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THE HORROCKS CORRESPONDENCE FOR
COHERENT SHEAVES ON PROJECTIVE SPACES

IUSTIN COANDĂ

(communicated by Winfried Bruns)

Abstract
We establish an equivalence between the stable category of

coherent sheaves (satisfying a mild restriction) on a projective
space and the homotopy category of a certain class of minimal
complexes of free modules over the exterior algebra Koszul dual
to the homogeneous coordinate algebra of the projective space.
We also relate these complexes to the Tate resolutions of the
respective sheaves. In this way, we extend from vector bundles
to coherent sheaves the results of G. Trautmann and the author
(2005), which interpret in terms of the BGG correspondence the
results of Trautmann (1978) about the correspondence of Hor-
rocks (1964), (1977). We also give direct proofs of the BGG
correspondences for graded modules and for coherent sheaves
and of the theorem of Eisenbud, Fløystad and Schreyer (2003)
describing the linear part of the Tate resolution associated to
a coherent sheaf. Moreover, we provide an explicit description
of the quotient of the Tate resolution by its linear strand corre-
sponding to the module of global sections of the various twists
of the sheaf.

Introduction

Two locally free sheaves E and E′ on the projective space Pn over a field k are
stably equivalent if there exist finite direct sums of invertible sheaves OP(a), a ∈ Z, L
and L′ such that E ⊕ L ' E′ ⊕ L′. Let S = k[X0, . . . , Xn] be the homogeneous coor-
dinate ring of Pn. Pn being a quotient of V \ {0}, where V = kn+1, S can be identified
with the symmetric algebra S(V ∗) of the dual vector space V ∗. Let Λ :=

∧
(V ) be the

exterior algebra of V . For 0 < i < n, the graded S-module Hi
∗E :=

⊕
d∈ZHi(E(d)) is

an invariant for stable equivalence. However, these cohomology S-modules alone do
not determine uniquely the stable equivalence class of E. G. Horrocks [15] showed
that the stable equivalence class is determined by these modules an by a sequence of
extension classes. Unfortunately, the arguments of the group Ext1 in which anyone
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of these extension classes lives depend on the previous extension classes. This incon-
venience was removed by G. Trautmann [23] who showed that the stable equivalence
class is determined by a system of matrices whose entries are (essentially) elements
of the exterior algebra Λ. Trautmann’s approach is related to the approach from
Horrocks’ paper [16].

The meaning of the matrices considered by Trautmann was clarified, following a
suggestion of W. Decker, by Trautmann and the author in [9] using the Bernstein-
Gel’fand-Gel’fand functors. These functors originate in the following easy observation:
giving a linear complex of graded free S-modules:

· · · −→ S(p)⊗k Np −→ S(p + 1)⊗k Np+1 −→ · · ·
is equivalent to giving a (left) Λ-module structure on the graded k-vector space
N :=

⊕
p∈ZNp. One denotes the above complex by F(N). Similarly, to a graded

S-module M one can associate a linear complex G(M) of graded free Λ-modules:

· · · −→Mp ⊗k

∧
(V ∗)(p) −→Mp+1 ⊗k

∧
(V ∗)(p + 1) −→ · · ·

where one considers on the exterior algebra
∧

(V ∗), graded such that V ∗ has degree
−1, the structure of left Λ-module defined by contraction. The technical reason for
which one uses

∧
(V ∗)(p) instead of Λ(p) is that F(

∧
(V ∗)) is the Koszul resolution

of S/(X0, . . . , Xn):

0→ S(−n− 1)⊗k

n+1∧ V ∗ → · · · → S(−1)⊗k V ∗ → S → 0.

The idea of I. N. Bernstein, I. M. Gel’fand and S. I. Gel’fand [4] was to extend
these functors to complexes of modules by the formula F(N•) := tot(X••), where
N• is a complex of graded Λ-modules and X•• is the double complex defined by
Xp,• := F(Np), and similarly for G(M•).

Now, consider the linear complex
⊕n−1

i=1 T−iG(Hi
∗E) (T the translation functor

for complexes) with terms Gp =
⊕n−1

i=1 Hi(E(p− i))⊗k

∧
(V ∗)(p− i) and let λ be its

differential. The first main result of the paper [9] asserts that the stable equivalence
class of E is determined by a perturbation d = λ + δ of λ obtained by addition of terms
of degree > 2. Here “perturbation” means that d ◦ d = 0, i.e., G• := ((Gp)p∈Z, d) is a
complex, and “obtained by addition of terms of degree > 2” means that:

δp(Hi(E(p− i))⊗k

∧
(V ∗)(p− i)) ⊆⊕

j<iH
j(E(p + 1− j))⊗k

∧
(V ∗)(p + 1− j).

The second main result of [9] relates the Horrocks correspondence to the BGG corre-
spondence via the results of Eisenbud, Fløystad and Schreyer [12] about Tate resolu-
tions over the exterior algebra. Let F be a coherent sheaf on Pn. Eisenbud et al. [12]
show that there is a unique (up to isomorphism) perturbation of the differential of the
linear complex

⊕n
i=0 T−iG(Hi

∗F) obtained by addition of terms of degree > 2 such
that the resulting complex I• is acyclic. It is shown in [9] that the complex G• which
determines the stable equivalence class of a locally free sheaf E can be obtained from
its Tate resolution I• by removing the linear strands G(H0

∗E) and T−nG(Hn
∗E).

In this paper, we generalize the results from [9] to the case of coherent sheaves
using different, more natural, arguments: while in [9] one avoids the use of the BGG
correspondence, the proofs in the present paper depend on it. In the first section
we show that, using arguments close to the arguments of Horrocks [15], one can
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extend from vector bundles to coherent sheaves the splitting criterion of Horrocks
and his criterion of stable equivalence. The extension to coherent sheaves of the first
criterion is a result obtained recently by Abe and Yoshinaga [1] (see, also, Bertone
and Roggero [5]).

In the second section we introduce and prove the properties of the BGG functors
needed in the proof of the Horrocks correspondence. These are : (1) the BGG equiv-
alence between the bounded derived category of finitely generated graded S-modules
and the corresponding category of Λ-modules, for which we provide a direct proof,
avoiding the use of Koszul duality; (2) the easy half of the Koszul duality phenomenon
which says that if N is a graded Λ-module then GF(N) is a right resolution of N
with graded free Λ-modules; (3) using, additionally, the functors HomS(−, S) for S-
modules and Homk(−, k) for Λ-modules, one deduces, modulo some unpleasant sign
problems, a functorial (left) free resolution for every Λ-module N ; (4) a key technical
point of the paper of Eisenbud et al. [12] describing the linear part of the minimal
complex associated to a complex of free modules of the form F(N•) or G(M•). The
last result is a consequence of a general lemma about double complexes, see [12, 3.5].
We explain, in Appendix A, that this lemma is a particular case of a general lemma
well-known in homotopy theory under the name of Basic Perturbation Lemma.

In the third section we establish the Horrocks correspondence for coherent sheaves.
It asserts that the stable category of coherent sheaves F on Pn with the property that
H0F(−t) = 0 for tÀ 0 is equivalent to the homotopy category of minimal complexes
G• of graded free Λ-modules whose linear part is of the form

⊕n−1
i=1 T−iG(Hi), where

Hi is the k-vector space graded dual of a finitely generated graded S-module of Krull
dimension 6 i + 1. This is equivalent to the fact that G• is minimal and satisfies the
following three conditions:

(i) G• is right bounded and Hp(G•) = 0 for p¿ 0,

(ii) ∀p ∈ Z, Gp is of the form
⊕n−1

i=1

∧
(V ∗)(p− i)cpi ,

(iii) lim
p→∞

(c−p,i/pi+1) = 0, i = 1, . . . , n− 1.

In the fourth section we relate the Horrocks correspondence and the BGG corre-
spondence. We first give a direct proof of the BGG description of the bounded derived
category of coherent sheaves on Pn. This proof is based on an elementary comparison
lemma which is discussed in Appendix B. Using the comparison lemma we also get
a quick proof of the theorem of Eisenbud, Fløystad and Schreyer [12, Theorem 4.1],
about Tate resolutions of coherent sheaves on Pn. Moreover, we provide a concrete
description of the quotient I•/G(H0

∗F), where I• is the Tate resolution of a coherent
sheaf F with H0(F(−t)) = 0 for tÀ 0. Using this concrete description we derive that
the complex G• associated to F by the Horrocks correspondence can be obtained
from its Tate resolution I• by removing the linear strands G(H0

∗F) and T−nG(Hn
∗F).

Notation. Throughout this paper, V will denote an (n + 1)-dimensional vector space
over a field k, e0, . . . , en a fixed basis of V and X0, . . . , Xn the dual basis of
V ∗ := Homk(V, k).

(i) Let S = S(V ∗) =
⊕

i>0 Si(V ∗) ' k[X0, . . . , Xn] be the symmetric algebra of
V ∗ and S+ =

⊕
i>1 Si(V ∗) its irrelevant homogeneous ideal. We denote by S-Mod
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the category of graded S-modules with all the homogeneous components finite dimen-
sional vector spaces, and with morphisms of degree 0. S-mod denotes the full sub-
category of S-Mod consisting of finitely generated graded S-modules, and P denotes
the full subcategory of S-mod consisting of its free objects.

(ii) If M is an object of S-mod, the finitely generated S-module

M∨ := HomS(M, S)

has a natural grading given by (M∨)d = HomS-mod(M,S(d)).
If M is an object of S-Mod, the graded dual vector space M∗ which is, by definition,⊕
d∈ZHomk(M−d, k) has a natural structure of graded S-module.

(iii) Let Λ =
∧

(V ) =
⊕n+1

i=0

i∧V be the (positively graded) exterior algebra of V .

Λ+ :=
⊕n+1

i=1

i∧V is an ideal of Λ. Let k denote the quotient Λ/Λ+. We denote by
Λ-mod the category of finitely generated graded left Λ-modules with morphisms of
degree 0, and by I its full subcategory consisting of free objects.

If N ∈ Ob(Λ-mod), soc(N) denotes the submodule of N consisting of the ele-
ments annihilated by Λ+. It can be identified with HomΛ(k,N). We remark that

soc(Λ) =
n+1∧ V .

(iv) Let P = Pn = P(V ) denote the (classical) projective space parametrizing the
1-dimensional vector subspaces of V . The homogeneous coordinate ring of P is S. We
denote by CohP the category of coherent sheaves on P and by (−)̃ : S-mod→ CohP
the functor of Serre [21] associating to a graded S-module its sheafification. If F is
a coherent sheaf on P and 0 6 i 6 n we shall denote by Hi

∗F the graded S-module⊕
d∈ZHi(F(d)).

