SOME NEW OBSERVATION ON INVARIANT THEORY OF PLANE QUARTICS

TETSUJI SHIODA

1. Introduction. Let $S(n, m)$ denote the graded ring of projective invariants of an n-ary form (a homogeneous polynomial in n variables) of degree m. We are interested in the case $n = 3$ and $m = 4$. A ternary quartic form $F(x_0, x_1, x_2)$ defines a plane curve of genus 3 if it is nonsingular, and conversely any non-hyperelliptic curve of genus 3 can be realized as such a plane quartic via the canonical embedding, which is unique up to projective transformations. Thus the structure of the ring $S(3, 4)$ is closely related to the moduli of genus 3 curves. (For general background of Invariant Theory, see e.g. [4], [13].)

More than thirty years ago ([5, Appendix]), we calculated the generating function (Poincaré series) of $S(3, 4)$ and made a few guess (or conjecture?) about the structure of the graded ring $S(3, 4)$. More recently, Dixmier [2] has proved the existence of a system of parameters for this ring (suggested in [5]) by exhibiting a system of seven explicit projective invariants.

In this paper, we study some close relationship of the ring $S(3, 4)$ of projective invariants to another invariant theory, i.e. to the invariant theory for the Weyl groups $W(E_7)$ and $W(E_8)$ (cf. [1]). We are led to such a connection from the viewpoint of Mordell-Weil lattices ([8], [9]).

2. Formulation of main results. We consider the case of characteristic zero. Taking
\[F(x_0, x_1, x_2) = \sum_{i_0 + i_1 + i_2 = 4} a_{i_0, i_1, i_2} x_0^{i_0} x_1^{i_1} x_2^{i_2} \]
with variable coefficients $\{a_{i_0, i_1, i_2}\}$, we may regard $S(3, 4)$ as a graded subring of the polynomial ring $\mathbb{C}[a_{i_0, i_1, i_2}]$ graded by the total degree, consisting of those $I = I(F) \in \mathbb{C}[a_{i_0, i_1, i_2}]$ which are invariant under $SL(3)$. Namely, for any $g \in SL(3)$, let $(x'_0, x'_1, x'_2) = (x_0, x_1, x_2)g$ and rewrite $F(x'_0, x'_1, x'_2)$ as a polynomial $F'(x_0, x_1, x_2)$ in x_0, x_1, x_2:
\[F'(x_0, x_1, x_2) = \sum_{i_0 + i_1 + i_2 = 4} a'_{i_0, i_1, i_2} x_0^{i_0} x_1^{i_1} x_2^{i_2}. \]

We set $F^g = F'$. Then, by definition, we have
\[I \in S(3, 4) \iff I(F^g) = I(F) \quad (\forall g \in SL(3)). \]

For any ternary quartic form F_0, we call the map $I \to I(F_0)$ the evaluation map of $S(3, 4)$ at F_0.

*Received December 9, 1999; accepted for publication February 9, 2000.
†Department of Mathematics, Rikkyo University, Nishi-Ikebukuro, Toshima-ku, Tokyo 171, Japan (shioda@rkmath.rikkyo.ac.jp).
Actually the C-algebra $S(3,4)$ is obtained from the Q-algebra $S(3,4) \cap \mathbb{Q}[a_{i_0, i_1, i_2}]$ by the scalar extension of Q to C. So, in the following, we change the notation so that $S(3,4)$ will denote this Q-subalgebra of $\mathbb{Q}[a_{i_0, i_1, i_2}]$.

Now we recall the following fact on the normal form of a plane quartic with a given flex (cf. [8, §1]). Take the inhomogeneous coordinates x, t such that $(x_0 : x_1 : x_2) = (1 : x : t)$. The normal form of type E_7 is

$$f_\lambda = x^3 + x(p_0 + p_1 t + t^3) + q_0 + q_1 t + q_2 t^2 + q_3 t^3 + q_4 t^4$$

with $\lambda = (p_0, p_1, q_0, \ldots, q_4) \in \mathbb{A}^7$, and the normal form of type E_6 is

$$f_\lambda = x^3 + x(p_0 + p_1 t + p_2 t^2) + q_0 + q_1 t + q_2 t^2 + t^4$$

with $\lambda = (p_0, p_1, p_2, q_0, q_1, q_2) \in \mathbb{A}^6$. In either case, let Γ_λ be the plane quartic defined by $f_\lambda = 0$; the flex is given by the point $(x_0 : x_1 : x_2) = (0 : 1 : 0)$. The fact is that every plane quartic with a given flex is isomorphic to Γ_λ for some $\lambda \in \mathbb{A}^7$ or \mathbb{A}^6; the distinction depends on whether the given flex is ordinary or special\(^1\) (i.e. whether the tangent line to the curve at the flex intersects the curve with multiplicity 3 or 4).

