p)) with m 6 α(r − 1, p) be of finite type, and ΛX → C∗(LV ) a

multiplicative minimal m-model. Extend ΛX to a ∞-minimal model ΛX = ΛX ⊗
ΛW . Note that W is concentrated in dimensions > m. Let ΛX ⊗ [Z(p) ⊕ Y n] ϕ→
ΛX/Λ>nX be a (m− 1)-minimal model of ΛX → ΛX/Λ>nX, and ΛX ⊗ [Z(p) ⊕
Y
n
]
ϕ→ ΛX/Λ>nX an extension which is a minimal model of ΛX → ΛX/Λ>nX, such

that Y
n

= Y n ⊕ Z and Z concentrated in dimensions > m. Filter ΛX by the ide-
als Ik = Λ>kX and consider M -cat for A = ΛX with respect to this filtration for
R = Z(p). From now on we suppress the A in M -catA, eA.

Proposition 7.2. M -cat(ΛX) = n holds if and only if ΛX → ΛX ⊗ [Z(p) ⊕ Y n] ad-
mits a ΛX-module retraction r.

Proof. Suppose r is given. By [H, 10.3], H∗(C∗(LV );π) = 0 for ∗ > m and all coef-
ficients. Hence the obstructions to extend r to the free extensions in Z are zero
since they sit in H∗>m(ΛX;π). On the other hand, given a retraction r of ΛX →
ΛX ⊗ [Z(p) ⊕ Y n] then r maps Y n to ΛX and hence defines a retraction r.

Note that the dual M∗ of a ΛX-module M is also a ΛX-module. The ΛX action
on M∗ is defined by aψ = ψa with ψa(m) = (−1)|ψ||a|ψ(am). In particular, (ΛX)∗ is
a ΛX-module.

Theorem 7.3. M -cat(ΛX) = e((ΛX)∗).

Proof. Suppose e((ΛX)∗) = n and let P
ρ→ (ΛX)∗ be a semi-free cofibrant model.

The dual ΛX ∼= (ΛX)∗∗
ρ∗→ P ∗ is a ΛX-module map and a weak equivalence. As such

it is determined by ρ∗(1) = z. Since P
pn+1−−−→ P/(Λ>nX = In+1) has a cochain retrac-

tion up to homotopy, the cohomology class of z is in the image p∗n+1 in cohomology,
i.e., z + ∂α = p∗n+1(w). So the ΛX-module morphism from ΛX to P ∗ which sends 1 to



304 MANFRED STELZER

z + ∂α is a weak equivalence and factors over (P ∗/In+1). By [FHL, Prop. 2iii)], it fol-
lows that M -cat(ΛX) 6 n. Now suppose that M -cat(ΛX) 6 n. By [FHL, Prop. 3],
one knows that M -cat(N) 6 M -cat(ΛX) for every N ∈ ΛX −mod. This gives us
M -cat((ΛX)∗) 6 n, and since always e(N) 6 M -cat(N) the result.

Before we deduce our first product formula, we need a lemma which tells us how
to detect a cochain retraction.

Lemma 7.4. Let f : C → D be a map in Coch(Z(p)), such that C,D are Z(p)-free
with H∗(C),H∗(D) of finite type and bounded below. Then the following conditions
are equivalent:

α) f has a retraction up to homotopy in Coch(Z(p));
β) f∗ : H∗(C;π)→ H∗(D;π) is a monomorphism for all finitely generated Z(p)-

coefficients π.

Proof. Of course, one direction is clear. So suppose that β) holds. Since H∗(C) and
H∗(D) are bounded below we can use a minimal extension for the factorization of f
into cofibration and weak equivalence in Coch(Z(p)). The free extension can be chosen
to be of finite type, since H∗(C) and H∗(D) are of finite type. Suppose that we have
found a retraction on all complexes V`<k concentrated in dimensions (`, `+ 1). As

usual, we can reduce to Vk = Z(p)(y
pt

→ y) or Z(p)(y), and we deal with the first case.
Write Dy = pty + τy, τy ∈ C. Then [τy] is in the kernel of

f∗ : H∗(C;Z/pt)→ H∗(D;Z/pt).

Hence there are α, α ∈ C with dα = τy + ptα in C. Define r(y) = α and r(y) = α.

Let P be a semi-free ΛX-module model of C(LV ).

Lemma 7.5. Both P and P/In+1 have all properties attributed to C and D in 7.4.

Proof. It is clear that P, P/In+1 are Z(p) free. Since H∗(C(LV )) = 0 for ∗ < −m
by [H, 10.2], we can construct a minimal model P ′. The module P ′ is then concen-
trated in dimensions > −m and H∗(C(LV )) is of finite type. So the same holds for
P ′/In+1. Since P, P ′ and P/In+1, P ′/In+1 have isomorphic cohomology, the lemma
is proved.