(v) We denote by C(A), Cb(A), C±(A) the categories of complexes in an abelian
category A, by K(A), Kb(A), K±(A) the corresponding homotopy categories, and
by D(A), Db(A), D±(A) the corresponding derived categories. “T” will denote the
translation functor and “Con” the mapping cone. When A is S-mod or Λ-mod or
CohP we shall use the shorter notation C(S), C(Λ), C(P) etc.

Our main reference for category theory will be Chapter I of the book of Kashiwara
and Schapira [18]. One may also use the books of Kashiwara and Schapira [19] or
Gel’fand and Manin [13].

1. Two criteria of Horrocks

In this section we include proofs of two introductory results which extend to coher-
ent sheaves the splitting criterion of Horrocks for vector bundles on projective spaces
and his criterion characterizing stable equivalences in the same context. There are
(at least) two recently published proofs of the first result in Abe and Yoshinaga [1]
and Bertone and Roggero [5]. We follow, however, Horrocks’ original approach. It
is based on the next theorem, which is usually proved using local cohomology and
local duality (see, for example, [11, A.4.1 and A.4.2]). We shall give, for the reader’s
convenience, a direct proof avoiding the use of local cohomology.
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Theorem 1.1 (Graded Serre Duality). If M is a finitely generated graded S-module

then, putting ωS := S(−n− 1)⊗k

n+1∧ V ∗, there exist an exact sequence:

0→ Extn+1
S (M,ωS)∗ →M → H0

∗M̃ → Extn
S(M,ωS)∗ → 0

and isomorphisms: Hi
∗M̃ ' Extn−i

S (M,ωS)∗, i = 1, . . . , n.

Proof. ω̃S = OP(−n− 1)⊗k

n+1∧ V ∗ ' ωP. One knows that Hn(ωP) ' k and that, for
all a ∈ Z:

HomOP(OP(−a), ωP)
∼−→ Homk(Hn(OP(−a)),Hn(ωP)).

It follows that if L is a free graded S-module of finite rank then there exists a functorial
isomorphism:

HomS(L, ωS) ∼−→ (Hn
∗ L̃)∗.

Now, let 0→ L−n−1 → · · · → L0 →M → 0 be a free resolution of M in S-mod. Let
C−i be the cokernel of L−i−1 → L−i. One has short exact sequences:

0→ C−i−1 → L−i → C−i → 0. (1)

We consider the complex Hn
∗ L̃

• ' HomS(L•, ωS)∗. Since Hn
∗ is right exact, we have

exact sequences:
Hn
∗ L̃

−i−1 → Hn
∗ L̃

−i → Hn
∗ C̃

−i → 0

hence H0(Hn
∗ L̃

•) ' Hn
∗M̃ and H−i(Hn

∗ L̃
•) ' Ker(Hn

∗ C̃
−i → Hn

∗ L̃
−i+1) for i > 1. Since

Hp
∗L̃

−j = 0 for 0 < p < n, ∀j, one deduces easily, using the sheafifications of the exact
sequences (1), that:

H−i(Hn
∗ L̃

•) ' Hn−i
∗ M̃, 0 6 i 6 n− 1

and that one has exact sequences:

L0 = H0
∗L̃

0 → H0
∗M̃ → H−n(Hn

∗ L̃
•)→ 0

L−1 = H0
∗L̃

−1 → H0
∗C̃

−1 → H−n−1(Hn
∗ L̃

•)→ 0,

hence:

H−n(Hn
∗ L̃

•) ' Coker(M → H0
∗M̃)

H−n−1(Hn
∗ L̃

•) ' Coker(C−1 → H0
∗C̃

−1).

Finally, applying the Snake Lemma to the diagram:

0 // C−1

²²

// L0 //

o
²²

M //

²²

0

0 // H0
∗C̃

−1 // H0
∗L̃

0 // H0
∗M̃

one gets that: Coker(C−1 → H0
∗C̃

−1) ' Ker(M → H0
∗M̃).

Lemma 1.2. If M 6= 0 is a finitely generated graded S-module of projective dimen-
sion m then Extm

S (M,S) 6= 0.
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Proof. Let 0→ L−m → · · · → L0 →M → 0 be a free resolution of M in S-mod. If
Extm

S (M, S) = 0 then L−m+1∨ → L−m∨ is surjective, hence its kernel L′−m+1 is free
and the sequence:

0→ L′−m+1 → L−m+1∨ → L−m∨ → 0

is split exact. It follows that the dual sequence:

0→ L−m → L−m+1 → (L′−m+1)∨ → 0

is exact. One gets an exact sequence:

0→ (L′−m+1)∨ → L−m+2 → · · · → L0 →M → 0

from which we deduce that the projective dimension of M is 6 m− 1, a contradiction.

Theorem 1.3 (Horrocks’ splitting criterion). Let F be a coherent sheaf on Pn with
the property that H0(F(−t)) = 0 for tÀ 0. If Hi

∗F = 0 for 0 < i < n then F is a
direct sum of invertible sheaves OP(a), a ∈ Z.

Proof. By hypothesis, M := H0
∗F is a finitely generated graded S-module. It follows

that M → H0
∗M̃ is an isomorphism. One deduces, now, from the hypothesis and from

Theorem 1.1, that Exti
S(M, ωS) = 0, ∀i > 0. It follows, from Lemma 1.2, that M is

a graded free S-module, hence a direct sum of graded S-modules of the form S(a),
a ∈ Z.

Theorem 1.4 (Horrocks’ criterion of stable equivalence). Let φ : F → G be a mor-
phism of coherent sheaves on Pn, n > 2, with the property that H0φ(−t) is an iso-
morphism for tÀ 0. If Hi

∗φ is an isomorphism for 0 < i < n then φ factorizes as:

F ↪→ F ⊕A ∼−→ G ⊕ B ³ G
where the first morphism is the canonical inclusion, A and B are finite direct sums
of invertible sheaves OP(a), a ∈ Z, and the last morphism is the canonical projection.

Proof. Choose m ∈ Z such that H0φ(−t) is an isomorphism for t > m and let
M :=

⊕
j>−m H0(F(j)), N :=

⊕
j>−m H0(G(j)). Choose an epimorphism g : A→ N ,

with A a finitely generated graded free S-module. Let π : F ⊕ Ã→ G be the epimor-
phism defined by φ and g̃ and let B be the kernel of π. Using the exact sequence:

0→ B → F ⊕ Ã→ G → 0 (*)

one sees that B satisfies the hypothesis of Theorem 1.3, hence B is a direct sum
of invertible sheaves OP(b), b ∈ Z, and, consequently, B := H0

∗B is a graded free
S-module. Applying H0

∗ to the exact sequence (*) and cancelling the isomorphism⊕
j<−m H0F(j) ∼→⊕

j<−m H0G(j) one gets a short exact sequence:

0→ B →M ⊕A→ N → 0. (**)

Since Hn−1
∗ φ is an isomorphism, it follows from Theorem 1.1 that:

Ext1S(N,B) −→ Ext1S(M ⊕A,B)

is an isomorphism, hence HomS(M ⊕A,B)→ HomS(B,B) is surjective, hence the
exact sequence (**) splits.
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2. The BGG functors

Definition 2.1. When dealing with the category Λ-mod one encounters sign prob-
lems. In order to avoid any complication we shall observe strictly the Koszul sign
convention (when two homogeneous symbols ξ and η are permuted the result is mul-
tiplied by (−1)deg ξ · deg η).

(i) If K, N ∈ Ob(Λ-mod) the graded k-vector space K ⊗k N has a structure of left
Λ-module given by:

v · (x⊗ y) := (v · x)⊗ y + (−1)deg xx⊗ (v · y), for v ∈ V.

In particular, we put N(a) := k(a)⊗k N , for a ∈ Z. The grading of N(a) is given
by N(a)p = Np+a and the Λ-module structure by: (v · y)N(a) = (−1)a(v · y)N , for
v ∈ V , y ∈ N . With this definition, if v ∈ V then the morphism of k-vector spaces
(v · −)N : N → N is a morphism in Λ-mod: N(a)→ N(a + 1), ∀a ∈ Z. If φ : K → N
is a morphism in Λ-mod, φ(a) : K(a)→ N(a) is just φ if one forgets the gradings.
However, if N• ∈ ObC(Λ-mod) then N•(a) is, by definition, the complex with terms
(Np(a))p∈Z but with dN(a) := (−1)adN (the differential of a complex is a symbol of
degree 1!).

(ii) If K, N ∈ Ob(Λ-mod) the graded k-vector space Homk(N, K) has a structure
of left Λ-module given by:

(v · φ)(y) := v · φ(y)− (−1)deg φφ(v · y), for v ∈ V.

In particular, for K = k, one puts N∗ := Homk(N, k). One has (N∗)p = (N−p)∗,
and for v ∈ V , (v · −)N∗ : (N∗)p → (N∗)p+1 is (−1)p+1 times the dual of (v · −)N :
N−p−1 → N−p.

The map µ : N → N∗∗, µ(y)(φ) := (−1)deg y · deg φφ(y) (i.e., with µp := (−1)p

can: Np → (Np)∗∗, p ∈ Z) is an isomorphism in Λ-mod.
(iii) The map α : K∗ ⊗k N∗ → (K ⊗k N)∗ given by:

α(f ⊗ g)(x⊗ y) := (−1)deg g · deg xf(x)g(y)

is an isomorphism in Λ-mod. In particular, for a ∈ Z, one gets an isomorphism in
Λ-mod α : N∗(−a) ∼→ (N(a))∗ with αp = (−1)(p−a)a id(Na−p)∗ , p ∈ Z.

Under these identifications, if v ∈ V and a ∈ Z, the dual of the morphism
(v · −)N : N(−a− 1)→ N(−a) is identified with the morphism

(−1)a(v · −)N∗ : N∗(a)→ N∗(a + 1).

(iv) We endow
∧

(V ∗) =
⊕n+1

i=0

i∧V ∗, graded such that
i∧V ∗ =

∧
(V ∗)−i, with the

structure of graded left Λ-module given by:

v · f1 ∧ . . . ∧ fp :=
p∑

i=1

(−1)i−1fi(v)f1 ∧ . . . ∧ f̂i ∧ . . . ∧ fp, v ∈ V, f1, . . . , fp ∈ V ∗.