It is obvious that the evaluation map $I \to I(f_\lambda)$ gives a ring homomorphism

$$\phi : S(3,4) \to Q[\lambda] = Q[p_i, q_j]$$

for either type of f_λ. Let us call it the evaluation map of type E_7 or E_6, and denote it by ϕ_7 or ϕ_6 when we need to specify the cases.

The main purpose of this paper is to establish less obvious relationship between the invariant theory of a plane quartic and the invariant theory of the Weyl group $W(E_r)$ ($r = 6, 7$). To formulate the results, note first that the ring of invariants of $W(E_r)$, say $R(E_r)$, can be naturally identified with $Q[\lambda]$ given above (see [1], [6], [7]), which is a graded polynomial ring with the weights of p_i or q_j assigned as follows:

for E_7 case: $wt(p_i) = 12 - 4i$, $wt(q_j) = 18 - 4j$.

for E_6 case: $wt(p_i) = 8 - 3i$, $wt(q_j) = 12 - 3j$.

On the other hand, let

$$S = S(3,4) = \oplus_m S_m$$

where S_m is the homogeneous part of degree m of S. It is known that $S_m \neq 0$ only if m is a multiple of 3 (cf. §3).

Theorem 1. (i) The evaluation map of type E_7

$$\phi_7 : S(3,4) \to R(E_7) = Q[p_0, p_1, q_0, q_1, q_2, q_3, q_4]$$

is a graded homomorphism from $S(3,4)$ to $R(E_7)$ with weight ratio $3 : 14$ in the sense that ϕ sends S_{3d} to $R(E_7)_{14d}$ for all d.

(ii) The evaluation map of type E_6

$$\phi_6 : S(3,4) \to R(E_6) = Q[p_0, p_1, p_2, q_0, q_1, q_2]$$

\(^1\)see the comments at the end of the paper.
is a graded homomorphism from $S(3,4)$ to $R(E_8)$ with weight ratio $3 : 8$ in a similar sense.

Theorem 2. Let $D \in S(3,4)$ denote the discriminant of a plane quartic: its characteristic property is that $D \in S_{27}$ and $D(f) \neq 0$ if and only if $f = 0$ is smooth. Then the image $\phi(D)$ under the evaluation map ϕ of type E_r ($r = 7, 6$) is equal, up to a constant, to the “discriminant” δ of $R(E_r)$ which is defined as the square of the basic anti-invariant of $W(E_r)$; the weight of δ is 126 or 72 for $r = 7$ or 6.

Theorem 3. (i) For $r = 7$, the evaluation map ϕ_7 is injective.

(ii) For $r = 6$, the evaluation map ϕ_6 has a nontrivial kernel which contains a projective invariant J of degree 60.²

For a graded integral domain R, $F(R)$ will denote the field of fractions of R, and $F(R)(0)$ will denote the subfield of homogeneous fractions (i.e. the fractions a/b with $a, b \in R$ of the same weight).

For $S = S(3,4)$, $F(S)(0)$ can be considered as the function field of the moduli space M_3 of curves of genus 3.

Theorem 4. Let $P = Q[I_1, \ldots, I_6, I_9]$ be the polynomial subring of $S = S(3,4)$ generated by the Dixmier’s system $\{I_d \mid d = 1, \ldots, 6, 9\}$, I_d being a suitable projective invariant of degree $3d$. Then we have the algebraic extensions

$$F(P)(0) \subset F(S)(0) \subset F(Q[\lambda])(0)$$

with the extension degree

$$[F(S)(0) : F(P)(0)] = 50, \quad [F(Q[\lambda])(0) : F(S)(0)] = 24.$$

Remark. (1) Note that both

$$F(P)(0) = Q(I_d/I_1^d \mid d = 1, \ldots, 6, 9)$$

and

$$F(Q[\lambda])(0) = Q(p_0/q_4^6, p_1/q_4^4, q_0/q_4^9, q_1/q_4^7, q_2/q_4^5, q_3/q_4^3)$$

are rational fields (i.e. purely transcendental extensions) over Q. The famous rationality question of the moduli space M_3 of curves of genus 3 is equivalent to asking whether $F(S)(0)$ is a rational field or not. This was answered by Katsylo [3] by a representation-theoretic method. Our approach might be of some use to this question, from a more geometric point of view.

(2) The explicit form of the invariants I_d in the Dixmier’s system is not necessary to prove Theorem 4, but we shall give it in [11] for a possible use in future.