Theorem 7.6. Let LVi ∈ Lmi−1
r−1 (Z(p)), i ∈ {1, 2}, be of finite type and m1 +m2 6

α(r − 1, p). Let ΛXi be minimal models of C∗(LVi). Then

M - catΛX1⊗ΛX2
(C∗(LV1 × LV2)) = M - catΛX1⊗ΛX2

(ΛX1 ⊗ ΛX2)

= M - catΛX1
(ΛX1) +M - catΛX2

(ΛX2).

Proof. The first equality is clear. By 7.3 it is enough to dualize and to compute
e. So let Pi → (ΛXi)∗ be a semi-free ΛXi-model. Then P3 = P1 ⊗ P2 is a semi-free
ΛX1 ⊗ ΛX2-model of (ΛX1 ⊗ ΛX2)∗. Let us denote the ideals which define M -cat for
ΛX1,ΛX2 and ΛX1 ⊗ ΛX2 by I1, I2, I3. Then Im3 =

∑
k+`=m I

k
1 ⊗ I`2. Suppose that

eΛX1
((ΛX1)∗) = k and eΛX2

((ΛX2)∗) = `. By 7.4 and 7.5, there are finitely generated
Z(p)-modules π1, π2 and nontrivial classes [zi] ∈ H∗(Pi;πi) with representatives in
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P1 · Ik1 ⊗ π1, respectively P2 · I`2 ⊗ π2. The class [z1 ⊗ z2] is then nontrivial in

H∗(P1 ⊗ P2;π1 ⊗ π2)

and has a representative in P1 ⊗ P2 · Ik1 ⊗ I`2 ⊆ P3 · Ik+`3 . It follows that

M − catΛX1⊗ΛX2
(ΛX1 ⊗ ΛX2) > k + `.

Conversely, suppose that P1
pk+1→ P1/I

k+1 and P2
p`+1→ P2/I

`+1 admit retractions
up to homotopy. Consider

P1 ⊗ P2

pk+`+1 // //

pk+1⊗p`+1
²²²²

P1 ⊗ P2/I
k+`+1
3 .

q
uukkkkkkkkkkkkkk

P1/I
k+1
1 ⊗ P2/I

`+1
2

Since Ik+`+1
3 acts trivially on P1/I

k+1
1 ⊗ P2/I

`+1
2 , the arrow q exists in Coch(Z(p)).

It follows that pk+`+1 is injective in cohomology with all coefficients. By 7.4 and 7.5,
we find eΛX1⊗ΛX2

((ΛX1 ⊗ ΛX2)∗) 6 k + `. This gives us

M - catΛX1⊗ΛX2
(ΛX1 ⊗ ΛX2) 6 k + `.

by 7.3.

Proof of Theorem 1.1. Let LV1,LV2 represent the homotopy types of X,Y . Since the
(m− 1)-th Postnikov section of ΩX,ΩY splits as a product of Eilenberg-Mac Lane
spaces (a basic fact of tame homotopy theory), and the freeness assumption on the
loop space homology implies that π∗(X), π∗(Y ) are free R-modules for ∗ 6 m. The
same holds for Ω(X × Y ). By 4.4, we can use m-minimal models of C∗(LV1), C∗(LV2)
and C∗(LV1 × LV2) to compute the L.S. category of X,Y , and X × Y . By 4.4, 6.1,
6.4 and 7.2, the L.S. category equals M -catΛW . By 7.3, M -catΛW equals the Toomer
invariant which is additive by 7.6.

Remark 7.7. For 1-connected rational spaces of finite type X, there is a result, due to
Scheerer and the author [SS], which states that M -cat(X) 6 n if and only if the fibra-
tion over X obtained by application of a fibrewise version of the infinite symmetric
product functor to the n-th Ganea fibration has a section. But cat(X) = M -cat(X)
by Hess’s theorem. So the fibrewise linearized Ganea fibration admits a section if and
only if the Ganea fibration admits one. It is very likely that a similar interpretation
can be shown for M -cat(X) and p-local n-connected spaces X if dim(X) 6 α(n, p).
Such a result may help to decide if the condition in 1.1 is necessary.
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174, Birkhäuser Verlag, Basel (1999).

[H] S. Halperin, Universal enveloping algebras and loop space homology, J.
Pure Appl. Algebra 83 (1992), no. 3, 237–282.

[He] K. Hess, A proof of Ganea’s conjecture for rational spaces, Topology 30
(1991), no. 2, 205–214.
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