The unique morphism of left Λ-modules Λ→ ∧
(V ∗)∗ (resp., Λ→ ∧

(V ∗)(−n− 1)⊗k
n+1∧ V ) mapping 1 ∈ Λ0 to 1 ∈ (

∧
(V ∗)∗)0 (respectively, to the element idn+1∧ V

of

(
∧

(V ∗)(−n− 1)⊗k

n+1∧ V )0) is an isomorphism in Λ-mod.
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The following lemma, whose standard proof can be found, for example, in [8, 4(i)],
which shows in particular that ∀a ∈ Z,

∧
(V ∗)(a) is an injective object of Λ-mod.

Lemma 2.2. ∀N ∈ Ob(Λ-mod), ∀a ∈ Z, the map:

HomΛ-mod(N,
∧

(V ∗)(a)) −→ (N−a)∗, φ 7→ φ−a

is bijective.

Corollary 2.3. φ−a−1 : N−a−1 →
∧

(V ∗)(a)−a−1 = V ∗ can be described by:

φ−a−1(y)(v) = (−1)aφ−a(v · y), ∀y ∈ N−a−1, ∀v ∈ V,

or, equivalently, by: φ−a−1 = (−1)a
∑n

i=0(φ−a ◦ (ei · −)N )⊗Xi.

Proof. Recalling the Definition 2.1(i), (ii), one has, for v ∈ V , λ ∈ V ∗:

(v · λ)V(V ∗)(a) = (−1)a(v · λ)V(V ∗) = (−1)aλ(v).

In particular, for λ = φ−a−1(y), since φ is a morphism in Λ-mod:

(−1)aφ−a−1(y)(v) = (v · φ−a−1(y))V(V ∗)(a) = φ−a(v · y).

Definition 2.4. (The BGG functors)
(i) One defines a functor F: Λ-mod→ Cb(P) by: F(N)p := S(p)⊗k Np, dF(N) :=∑n
i=0(Xi · −)S ⊗ (ei · −)N . F can be extended to a functor F: Cb(Λ-mod)→ Cb(P)

by putting F(N•) := tot(X••), where X•• is the double complex with Xp,• := F(Np)
and with d′pX : Xp,• → Xp+1,• equal to F(dp

N ).
(ii) One defines a functor G: S-Mod→ C(I) by: G(M)p := Mp ⊗k

∧
(V ∗)(p) and

dG(M) :=
∑n

i=0(Xi · −)M ⊗ (ei · −)V(V ∗). G can be extended, in a similar way, to
a functor G: Cb(S-Mod)→ C(I). The (extended) functor G maps Cb(S-mod) to
C+(I).

(iii) F and G commute with the translation functors and with mapping cones.

Definition 2.5. Let Φ: Aop → B be an additive contravariant functor between two
additive categoriesA and B. If X• ∈ ObC(A) one defines a complex Φ(X•) ∈ ObC(B)
by:

Φ(X•)p := Φ(X−p), dp
Φ(X) := (−1)p+1Φ(d−p−1

X ) : Φ(X−p)→ Φ(X−p−1).

For example, if M• ∈ ObC(S-mod) one can define the complex M•∨ in C(S-mod)
and if M• ∈ ObC(S-Mod) (resp., N• ∈ ObC(Λ-mod)) one can define the complex
M•∗ ∈ ObC(S-Mod) (resp., N•∗ ∈ Ob C(Λ-mod)).

Furthermore, if X•• is a double complex in A one defines a double complex Φ(X••)
in B by Φ(X••)pq := Φ(X−p,−q) and

d′pq
Φ(X) := (−1)p+1Φ(d′−p−1,−q

X ), d′′pq
Φ(X) := (−1)q+1Φ(d′′−p,−q−1

X ).

If we denote Φ(X••) by Y •• then Y p,• = Φ(X−p,•) and d′p,•
Y = (−1)p+1Φ(d′−p−1,•

X ).

Lemma 2.6. (a) If X•• and Y •• are two double complexes with Xpq = Y pq, ∀p, q,
but with d′Y = (−1)ad′X and d′′Y = (−1)bd′′X , for some a, b ∈ Z, then X•• ' Y ••.

(b) Using the notations from the last part of Definition 2.5, assume that, ∀m ∈ Z,
the set {(p, q) | p + q = m, Xpq 6= 0} is finite. Then tot(Φ(X••)) ' Φ(tot(X••)).
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Proof. (a) ((−1)ap+bq idXpq )p,q∈Z is an isomorphism of double complexes X•• ∼→ Y ••.
(b) One can easily check that Φ(tot(X••)) = tot(Z••), where the double complex

Z•• is defined by:

Zpq := Φ(X−p−q), d′pq
Z := (−1)p+q+1Φ(d′−p−1,−q

X ), d′′pq
Z := (−1)p+q+1Φ(d′′−p,−q−1

X ).

But ((−1)pq idΦ(X−p,−q))p,q∈Z is an isomorphism of double complexes Φ(X••) ∼→ Z••.

Lemma 2.7. Let M• ∈ ObCb(S-Mod), N• ∈ ObCb(Λ-mod) and a ∈ Z. Then:
(a) F(N•(a)) = TaF(N•)(−a) and G(M•(a)) = TaG(M•)(−a) (one has equality,

not only an isomorphism!),
(b) F(N•∗) ' F(N•)∨,

(c) G(M•)∗ ' G(M•∗)(−n− 1)⊗k

n+1∧ V ' T−n−1G((M• ⊗S ωS)∗).

Proof. (a) One checks, firstly, that if M ∈ Ob(S-Mod) and N ∈ Ob(Λ-mod) then
F(N) = TaF(N)(−a) and G(M) = TaG(M)(−a). For the general case, one takes into
account the sign convention at the end of Definition 2.1(i).

(b) If N ∈ Ob(Λ-mod) then one checks easily that F(N∗) = F(N)∨. Now, if N• ∈
ObCb(Λ-mod) then, by defintion, F(N•) = tot(X••) with Xp,• = F(Np), ∀p ∈ Z. One
deduces that, using the last part of Definition 2.5, F(N•∗) = tot((X••)∨). But, by
Lemma 2.6(b), tot((X••)∨) ' tot(X••)∨.

(c) If N ∈ Ob(Λ-mod), one can define a functor GN : S-Mod→ C(Λ-mod)
by GN (M)p := Mp ⊗k N(p), dGN (M) :=

∑n
i=0(Xi · −)M ⊗ (ei · −)N . As in Defini-

tion 2.4, GN can be extended to a functor GN : Cb(S-Mod)→ C(Λ-mod).
First, if M ∈ Ob(S-Mod) then, by Definition 2.1(iii), GN∗(M∗)p ∼→ (GN (M)−p)∗,

∀p ∈ Z, and under these identifications, dp
GN∗ (M∗) is identified with (−1)p(d−p−1

GN (M))
∗.

Recalling the Definition 2.5, it follows that GN∗(M∗) is isomorphic to a complex
whose terms coincide with the terms of GN (M)∗ but whose differential equals “−”
the differential of GN (M)∗. Using Lemma 2.6, one deduces now, for every complex
M• ∈ ObCb(S-Mod), an isomorphism GN∗(M•∗) ∼→ GN (M•)∗.

Secondly, if M ∈ Ob(S-Mod) and a ∈ Z then, taking into account the sign con-
vention at the end of Definition 2.1(i), GN(a)(M) = GN (M)(a). Using Lemma 2.6(a)
one deduces, for every complex M• ∈ ObCb(S-Mod), an isomorphism GN(a)(M•) '
GN (M•)(a).

Since G := GV(V ∗) one gets, recalling the isomorphisms at the end of Defini-
tion 2.1(iv), the first isomorphism from the statement. The second isomorphism fol-
lows from (a).

Definition 2.8. (The linear part of a minimal complex)
(i) Let L• ∈ ObC(P). One may write Li =

⊕
j∈Z S(i− j) bij . For m ∈ Z one puts:

FmLi :=
⊕

j6m

S(i− j) bij .

Alternatively, FmLi is the S-submodule of Li generated by the homogeneous elements
of degree 6 m− i. The complex L• is called minimal if Im dL ⊆ S+ · L•. This is
equivalent to the fact, ∀m ∈ Z, FmL• := (FmLi)i∈Z is a subcomplex of L•. In this
case, grF (L•) is called the linear part of L•.
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(ii) Similarly, let I• ∈ ObC(I). One may write (by the last part of Defini-
tion 2.1(iv)) Ii =

⊕
j∈Z

∧
(V ∗)(i− j) cij . For m ∈ Z, one puts:

FmIi :=
⊕

j6m

∧
(V ∗)(i− j) cij .

Alternatively, FmIi is the Λ-submodule of Ii generated by the homogeneous ele-
ments of degree 6 m− i− n− 1. The complex I• is called minimal if Im dI ⊆ Λ+ · I•
or, equivalently, if FmI• := (FmIi)i∈Z is a subcomplex of I•, ∀m ∈ Z. In this case,
grF (I•) is called the linear part of I•.

(iii) If two minimal complexes from C(I) are isomorphic in K(I) (i.e., are homo-
topically equivalent) then they are isomorphic in C(I) (see, for example, [9, 4.2]).

The following result, which is a direct consequence of Lemma A.7 from Appendix
A, is one of the key points of the paper of Eisenbud, Fløystad, and Schreyer [12].

Lemma 2.9. (a) If N• ∈ ObCb(Λ-mod) then F(N•) ∈ ObCb(P) can be contracted
to a minimal complex L• whose linear part is F(H•(N•)), where H•(N•) is the com-
plex with terms Hp(N•), p ∈ Z, and with the differential equal to 0. Moreover, this con-
traction induces, ∀m ∈ Z, a contraction of F(τ6mN•) onto FmL• and of F(τ>mN•)
onto L•/FmL•.

(b) If M• ∈ ObCb(S-Mod) then G(M•) ∈ ObC(I) can be contracted to a minimal
complex I• whose linear part is G(H•(M•)). Moreover, this contraction induces a
contraction of G(τ6mM•) onto FmI• and of G(τ>mM•) onto I•/FmI•, ∀m ∈ Z.

The next theorem is the Bernstein-Gel’fand-Gel’fand correspondence for graded
modules. We include here a direct proof, which does not use Koszul duality. We use,
instead, the Comparison Lemma B.1 from Appendix B.

Theorem 2.10 ([4, Theorem 3]). The functor F: Cb(Λ-mod)→ Cb(P) extends to an
equivalence of triangulated categories F: Db(Λ-mod)→ Kb(P).