3. Proof of Theorems. We keep the notation introduced in the above.

First recall that, for any homogeneous invariant $I \in S = S(3,4)$ of degree m ($I \in S_m$), we have

$$I(F^g) = \det(g)^w I(F) \quad (\forall g \in GL(3))$$

²see the comments at the end of the paper
for some integer \(w \), which is determined by \(4m = 3w \) (by comparing the degree in generic coefficients of \(g \)). Thus, if \(I \neq 0 \), \(m = 3d \) and \(w = 4d \) for some integer \(d \).

Proof of Theorem 1. The key point is the weighted homogeneity of \(f_\lambda \). For the normal form of type \(E_7 \), \(f_\lambda \) is a weighted homogeneous polynomial of total weight 18, if we fix \(wt(x) = 6 \) and \(wt(t) = 4 \). Namely we have

\[
f_\lambda(u^6x, u^4t) = u^{18}f_\lambda(x, t) \quad (\forall u \in G_m)
\]

with \(\lambda' = (u^{12}p_0, u^5p_1, \ldots, u^6q_3, u^2q_4) \).

Let \(g \) be the diagonal matrix \(g = [1, u^6, u^4] \in GL(3) \); note \(\det(g) = u^{10} \). Then we have from the above

\[
(f_\lambda)^g(x, t) = u^{18}f_\lambda(x, t).
\]

For any \(I \in S_{3d} \), we have then

\[
(u^{10})^{4d}I(f_\lambda') = (u^{18})^{3d}I(f_\lambda)
\]

which implies

\[
I(f_\lambda') = u^{14d}I(f_\lambda) \quad (\forall u \in G_m).
\]

This proves that \(\phi_r(I) = I(f_\lambda) \) has weight \(14d \) for any \(I \in S_{3d} \). Thus part (i) of Theorem 1 is shown.

For the normal form of type \(E_6 \), \(f_\lambda \) is a weighted homogeneous polynomial of total weight 12 by taking \(wt(x) = 4 \) and \(wt(t) = 3 \). The same argument as above shows part (ii) of Theorem 1.

Proof of Theorem 2. Since the discriminant \(D \) of a plane quartic has degree 27 (\(D \in S_{27} \)), \(\phi_r(D) \) has weight \(9 \cdot 14 = 126 \) and \(\phi_6(D) \) has weight \(9 \cdot 8 = 72 \) by Theorem 1. Hence \(\phi(D) \in \mathbb{Q}[\lambda] \) has the same weight as the discriminant \(\delta \) of \(R(E_r) \) (= the number of the roots in \(E_r \)) for \(r = 7, 6 \).

To prove \(\phi(D) = \delta \) (up to a constant), the simplest would be to assume the knowledge of singularity theory. From this standpoint, note first that the plane quartic \(\Gamma_\lambda \) is smooth at the points at infinity (i.e. on \(z_0 = 0 \)). Thus it will be smooth if and only if the affine curve \(f_\lambda = 0 \) is smooth. By Jacobian criterion, the latter condition is equivalent to the smoothness of the affine surface \(S'_{\lambda} : y^2 = f_\lambda \) (since \(\text{char } \neq 2 \)).

Now the singularity theory tells us that the family \(y^2 = f_\lambda \) parametrized by \(\lambda \in \mathbb{A}^7 \) is a so-called semi-universal deformation of the \(E_r \)-singularity \(y^2 = x^3 + xt^3 \) (\(r = 7 \)) or \(y^2 = x^3 + t^4 \) (\(r = 6 \)) and that \(S'_{\lambda} \) is smooth if and only if \(\delta(\lambda) \neq 0 \).

Therefore we have \(\phi(D) \neq 0 \Leftrightarrow \delta(\lambda) \neq 0 \), proving the assertion.

We give here an alternative proof based on the theory of Mordell-Weil lattices (MWL) (cf. [6], [7], esp. [8, Th.5]). We consider the elliptic curve

\[
E = E_\lambda : y^2 = f_\lambda = x^3 + \cdots
\]

defined over \(K = k(t) \), \(k \) being the algebraic closure of \(\mathbb{Q}(p_i, q_j) \). To fix the idea, suppose \(f_\lambda \) is of type \(E_7 \) and \(\lambda \) is generic over \(\mathbb{Q} \) (i.e. \(p_i, q_j \) are algebraically independent over \(\mathbb{Q} \)). Then the structure of the Mordell-Weil lattice \(E(K) \) is isomorphic to \(E^*_1 \),
the dual lattice of the root lattice \(E_7 \), with the narrow Mordell-Weil lattice \(E(K)^0 \) being isomorphic to \(E_7 \). Corresponding to the 56 minimal vectors of norm \(3/2 \) in \(E_7^* \), there are 56 \(k(t) \)-rational points \(P = (x, y) \) of the form:

\[
x = at + b, \quad y = ct^2 + dt + e
\]

([6], Lemma 9.1). A nice fact is that the map \(P \mapsto c \) extends to a group homomorphism \(\text{sp} : E(K) \to k \) (the specialization map at \(t = \infty \), up to a constant), which is injective for \(\lambda \) generic.