Proof. If φ : N ′• → N• is a quasi-isomorphism in Cb(Λ-mod) then Con(φ) is acyclic.
By Lemma 2.9(a), the complex Con(F(φ)) = F(Con(φ)) is homotopically equivalent
to 0, whence F(φ) is a homotopic equivalence. One deduces that F extends to a
functor F: Db(Λ-mod)→ Kb(P).

We show, firstly, that this functor is fully faithful, i.e., that if N•, N ′• are two
complexes from Cb(Λ-mod) then:

HomDb(Λ)(N
′•, N•) ∼−→ HomKb(P)(F(N ′•),F(N•)). (*)

We endow N• and N ′• with the filtrations F iN• = σ>iN•, F iN ′• = σ>iN ′• with
successive quotients T−iN i and T−iN ′i, respectively. If, ∀i, j ∈ Z, the map:

HomDb(Λ)(N
′i, TpN j) −→ HomKb(P)(F(N ′i),F(TpN j))

would be bijective for i− j − 1 6 p 6 i− j + 1 then Lemma B.1, applied to the func-
tor F: Db(Λ-mod)→ Kb(P), would imply that (*) is bijective. Now, if K and K ′ are
two objects of Λ-mod then:

HomDb(Λ)(K
′,K) ∼−→ HomKb(P)(F(K ′), F(K))

as one can easily see using the fact that HomDb(Λ)(K ′,K) ' HomΛ-mod(K ′,K). More-
over, HomDb(Λ)(K ′, TpK) = 0 for p < 0 (see B.3) and HomDb(Λ)(K ′, TpK) = 0 for
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p > 0 if K is a direct sum of Λ-modules of the form
∧

(V ∗)(a) because, in this case,
K is an injective object of Λ-mod.

On the other hand, HomKb(P)(F(K ′), F(TpK)) = 0 for p < 0 because F(K ′)i =
S(i)⊗k K ′

i and F(TpK)i = F(K)i+p = S(i + p)⊗k Ki+p, ∀i ∈ Z. Moreover, if
L• ∈ ObCb(P) and Hi(L•)−i = 0, ∀i ∈ Z, then HomKb(P)(F(K ′), L•) = 0 because

HomKb(P)(T
−iF(K ′)i, L•) ' Hi(L•)−i ⊗k (K ′

i)
∗ = 0, ∀i ∈ Z,

and F(K ′) can be endowed with the filtration σ>iF(K ′), i ∈ Z, with successive
quotients T−iF(K ′)i. For L• = F(TpK), the condition Hi(L•)−i = 0, ∀i ∈ Z, is ful-
filled if p > 0 and K is a direct sum of Λ-modules of the form

∧
(V ∗)(a), because

F(Tp ∧
(V ∗)(a)) = Tp+aF(

∧
(V ∗))(−a) & F(

∧
(V ∗)) is the Koszul resolution of S/S+.

Summing up, if N j is a direct sum of Λ-modules of the form
∧

(V ∗)(a),
∀j 6 sup{i ∈ Z | N ′i 6= 0}, then Lemma B.1 implies that (*) is bijective. If N• is arbi-
trary, one constructs, using Lemma 2.2, a quasi-isomorphism N• → I• with
I• ∈ ObC+(I). For m > sup{i ∈ Z | N ′i 6= 0} large enough, one gets a quasi-iso-
morphism N• → τ6mI•. By what has been proved, (*) is bijective for the pair
(N ′•, τ6mI•), hence also for the pair (N ′•, N•).

Finally, the essential surjectivity can be checked as follows. By what has been
proved, the image of F: Db(Λ-mod)→ Kb(P) is a full subcategory of Kb(P), closed
under the functors T and T−1 and under mapping cones. Moreover, F(Tak(−a)) =
S(a), ∀a ∈ Z. If L• ∈ ObKb(P) one deduces easily, by induction on

∑
i∈Z rkLi, that

L• is isomorphic in Kb(P) to a complex in the image of F.

Actually, the authors of [4] prove something more, namely that one can get a quasi-
inverse to F by applying G and then taking convenient truncations (see Beilinson et
al. [3, 2.12] for a detailed proof). We shall only need the easy half of this fact, which
is the content of the following:

Proposition 2.11. There exists, for every N• ∈ Ob Cb(Λ-mod), a functorial quasi-
isomorphism N• → GF(N•).

Proof. We consider, firstly, the case of an object N of Λ-mod. In this case it turns
out that GF(N) is an injective resolution of N in Λ-mod. Indeed, by definition,
GF(N) = tot(Y ••) with Y p,• = G(F(N)p) = G(S(p)⊗k Np), i.e., with

Y pq = Sp+q(V ∗)⊗k Np ⊗k

∧
(V ∗)(q).

In particular, GF(N)m = 0 for m < 0 and GF(N)0 =
⊕

p∈ZNp ⊗k

∧
(V ∗)(−p).

Let βp : N → Np ⊗k

∧
(V ∗)(−p) be the morphism corresponding, according to

Lemma 2.2, to (−1)pidNp , and let β : N → GF(N)0 be the morphism defined by
βp, p ∈ Z. We want to check that d0

GF(N) ◦ β = 0. This is equivalent to the fact that,
∀p ∈ Z, the diagram:

Np ⊗k

∧
(V ∗)(−p)

P
Xi⊗(ei·−)N⊗id // V ∗ ⊗k Np+1 ⊗k

∧
(V ∗)(−p)

N

βp

OO

βp+1
// Np+1 ⊗k

∧
(V ∗)(−p− 1)

(−1)p+1PXi⊗id⊗(ei·−)V(V ∗)

OO
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anticommutes. According to Lemma 2.2, this is equivalent to the fact that the dia-
gram:

Np

P
Xi⊗(ei·−)N // V ∗ ⊗Np+1

Np

(−1)pidNp

OO

βp+1
p // Np+1 ⊗ V ∗

(−1)p+1PXi⊗idNp+1⊗(ei·−)V(V ∗)

OO

anticommutes. But, according to Cor. 2.3, βp+1
p = (−1)p+1 · (−1)p+1

∑
(ei · −)N ⊗

Xi =
∑

(ei · −)N ⊗Xi.
We have thus defined a morphism of complexes β : N → GF(N). In order to

show that it is a quasi-isomorphism, one may assume, by induction on dimkN , that
N = k(a) for some a ∈ Z, and then that a = 0, i.e., that N = k. In this case F(k) = S
and the complex G(S):

· · · → 0→ ∧
(V ∗)→ V ∗ ⊗k

∧
(V ∗)(1)→ · · · → Sp(V ∗)⊗k

∧
(V ∗)(p)→ · · ·

is an injective resolution of k in Λ-mod, as one can easily check using the fact that
the Koszul complex

0→ S(−n− 1)⊗k

n+1∧ V ∗ → · · · → S(−1)⊗k V ∗ → S → 0

is a (free) resolution of S/S+ in S-mod.
The general case N• ∈ ObCb(Λ-mod) can be now deduced from the following

easy observation: GF(N•) = tot(Z••), where Z•• is the double complex with Zp,• =
GF(Np) and with d′pZ : Zp,• → Zp+1,• equal to GF(dp

N ). Indeed, by definition,
F(N•) = tot(X••) where Xp,• = F(Np) and GF(N•) = tot(Y ••) where Y m,• =
G(tot(X••)m) =

⊕
p+q=m G(Xpq). Consider the triple complex W ••• defined by

W pq,• = G(Xpq). We have that Zp,• = GF(Np) = G(Xp,•) = tot(W p,••), hence
tot(Z••) = tot(W •••) = tot(Y ••) = GF(N•).

Corollary 2.12. ∀N• ∈ ObCb(Λ-mod), there exists a functorial quasi-isomorphism:

T−n−1G((F(N•)∨ ⊗S ωS)∗) −→ N•.

Proof. By Proposition 2.11, there exists a quasi-isomorphism N•∗ → GF(N•∗) and,
by Lemma 2.7(b), F(N•∗) ' F(N•)∨. One gets a quasi-isomorphism G(F(N•)∨)∗ →
N• and, by Lemma 2.7(c), G(F(N•)∨)∗ ' T−n−1G((F(N•)∨ ⊗S ωS)∗).

3. The Horrocks correspondence

Definition 3.1. (i) If M, M ′ ∈ Ob(S-mod) let IP(M ′,M) denote the subgroup of
HomS-mod(M ′,M) consisting of the morphisms factorizing through an object of P.
The stable category S-mod has, by definition, the same objects as S-mod, but the
groups Hom are given by:

HomS-mod(M ′,M) := HomS-mod(M ′,M)/IP(M ′, M).

(ii) Similarly, using the full subcategory P̃ of CohP consisting of finite direct sums
of invertible sheaves OP(a), a ∈ Z, one defines the stable category CohP.
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Definition 3.2. A complex K• ∈ ObCb(P) is called a Horrocks complex if it satisfies
the following equivalent conditions:

(1) Hi(K•) = 0 for i 6 −2 and Hi(K•∨) = 0 for i 6 1
(2) Hi(K•∨) = 0 for i 6 1 and dim Hi(K•∨) 6 n + 2− i, for i > 1
(3) Hi(K•) = 0 for i 6 −2 and dim Hi(K•) 6 n− 1− i, for i > −1.
Here “dim” stands for “Krull dimension”. The equivalence of these conditions fol-

lows from Lemma 3.3 below. Condition (1) implies that if K ′• ∈ ObCb(P) is homo-
topically equivalent to a Horrocks complex then it is a Horrocks complex.

Let M ∈ Ob(S-mod) and let L• (resp., L′•) be a free resolution of M (resp., M∨) in
S-mod. One can concatenate the complexes L′• and T−1(L•∨) using the composite
morphism L′0 ³ M∨ ↪→ L0∨. The dual K• of the resulting complex is a Horrocks
complex. We call it a Horrocks resolution of M .

Lemma 3.3. Let A be a Noetherian (commutative) ring and let P • be a left bounded
complex of finitely generated projective A-modules. Then the following conditions are
equivalent:

(i) Hi(P •) = 0, ∀i < 0
(ii) ∀i > 0, ∀p ∈ Supp Hi(P •∨) ⊆ SpecA, depth Ap > i.

Proof. (i)⇒(ii) Let i > 0 and let p ∈ Spec A with depthAp < i. Let M := C0(P •) :=
Coker(P−1 → P 0). Condition (i) implies that M has finite projective dimension.
Now, the Auslander-Buchsbaum formula implies that the projective dimension of
the Ap-module Mp is 6 depth Ap < i, hence Hi(P •∨)p ' Exti

Ap
(Mp, Ap) = 0, whence

p /∈ Supp Hi(P •∨).
(ii)⇒(i) We use induction on m := sup{i ∈ Z | Hi(P •∨) 6= 0}. The case m 6 0 is

clear. For the proof of the induction step (m− 1)→ m, consider the A-module N :=
C−1(P •) := Coker(P−2 → P−1). Applying the induction hypothesis to T−1P •, one
gets that Hi(P •) = 0, ∀i < −1, hence the sequence:

0→ P−r → · · · → P−2 → P−1 → N → 0

is exact. We assert that Ass(N) ⊆ Ass(A). Indeed, let p ∈ Ass(N) and d := depth Ap.
It follows from the Auslander-Buchsbaum formula that the projective dimension
of the Ap-module Np is d, which implies that Extd

Ap
(Np, Ap) 6= 0. If d > 0 then

Extd
Ap

(Np, Ap) ' Hd+1(P •∨)p hence, by (ii), depthAp > d + 1, a contradiction. It
remains that d = 0, i.e., p ∈ Ass(A).

Now, H−1(P •) ' Ker(N → P 0), hence Ass(H−1(P •)) ⊆ Ass(N) ⊆ Ass(A). If
p ∈ Ass(A) then, by (ii), the sequence:

P 0∨
p → P−1∨

p → · · · → P−r∨
p → 0

is exact. Since it consists of free Ap-modules, its dual is also exact. In part-
icular, it follows that H−1(P •)p = 0. One deduces that Ass(H−1(P •)) = ∅, i.e.,
H−1(P •) = 0.

Theorem 3.4. The functor C−1 : Cb(P)→ S-mod associating to a complex L• the
cokernel of the differential d−2

L : L−2 → L−1 induces a functor C−1 : Kb(P)→ S-mod
which, restricted to the full subcategory H of Kb(P) consisting of Horrocks complexes,
is an equivalence of categories.
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Proof. If a morphism f : L′• → L• in Cb(P) is homotopic to 0 then C−1(L′•)→
C−1(L•) factorizes through L−1 ³ C−1(L•) (and through C−1(L′•)→ L′0) hence
C−1 induces a functor C−1 as in the statement.

The fact that C−1 |H is fully faithful follows from the more general Lemma 3.5
below. The fact that C−1 |H → S-mod is essentially surjective was already observed
in the last part of Definition 3.2.

Lemma 3.5. Let L•, L′• ∈ ObC(P). If Hi(L•) = 0 for i 6 −2 and if Hi(L′•∨) = 0
for i 6 1, then the morphism:

HomC(P)(L′•, L•) −→ HomS-mod(C−1(L′•), C−1(L•))

is surjective and induces an isomorphism:

HomK(P)(L′•, L•)
∼−→ HomS-mod(C−1(L′•), C−1(L•)).

Proof. The complex · · · → L−2 → L−1 → 0 is a free resolution of C−1(L•) in
S-mod, and the complex · · · → L′1∨ → L′0∨ → 0 is a free resolution of C−1(L′•)∨.
Now, one can use the following two elementary facts: (1) if P • ∈ ObC60(P),
M• ∈ ObC60(S-mod) and Hi(M•) = 0 for all i < 0, then any morphism C0(P •)→
C0(M•) can be lifted to a morphism of complexes P • →M•; (2) if, moreover,
C0(P •)→ C0(M•) factorizes through an object of P (hence through M0 ³ C0(M•))
then the morphism of augmented complexes:

· · · // P−1

²²

// P 0

²²

// C0(P •)

²²

// 0

· · · // M−1 // M0 // C0(M•) // 0

is homotopic to 0.

Theorem 3.6. For N• ∈ ObCb(Λ-mod) the complex F(N•) is a Horrocks complex if
and only if the linear part of a minimal free resolution of N• in Λ-mod is of the form⊕n−1

i=−1 T−iG(Hi), where Hi is the k-vector space graded dual of a finitely generated
graded S-module of Krull dimension 6 i + 1, i = −1, . . . , n− 1.

Proof. Let us denote F(N•) by K•. By Corollary 2.12 and by Lemma 2.9(b), the
linear part of a minimal free resolution of N• is isomorphic to

⊕
i∈Z T−iG(Hi), where

Hi = Hi(T−n−1((K•∨ ⊗S ωS)∗)) ' (Hn+1−i(K•∨ ⊗S ωS))∗. One can now conclude,
using condition (2) from Definition 3.2.

Definition 3.7. A minimal complex G• ∈ ObC−(I) with Hp(G•) = 0 for p¿ 0 is
called a Horrocks-Trautmann complex if it satisfies the following conditions (compare
with [9, 1.6]):

(1) Fn−1G
• = G• and F0G

• = 0, i.e., Gp '⊕n−1
i=1

∧
(V ∗)(p− i)cpi , ∀p ∈ Z,

(2) lim
p→∞

(c−p,i/pi+1) = 0, i = 1, . . . , n− 1.

Lemma 3.8. A minimal complex G• ∈ ObC−(I) is a Horrocks-Trautmann complex
if and only if its linear part is of the form

⊕n−1
i=1 T−iG(Hi), where Hi is the k-vector

space graded dual of a finitely generated graded S-module of Krull dimension 6 i + 1,
i = 1, . . . , n− 1.
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Proof. The equivalence can be proved by applying to G•∗ the following:

Assertion. For a minimal complex I• ∈ ObC+(I), the following conditions are
equivalent:

(i) Hp(I•) = 0, for pÀ 0
(ii) The linear part of I• is of the form

⊕
i∈ZT−iG(M i), where M i is a finitely

generated graded S-module, ∀i ∈ Z.

(i)⇒(ii) Hp(I•) = 0, ∀p > m, for some m ∈ Z. Let Zm := Ker(Im → Im+1). σ>mI•

is a minimal right free resolution of T−mZm in Λ-mod. By Proposition 2.11, the com-
plex GF(T−mZm) is a right free resolution of T−mZm in Λ-mod. From Lemma 2.9(b),
it can be contracted to a minimal complex J• in C+(I), whose linear part is

⊕
i∈ZT

−iG(Hi(F(T−mZm))) =
⊕

i∈ZT
−iG(Hi−m(F(Zm))).

σ>mI• and J• are isomorphic in D+(Λ-mod) hence, since every free object of Λ-mod
is an injective object of this category, they are isomorphic in K+(I) and consequently,
by 2.8(iii), isomorphic in C+(I). One deduces that the linear part of σ>mI• is iso-
morphic to

⊕
i∈Z T−iG(Hi−m(F(Zm))).

(ii)⇒(i) It suffices to prove that if M ∈ Ob(S-mod) then Hp(G(M)) = 0 for
pÀ 0. Let L• be a finite free resolution of M in S-mod. G(M) and G(L•) are quasi-
isomorphic (even homotopically equivalent). Since G(S) is a right free resolution of
k in Λ-mod (see the proof of Proposition 2.11) it follows that Hp(G(L•)) = 0 for
pÀ 0.

Theorem 3.9. There exists an equivalence of categories between the full subcategory
HT of K−(I) consisting of Horrocks-Trautmann complexes and the full subcategory of
CohP(V ) consisting of the coherent sheaves F with the property that H0(F(−t)) = 0,
for tÀ 0.

Proof. The equivalence from the statement will appear as a composition of previously
established equivalences.

(1) Let B be the full subcategory of CohP(V ) consisting of the coherent sheaves
with the property from the statement. Let A be the full subcategory of S-mod con-
sisting of the modules of projective dimension 6 n− 1. Using Theorem 1.1 (Graded
Serre Duality) one sees that the functor (−)̃ : S-mod→ CohP(V ) induces an equiv-
alences of categories between A and B. Moreover, this equivalence induces an equiva-
lence between the correponding full subcategories A and B of S-mod and CohP(V ),
respectively.

(2) By Lemma 1.2, the equivalence C−1 : H → S-mod from Theorem 3.4 induces an
equivalence between the full subcategoryH′ ofH consisting of the Horrocks complexes
K• with the additional property that Hi(K•∨) = 0 for i > n + 1 and A.

(3) Finally, there is a well-known equivalence Φ between the full subcategory K of
K−(I) consisting of the complexes I• with Hp(I•) = 0 for p¿ 0 and Db(Λ-mod). Φ
associates to I• a convenient truncation τ>mI• with m¿ 0 (it suffices that Hp(I•) =
0 for p < m) and its quasi-inverse associates to a complex in Db(Λ-mod) a free res-
olution of it. Now, by Theorem 3.6 and Lemma 3.8, the composition of the BGG
equivalence (Theorem 2.10) F: Db(Λ-mod)→ Kb(P) and Φ induces an equivalence
between HT and H′.
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Example 3.10. (Eilenberg-MacLane sheaves)
Let 0 < i < n and let E be a finitely generated graded S-module of Krull dimension

6 i + 1. Consider a minimal free resolution of E in S-mod:

0→ Q−n−1 → · · · → Q0 → E → 0.

Applying Lemma 3.3 to P • := Tn−i(Q•∨) one derives that Hj(Q•∨) = 0 for
j 6 n− i− 1. Using condition (1) from Definition 3.2 one deduces that
K• := Tn−i+1(Q•∨) is a Horrocks complex. It is a Horrocks resolution of
M := Coker((Q−n+i+1)∨ → (Q−n+i)∨). M has a minimal free resolution:

0→ (Q0)∨ → · · · → (Q−n+i+1)∨ → (Q−n+i)∨ →M → 0.

Let F := M̃ . Since Hj(K•∨) = 0 for j 6= n− i + 1 and Hn−i+1(K•∨) ' E, it follows
from the proof of Theorem 3.6 that the Horrocks-Trautmann complex associated to
F is T−iG(H) where H = (E ⊗S ωS)∗. Moreover, by Graded Serre Duality (Theo-
rem 1.1), Hj

∗F = 0 for 0 < j < n, j 6= i, and Hi
∗F ' H.

When E is of finite length F is a locally free sheaf. The locally free sheaves of this
kind were called Eilenberg-MacLane bundles in Horrocks [16].

4. The Horrocks correspondence and the BGG correspondence

Definition 4.1. The geometric BGG functor is the functor L: Λ-mod→ Cb(CohP)
defined by L(N) := F(N )̃ .

We denote by Λ-mod the stable category of Λ-mod with respect to its full subcat-
egory I consisting of free objects (see Definition 3.1).

Lemma 4.2. If N, N ′ ∈ Ob(Λ-mod) then, ∀p > 1:

HomKb(P)(L(N ′), TpL(N)) ∼−→ HomDb(P)(L(N ′), TpL(N)).

Proof. The lemma is an immediate application of Lemma B.4, taking into account
that Hi(OP(a)) = 0 for i > 0, i 6= n, ∀a ∈ Z, and Hn(OP(a)) = 0, ∀a > −n.

Corollary 4.3. If N,N ′ ∈ Ob(Λ-mod) then, ∀p > 1:

HomDb(Λ)(N
′, TpN) ∼−→ HomDb(P)(L(N ′), TpL(N)).

Proof. By the BGG correspondence for graded modules Theorem 2.10:

HomDb(Λ)(N
′,TpN) ∼−→ HomKb(P)(F(N ′), TpF(N))

and, on the other hand, it is obvious that:

HomKb(P)(F(N ′),TpF(N)) ∼−→ HomKb(P)(L(N ′),TpL(N)).

It only remains, now, to apply Lemma 4.2.

The following theorem is the Bernstein-Gel’fand-Gel’fand correspondence for co-
herent sheaves on projective spaces. We include here a direct proof of this result.

Theorem 4.4 ([4, Theorem 2]). The functor L: Λ-mod→ Cb(CohP) induces an
equivalence of categories L: Λ-mod→ Db(CohP).
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Proof. L(
∧

(V ∗)) is the tautological Koszul complex on P(V ):

0→ OP(−n− 1)⊗k

n+1∧ V ∗ → · · · → OP(−1)⊗k V ∗ → OP → 0

hence, if P is a free object of Λ-mod then L(P ) is an acyclic complex. It follows that
L: Λ-mod→ Cb(CohP) induces a functor L: Λ-mod→ Db(CohP).

We firstly show that the induced functor is fully faithful. Let N,N ′ ∈ Ob(Λ-mod).
We have to show that the morphism:

HomΛ-mod(N ′, N) −→ HomDb(P)(L(N ′),L(N)) (*)

is surjective and that its kernel consists of the morphisms factorizing through a free
object of Λ-mod. Consider an exact sequence 0→ K → P → N → 0 with P a free
object of Λ-mod. From Lemma 4.2:

HomKb(P)(L(N ′), TL(P )) ∼−→ HomDb(P)(L(N ′), TL(P ))

and HomDb(P)(L(N ′), TL(P )) = 0 since L(P ) is acyclic. Now, applying the functors
HomKb(P)(L(N ′),−) and HomDb(P)(L(N ′),−) to the complex in Kb(P):

L(P )→ L(N)→ TL(K)→ TL(P )

deduced (see [8, 2(i),(ii)]) from the semi-split short exact sequence:

0→ L(K)→ L(P )→ L(N)→ 0,

one gets a commutative diagram with exact rows:

HomK(P)(L(N ′), L(P ))

²²

// HomK(P)(L(N ′), L(N))

²²

// HomK(P)(L(N ′),TL(K))

o
²²

// 0

HomD(P)(L(N ′), L(P )) // HomD(P)(L(N ′), L(N)) // HomD(P)(L(N ′),TL(K)) // 0.

By Lemma 4.2, the vertical arrow from the right hand side of the diagram is an
isomorphism. Moreover, HomD(P)(L(N ′), L(P )) = 0 because L(P ) is acyclic. Since
the vertical arrows in the commutative diagram:

HomΛ-mod(N ′, P )

o
²²

// HomΛ-mod(N ′, N)

o
²²

HomK(P)(L(N ′), L(P )) // HomK(P)(L(N ′), L(N))

are clearly isomorphisms, one deduces that the morphism (*) is surjective and that
its kernel consists of the morphisms factorizing through P → N .

The essential surjectivity of L : Λ-mod→ Db(P) can now be checked, in a well-
known manner, using the following observations:

(1) By what has been proven, the image of L is a full subcategory of Db(P).
(2) If N ∈ Ob(Λ-mod) and one considers a short exact sequence 0→ N

→ I → Q→ 0 with I a free object of Λ-mod then the connecting morphism
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w : L(Q)→ TL(N) deduced (see [8, (2)(ii)]) from the semi-split short exact sequence:

0→ L(N)→ L(I)→ L(Q)→ 0

is a quasi-isomorphism because L(I) is acyclic. Similarly, considering a short exact
sequence 0→ K → P → N → 0 with P a free object of Λ-mod one gets a quasi-
isomorphism T−1L(N)→ L(K).

(3) Let u : N ′ → N be a morphism in Λ-mod. Consider an embedding v : N ′ → I ′

of N ′ into a free object I ′ of Λ-mod and define C ∈ Ob(Λ-mod) by the short exact
sequence:

0→ N ′ (u,v)−→ N ⊕ I ′ −→ C → 0.

By applying L to this short exact sequence one gets a semi-split short exact sequence,
hence L(C) is homotopically equivalent to ConL((u, v)). Moreover, Con L((u, v))
is quasi-isomorphic to Con L(u) because L(I ′) is acyclic, whence one gets a quasi-
isomorphism L(C)→ ConL(u).

(4) L(k(−a)) = T−aOP(a), ∀a ∈ Z.
Using these observations and the fact that every coherent sheaf on P(V ) has a

finite resolution with finite direct sums of invertible sheaves OP(a), one deduces
immediately (as, for example, in the last part of the proof of [8, Theorem 7]) that
L: Λ-mod→ Db(P) is essentially surjective.

Corollary 4.5 ([4, Remark 3 after Theorem 1]). If F• ∈ ObCb(CohP) then there

exists N ∈ Ob(Λ-mod) annihilated by soc(Λ) =
n+1∧ V such that F• ' L(N) in the

derived category Db(CohP). Moreover, N is unique up to isomorphism.

For a proof see, for example, [8, 8].

Corollary 4.6. If F• and N are as in Corollary 4.5 then, ∀i ∈ Z, Hi(F(N)) '⊕
j>−iHi(F•(j)) as S-modules (where H denotes the hypercohomology).

Proof. Hi(F(N))j = 0 for j < −i because F(N)i = S(i)⊗k Ni. For every j one has:

Hi(F(N))j ' HomKb(P)(T
−iOP,L(N)(j))

hence it remains to show that for j > −i:

HomKb(P)(T
−iOP,L(N)(j)) ∼−→ HomDb(P)(T

−iOP, L(N)(j))

or, equivalently, that:

HomKb(P)(L(k(−i)), Ti+jL(N(−i− j))) ∼−→ HomDb(P)(L(k(−i)), Ti+jL(N(−i− j))).

For j > −i this follows from Lemma 4.2. For j = −i, the above morphism can be
identified with the morphism:

HomΛ-mod(k(−i), N) −→ HomDb(P)(L(k(−i)), L(N)).

By Theorem 4.4, the last morphism is surjective and its kernel consists of the com-
posite morphisms k(−i)→ P → N with P a free object of Λ-mod. But the image
of k(−i)→ P must lie in soc(P ) = soc(Λ) · P . Since N is annihilated by soc(Λ), any
such composite morphism must be 0.



THE HORROCKS CORRESPONDENCE 345

Definition 4.7. Let N be an object of Λ-mod annihilated by soc(Λ). Let P • (resp.,
P ′•) be a minimal free resolution of N (resp., N∗) in Λ-mod. By concatenating the
complexes P ′• and T−1(P •∗) using the composite morphism P ′0 ³ N∗ ↪→ P 0∗ one
gets an acyclic complex which is minimal (since N∗ is annihilated by soc(Λ), the image
of the above composite morphism is contained in Λ+ · P 0∗). The k-vector space dual
I• of this complex (see Definition 2.5) is called a Tate resolution of N .

The next theorem, which is one of the main results of the paper of Eisenbud,
Fløystad and Schreyer [12], is a direct consequence of Corollary 4.6.

Theorem 4.8 ([12, Theorem 4.1]). If F• and N are as in Corollary 4.5 and if I• is
a Tate resolution of N then the linear part of I• is isomorphic to

⊕
i∈ZT−iG(Hi

∗F•).

Proof. Let Z−m := Ker(I−m → I−m+1), m > 0. As we have shown in the proof of
Lemma 3.8, the linear part of σ>−mI• is isomorphic to

⊕
i∈Z T−iG(Hi+m(F(Z−m))).

Now, by definition, N ' Coker(I−2 → I−1) and since I• is acyclic, N '
Ker(I0 → I1). It follows, from observation (2) in the second part of the proof of
Theorem 4.4, that L(Z−m) ' T−mL(N) ' T−mF• in Db(P). Moreover, since Z−m

is contained in Λ+ · I−m, it is annihilated by soc(Λ). Corollary 4.6 now implies that
Hi+m(F(Z−m))'⊕

j>−i−mHi+m((T−mF•)(j)) =
⊕

j>−i−mHi(F•(j)). Taking into
account what has been recalled in the first paragraph, one deduces that the linear
part of σ>−mI• is isomorphic to

⊕
i∈ZT−iG(

⊕
j>−i−mHi(F•(j))). Finally, letting

m→∞ one gets the desired conclusion.

Theorem 4.9. Let F be a coherent sheaf on Pn with H0F(−t) = 0 for tÀ 0, let
M := H0

∗F and let 0→ L−n+1 → · · · → L0 →M → 0 be a minimal free resolution
of M in S-mod. Let N ∈ Ob(Λ-mod) be as in Corollary 4.5 and let I• be a Tate
resolution of N . Then:

(a) I•/F0I
• is a contraction of T−nG((L•∨ ⊗S ωS)∗).

(b) The Horrocks-Trautmann complex corresponding to F via the equivalence of
categories from Theorem 3.9 is isomorphic to Fn−1I

•/F0I
•.

Proof. (a) Choose m ∈ Z such that Hi(F(j)) = 0, ∀i > 0, ∀j > m− i. Since, as a
consequence of Theorem 4.8, Ip '⊕n

i=0 Hi(F(p− i))⊗k

∧
(V ∗)(p− i), ∀p ∈ Z, one

sees that Ip = F0I
p for p > m, hence I•/F0I

• = (σ<mI•)/F0(σ<mI•).
Now, let Zm := Ker(Im → Im+1). T−1(σ<mI•) is a minimal (left) free resolution

of T−mZm. One deduces, from Corollary 2.12, that T−1(σ<mI•) is a contraction
of T−n−1G((F(T−mZm)∨ ⊗S ωS)∗). It follows that σ<mI• is a contraction of the
complex T−nG((F(T−mZm)∨ ⊗S ωS)∗).

Let F • := F(T−mZm) = T−mF(Zm). By observation (2) in the last part of the
proof of Theorem 4.4, L(Zm) ' TmL(N) ' TmF in Db(P). It follows from Corol-
lary 4.6 that

Hi(F •) = Hi−m(F(Zm)) '
⊕

j>m−i

Hi−m((TmF)(j)) =
⊕

j>m−i

Hi(F(j)).

One deduces that F • is a minimal free resolution of M ′ :=
⊕

j>m H0(F(j)) in S-mod.
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The inclusion M ′ ↪→M lifts to a morphism of complexes F • → L•. Since M/M ′

is of finite length, Exti
S(M/M ′, ωS) = 0 for i 6= n + 1, hence

Hi(L•∨ ⊗S ωS) ∼→ Hi(F •∨ ⊗S ωS) for i < n.

One deduces a quasi-isomorphism L•∨ ⊗S ωS → τ<n(F •∨ ⊗S ωS), whence a quasi-
isomorphism τ>−n((F •∨ ⊗S ωS)∗)→ (L•∨ ⊗S ωS)∗ and then a quasi-isomorphism

τ>0(T−n((F •∨ ⊗S ωS)∗))→ T−n((L•∨ ⊗S ωS)∗).

It follows now, from the last part of Lemma 2.9(b), that (σ<mI•)/F0(σ<mI•) is a
contraction of T−nG((L•∨ ⊗S ωS)∗).

(b) Let 0→ L′−n+1 → · · · → L′0 →M∨ → 0 be a minimal free resolution of M∨

in S-mod. As in the last part of Definition 3.2, one can construct from L• and L′• a
Horrocks resolution K• of M . One has an exact sequence:

0→ T−1(L•∨)→ K•∨ → L′• → 0. (*)

The Horrocks-Trautmann complex corresponding to F is obtained as follows: one
considers a complex N• ∈ ObCb(Λ-mod) such that F(N•) ' K• in Kb(P) and then
one takes a minimal (left) free resolution G• of N• in Λ-mod. By Corollary 2.12,
G• is a contraction of T−n−1G((F(N•)∨ ⊗S ωS)∗) hence a contraction of
T−n−1G((K•∨ ⊗S ωS)∗).

Using the exact sequence (*), one gets a quasi-isomorphism:

τ>2(T−1(L•∨ ⊗S ωS)) −→ K•∨ ⊗S ωS ,

whence a quasi-isomorphism (K•∨ ⊗S ωS)∗ → τ6−2(T((L•∨ ⊗S ωS)∗)) and then a
quasi-isomorphism:

T−n−1((K•∨ ⊗S ωS)∗) −→ τ6n−1(T−n((L•∨ ⊗S ωS)∗)).

One deduces, now, from (a) and from the last part of Lemma 2.9(b), that the con-
traction G• of T−n−1G((K•∨ ⊗S ωS)∗) is isomorphic to Fn−1I

•/F0I
•.

Appendix A. Cancellation of terms in a complex

We work in an abelian category A.

Definition A.1. If X• and Y • are complexes in A then, according to Eilenberg and
MacLane [10], a contraction of X• onto Y • is a triple (f, g, h), where f : X• → Y •,
g : Y • → X• are morphisms of complexes and h ∈ Hom−1(X•, X•) is a homotopy
operator satisfying:

(i) fg = idY , (ii) idX − gf = dXh + hdX

and the side conditions:

(iii) fh = 0, (iv) hg = 0, (v) h2 = 0.

The side conditions do not restrict generality. Indeed, as remarked by Lambe and
Stasheff [20, 2.1], if (f, g, h) satisfies (i)-(ii), if one puts φ := idX − gf and h′ := φhφ,
then (f, g, h′) satisfies (i)-(iv) (dXφ = φdX , dXh + hdX = φ, and φ2 = φ). Moreover,
if h′′ := h′dXh′ then (f, g, h′′) satisfies (i)-(v) (h′ = h′φ = φh′, and φ = dXh′ + h′dX).
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Notice that (i) implies that X• = Img ⊕Kerf , (iv) implies that h vanishes on Img,
(iii) implies that h maps X• into Kerf , and (ii) implies that h |Kerf → Kerf realizes
a homotopy idKerf ∼ 0.

Example A.2. Let X• be a complex in A and assume that, for every p ∈ Z, one has
a decomposition Xp = V p ⊕W p ⊕ Y p such that the component dp

wv : V p →W p+1 of
the differential dp

X : Xp → Xp+1 is an isomorphism. Consider, for every p ∈ Z, the
following morphisms:

dp
Y = dp

yy − dp
yv(dp

wv)−1dp
wy : Y p −→ Y p+1,

fp = (0 , −dp−1
yv (dp−1

wv )−1 , idY p) : Xp −→ Y p,

gp = (−(dp
wv)−1dp

wy , 0 , idY p)trsp : Y p −→ Xp,

and hp : Xp → Xp−1 defined by the 3× 3 matrix whose unique non-zero entry is
(dp−1

wv )−1 : W p → V p−1. Then Y • := (Y p, dp
Y )p∈Z is a complex, f := (fp)p∈Z and

g := (gp)p∈Z are morphisms of complexes and (f, g, h := (hp)p∈Z) is a contraction
of X• onto Y •.

Example A.3. An important particular case of the previous example is that of a
splitting complex X•. This means that, ∀p ∈ Z, Zp := Kerdp

X and Bp := Imdp−1
X are

direct summands of Xp. Choose decompositions: Xp = V p ⊕ Zp and Zp = Bp ⊕Hp,
hence Xp = V p ⊕Bp ⊕Hp. The differential dp

X vanishes on Zp and maps V p iso-
morphically onto Bp+1. Let hp : Xp → Xp−1 be the morphism defined by the 3× 3
matrix whose unique non-zero term is the inverse of V p−1 ∼→ Bp. Consider the com-
plex H• := (Hp, 0)p∈Z. Then the projection (corresponding to the above decompo-
sitions) π : X• ³ H• and the inclusion u : H• ↪→ X• are morphisms of complexes
and (π, u, h) is a contraction of X• onto H•. Notice that the composite morphisms
Hp ↪→ Zp ³ Hp(X•), p ∈ Z, define an isomorphism of complexes H• ∼→ H•(X•) :=
(Hp(X•), 0)p∈Z.

Remark. Conversely, if a complex X• is homotopically equivalent to a complex H•

with dH = 0 then X• is a splitting complex.

Indeed, consider morphisms of complexes f : X• → H• and g : H• → X• such that
gf ∼ idX and fg ∼ idH . Choose a homotopy operator h ∈ Hom−1(H•,H•) such that
idH − fg = dHh + hdH . Since dH = 0, it follows that fg = idH , hence X• ' X ′• ⊕
H•, where X ′• = Kerf . Choose, now, a homotopy operator k ∈ Hom−1(X•, X•) such
that idX − gf = dXk + kdX and fk = 0 (see the argument of Lambe and Stasheff
reproduced in A.1). Then k maps X• into Kerf = X ′• and induces a homotopy
operator h′ on X ′• such that idX′ = dX′h′ + h′dX′ . In particular, X ′• is acyclic,
hence B′p := Imdp−1

X′ = Kerdp
X′ =: Z ′p. Now, dp−1

X′ ◦ h′p |X ′p → B′p is a left inverse
for the inclusion Z ′p ↪→ X ′p.

The next result is known in the literature as the “Basic Perturbation Lemma”. In
its more practical form A.6 below, it appears implicitly in Shih [22] and explicitly
in R. Brown [6] and Gugenheim [14]. Its more general variant A.4 was proved by
Barnes and Lambe [2]. We include here a different proof of this variant.

Lemma A.4 (Basic Perturbation Lemma). Let (f, g, h) be a contraction of a com-
plex X• onto a complex Y •. Let d̂X = dX + d′X ∈ Hom1(X•, X•) be a “perturbation”
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of dX (which means that d̂X ◦ d̂X = 0, i.e., that X̂• := (Xp, d̂ p
X )p∈Z is a complex). If

idX + hd′X is an invertible element of the ring Hom0(X•, X•) then there exist a per-
turbation d̂Y = dY + d′Y of dY and a contraction (f̂ , ĝ, ĥ) of the complex X̂• onto the
complex Ŷ • := (Y p, d̂ p

Y )p∈Z.

Proof. We consider, firstly, the particular case where there exists φ ∈ Hom1(X•, Y •)
such that d′X = gφ. In this case:

d̂Xg = dXg + gφg = gdY + gφg = g(dY + φg),

hence, putting d̂Y := dY + φg, one gets that d̂Xg = gd̂Y . It follows that

d̂Y ◦ d̂Y = f ◦ g ◦ d̂Y ◦ d̂Y = f ◦ d̂X ◦ d̂X ◦ g = 0,

i.e., d̂Y is a perturbation of dY .
We look, now, for a perturbation f̂ = f + f ′ of f such that:

f̂g = idY , idX − gf̂ = d̂Xh + hd̂X . (*)

This system of equations is equivalent to:

f ′g = 0, −gf ′ = gφh (**)

(because hg = 0) hence it has the solution f ′ := −φh. Now, by (*), f̂g = idY and gf̂

is an endomorphism of the complex X̂• hence:

d̂Y f̂ − f̂ d̂X = f̂g(d̂Y f̂ − f̂ d̂X) = f̂(d̂Xgf̂ − d̂Xgf̂) = 0,

i.e., f̂ is a morphism of complexes from X̂• to Ŷ •. Moreover, f̂h = −φh2 = 0. Con-
sequently, (f̂ , g, h) is a contraction of X̂• onto Ŷ •.

The general case can be reduced to the particular case we have just treated as
follows: α := idX + hd′X ∈ Hom0(X•, X•) maps isomorphically the complex X̂• onto
the complex X̃• = (Xp, d̃ p

X )p∈Z, where d̃X := αd̂Xα−1. Using the fact that

dXd′X + d′X d̂X = d̂X ◦ d̂X = 0

and the relation (ii) from A.1 one checks easily that:

αd̂X = dXα + gfd′X

hence d̃X = αd̂Xα−1 = dX + gfd′Xα−1 is a perturbation of dX with perturbation
term gφ, where φ = fd′Xα−1. It follows, from the particular case, that there exist
perturbations:

d̂Y = dY + fd′Xα−1g, f̃ = f − fd′Xα−1h

such that (f̃ , g, h) is a contraction of the complex X̃• onto the complex Ŷ •.
One can now take: f̂ = f̃α = f̃ (because fh = 0 and h2 = 0), ĝ = α−1g and

ĥ = α−1hα = α−1h (because h2 = 0).

Corollary A.5. Under the hypothesis of A.4, let U• := Kerf . The sequence
0→ U• u−→ X• f−→ Y • → 0 is split exact (because fg = idY ), hence X• ' Y • ⊕ U•.
Then, for the complex Ŷ • obtained in the proof of A.4, one has: X̂• ' Ŷ • ⊕ U•.
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Proof. Since f(idX − gf) = 0, it follows that there exists a morphism of complexes
v : X• → U• such that idX − gf = uv. One deduces that vu = idU and that vg = 0,
hence the sequence of complexes 0→ Y • g−→ X• v−→ U• → 0 is (split) exact.

Now, using the notation from the last part of the proof of A.4, one has:

vd̃X = vdX + vgφ = vdX = dUv

hence v is a morphism of complexes: X̃• → U•. The short exact sequence of com-
plexes:

0→ Ŷ • g−→ X̃• v−→ U• → 0

is split exact (because f̃g = idbY ), hence X̃• ' Ŷ • ⊕ U•. But one has an isomorphism
of complexes α : X̂• ∼→ X̃•.

Remark A.6 (The classical variant). In practice, one checks that idX + hd′X is invert-
ible by verifying that hd′X is locally nilpotent, i.e., that

⋃
i>1Ker(hd′X)i = X•. In this

case, the inverse of idX + hd′X is idX +
∑

i>1(−1)i(hd′X)i and the proof of A.4 gives
the following explicit formulae:

d̂Y = dY + fd′Xg +
∑

i>1

(−1)ifd′X(hd′X)ig, f̂ = f +
∑

i>1

(−1)if(d′Xh)i,

ĝ = g +
∑

i>1

(−1)i(hd′X)ig, ĥ = h +
∑

i>1

(−1)i(hd′X)ih.

Finally, let us consider the case of a double complex X•• with (commut-
ing) differentials d′X and d′′X . We denote by HI(X••) the double complex with terms
Hpq

I (X••) := Kerd′pq
X /Imd′p−1,q

X , with d′HI
= 0 and with d′′HI

induced by d′′X . We also
recall the following notation: for m ∈ Z, τ6m

I X•• is the double subcomplex of X••

whose (p, q) term is Xpq for p < m, Kerd′mq
X for p = m, and 0 for p > m. One defines,

similarly, a quotient double complex τ>m
I X•• of X••.

The following result, which is a particular case of A.6, is stated and proved in
Eisenbud et al. [12, 3.5], and it is a key technical point of that paper.

Lemma A.7. Assume that the double complex X•• satisfies the following finiteness
condition: ∀m ∈ Z, Xp,m−p = 0 for p¿ 0. If all the rows X•,q := (Xpq, d′pq

X )p∈Z,
q ∈ Z, of X•• split (see A.3) then there exists a contraction of tot(X••) onto a com-
plex Y •, endowed with an increasing filtration (FmY •)m∈Z by subcomplexes, such
that:

Y n =
⊕

p+q=n

Hpq
I (X••), ∀n ∈ Z, (1)

FmY n =
⊕

p+q=n
p6m

Hpq
I (X••), ∀m,n ∈ Z, (2)

grF (Y •) = tot(HI(X••)). (3)

Moreover, this contraction can be chosen in such a way that, for all m ∈ Z, it induces
a contraction of tot(τ6m

I X••) onto FmY • and of tot(τ>m
I X••) onto Y •/FmY •.
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Proof. Recall that the differential of tot(X••) is d′X + δ′′X , with δ′′X |Xpq := (−1)pd′′pq
X .

Let X••
I be the double complex with the same terms as X••, with d′XI

= d′X , and with
d′′XI

= 0. A.3 provides a contraction (π, u, h) of tot(X••
I ) onto a complex with terms

Y n given by the formula (1) from the statement and with the differential equal to
0. One may assume that the homotopy operator h maps Xpq into Xp−1,q, ∀p, q ∈ Z.
The differential of tot(X••) is a perturbation of d′X and the finiteness condition from
the statement implies that hδ′′X is locally nilpotent. A.6 produces now a contraction
(π̂, û, ĥ) of tot(X••) onto a complex Y • with terms given by formula (1) from the
statement and with differential:

dY = πδ′′Xu +
∑

i>1

(−1)iπδ′′X(hδ′′X)iu.

The explicit formulae from A.6 allows one now to check easily the other assertions
from the lemma.

Appendix B. A comparison lemma

Lemma B.1. Let C, D be triangulated categories and Φ: C → D an additive functor
commuting with the translation functors and sending distinguished triangles to distin-
guished triangles. Let X, Y be two objects of C endowed with “decreasing filtrations”,
i.e., with sequences of morphisms:

· · · → F i+1X → F iX → · · · , · · · → F i+1Y → F iY → · · ·
such that F iX = X, F iY = Y for i¿ 0 and F iX = 0, F iY = 0 for iÀ 0, and with
the “successive quotients” replaced by distinguished triangles:

F i+1X → F iX → Xi → TF i+1X, F i+1Y → F iY → Y i → TF i+1Y.

(a) If HomC(Xi, Y j)→ HomD(Φ(Xi), Φ(Y j)) is surjective and HomC(Xi, TY j)→
HomD(Φ(Xi), Φ(TY j)) is injective, ∀i, j, then HomC(X, Y )→ HomD(Φ(X),Φ(Y )) is
surjective.

(b) If HomC(Xi, Y j)→ HomD(Φ(Xi), Φ(Y j)) is injective and HomC(TXi, Y j)→
HomD(Φ(TXi), Φ(Y j)) is surjective, ∀i, j, then HomC(X,Y )→ HomD(Φ(X), Φ(Y ))
is injective.

Proof. For p, i ∈ Z, we endow TpF iX with the filtration whose jth term is TpF jX
for j > i and TpF iX for j 6 i, and similarly for TpF iY . We also endow TpXi with
the filtration whose jth term is TpXi for j 6 i and 0 for j > i, and similarly for
TpY i. We prove (a) and (b) simultaneously, by induction on N := card{i ∈ Z | Xi 6=
0}+ card{j ∈ Z | Y j 6= 0}. The case N 6 2 is obvious.

For the induction step, assume, firstly, that card{j ∈ Z | Y j 6= 0} > 2 and let n :=
inf{j ∈ Z | Y j 6= 0}. By applying HomC(X,−) to the complex:

T−1Y n → Fn+1Y → Y → Y n → TFn+1Y (*)

and HomD(Φ(X),−) to the complex Φ((*)), one gets a commutative diagram with
exact rows and five vertical arrows. If the pair (X,Y ) verifies the hypothesis of (a)
(resp., (b)) then (X,Fn+1Y ) and (X, Y n) verify the hypothesis of (a) (resp., (b)), and
(X, TFn+1Y ) verifies the hypothesis of (b) (resp., (X, T−1Y n) verifies the hypothesis
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of (a)). Using, now, the strong form of the “Five Lemma” (see [18, Chap. I, Ex. 1.8]
or [19, 8.3.13]) and taking into account the induction hypothesis, one gets the desired
conclusion.

Similarly, if card{i ∈ Z | Xi 6= 0} > 2 let m := inf{i ∈ Z | Xi 6= 0}. One applies
HomC(−, Y ) to the complex:

T−1Xm → Fm+1X → X → Xm → TFm+1X (**)

and HomD(−, Φ(Y )) to the complex Φ((**)) and one uses again the “Five Lemma”.

Before stating an useful consequence of B.1, namely Lemma B.4 below, we recall
the following well known lemma.

Lemma B.2. Let X• and Y • be complexes in an abelian category A and n ∈ Z.
(a) If Xp = 0 (resp., Hp(X•) = 0) for p > n then:

HomK(A)(X•, τ6nY •) ∼−→ HomK(A)(X•, Y •)

(resp., HomD(A)(X•, τ6nY •) ∼−→ HomD(A)(X•, Y •)).

(b) If Y p = 0 (resp., Hp(Y •) = 0) for p < n then:

HomK(A)(τ>nX•, Y •) ∼−→ HomK(A)(X•, Y •)

(resp., HomD(A)(τ>nX•, Y •) ∼−→ HomD(A)(X•, Y •)).

Proof. The assertions about HomK(A) are easy.
(a) The inverse of HomD(A)(X•, τ6nY •)→ HomD(A)(X•, Y •) associates to a mor-

phism X• qis←− X ′• −→ Y • in D(A) the morphism X• qis←− τ6nX ′• −→ τ6nY •.
(b) The inverse of HomD(A)(τ>nX•, Y •)→ HomD(A)(X•, Y •) associates to a mor-

phism X• −→ Y ′• qis←− Y • the morphism τ>nX• −→ τ>nY ′• qis←− Y •.

Definition B.3. If X, Y are objects of an abelian category A and p ∈ Z then, by
definition, Extp

A(X,Y ) := HomD(A)(X, TpY ). It follows from B.2 that Extp
A(X, Y ) =

0 for p < 0. Moreover, using the arguments from the proof of B.2, one sees easily that
HomA(X, Y ) ∼→ Ext0A(X, Y ).

The following lemma appears, in weaker variants, in several papers like Kapra-
nov [17] or Canonaco [7, A.5.3]. In the more precise form B.4 below, it was proved in
[9, 3.3], under the assumption that the abelian category A contains sufficiently many
injective objects. Here we drop this assumption using an argument similar to that
used by Canonaco (this argument actually appears in the proof of B.1).

Lemma B.4. Let A be an abelian category, X• ∈ ObC−(A) and Y • ∈ ObC+(A).
Consider the canonical morphism φ : HomK(A)(X•, Y •)→ HomD(A)(X•, Y •).

(a) If Extp−q
A (Xp, Y q) = 0, ∀p > q, then φ is surjective.

(b) If Extp−q−1
A (Xp, Y q) = 0, ∀p > q + 1, then φ is injective.

Proof. Let m := sup{p ∈ Z | Xp 6= 0} and n := inf{q ∈ Z | Y q 6= 0}. Taking into
account B.2, one may replace X• by τ>nX• and Y • by τ6mY •, hence one may
assume that X• and Y • are bounded complexes.
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In this case, one endows X• with the filtration F iX• := σ>iX• (σ = “stupid
truncation”). To the semi-split short exact sequence:

0→ σ>i+1X• → σ>iX• → T−iXi → 0

one can associate (see, for example, [8, 2(ii)]) a distinguished triangle in Kb(A):

σ>i+1X• → σ>iX• → T−iXi → Tσ>i+1X•.

One also endows Y • with the similar filtration. The conclusion of the lemma follows
now from B.1 applied to the canonical functor Kb(A)→ Db(A). The hypotheses of
B.1 can be easily checked in this case because most of the Hom groups involved are
zero and HomK(A)(X,Y ) ∼→ HomD(A)(X,Y ), ∀X, Y ∈ ObA (see B.3).
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