We can choose \(\{P_1, \ldots, P_7\} \subset E(K) \) such that \(\langle P_i, P_j \rangle = \delta_{ij} + 1/2 \) (see [8], [10]); they generate a subgroup of index 3 in \(E(K) \). Then \(c_i = \text{sp}(P_i) \in k \) \((i = 1, \ldots, 7)\) are algebraically independent over \(Q \), and the Weyl group \(W(E_7) \) acts on the polynomial ring \(Q[c_1, \ldots, c_7] \) in such a way that the ring of invariants is equal to \(Q[p_0, p_1, q_0, \ldots, q_4] \). Moreover the coefficients \(a, b, \ldots, e \) defining \(P = (x, y) \) belong to \(Q[c_1, \ldots, c_7] \) for all \(P \).

The basic anti-invariant in \(Q[c_1] \) is the product of 63 linear forms:

\[
c_i - c_j (i < j), c_i - v, v - c_i - c_j - c_k (i < j < k)
\]

where \(v = (\sum_i c_i)/3 \), which are the image of half of the 126 roots in \(E(K)^0 \simeq E_7 \). The discriminant \(\delta(\lambda) \) is the square of this anti-invariant up to a constant.

Now we consider specializing the generic parameter \(\lambda \) to any \(\lambda' \in A^7 \). If the MWL does not degenerate under this specialization, we have the 126 roots in \(E_{\lambda'}(K)^0 \simeq E_7 \). Recall that a root in \(E_7 \) corresponds to a rational point \(Q = (x, y) \) of the form

\[
x = t^2/u^2 + at + b, \quad y = t^3/u^3 + ct^2 + dt + e
\]

with \(u = \text{sp}(Q) \neq 0 \). Therefore none of the 63 linear forms above corresponding to the roots vanish under the specialization, and we have \(\delta(\lambda') \neq 0 \). In other words, \(\delta(\lambda') = 0 \) implies the degeneration of MWL (this is the MWL-analogue of "vanishing cycles" in the singularity theory).

Further note that the degeneration of MWL occurs if and only if the affine surface \(S_{\lambda'} \) acquires singularities, since both conditions are equivalent to the existence of a reducible fibre in the associated elliptic fibration at \(t \neq \infty \).

Thus we have the implication \(\delta(\lambda') = 0 \Rightarrow D(\lambda') = 0 \). Comparing the degree, we conclude that \(\delta = \phi(D) \) up to a constant.

The case of \(E_6 \) can be treated in a similar way.

Remark. It is also possible to directly verify \(\phi(D) = \delta \) (up to a constant) by means of computer algebra (cf. [11]).

Proof of Theorem 3. The injectivity of the homomorphism \(\phi_7 \) is clear, because a generic plane quartic can be put in the normal form \(\Gamma_\lambda : f_\lambda = 0 \) (over a field of rationality of the curve and a flex) ([8, §1]).

To prove the second part, we use the notation in the above proof of Theorem 2. For each of the 56 \(k(t) \)-rational points \(P = (x, y) \in E_\lambda \), we have the identity in \(t \):

\[
(ct^2 + dt + e)^2 = f_\lambda(at + b, t).
\]
This means that the line \(L : x = at + b \) in \(\mathbb{P}^2 \) is a bitangent to the plane quartic \(\Gamma_\lambda : f_\lambda = 0 \), i.e., we have \(L \cdot \Gamma_\lambda = 2A + 2B \) for the two points \(A, B \in \Gamma_\lambda \), which are determined by the equation \(ct^2 + dt + e = 0 \). In this way, we get all the 28 bitangents to \(\Gamma_\lambda \), since \(\pm P = (x, \pm y) \) give the same bitangent.

Consider the product

\[
J = \prod_{\nu=1}^{28} (d^2_{\nu} - 4c_{\nu}e_{\nu})
\]

which is an element of \(\mathbb{Q}[c_1, \ldots, c_7] \) of weight \(28 \cdot 10 = 280 \). Since the Weyl group \(W(E_7) \) acts (transitively) on the 56 minimal vectors, \(J \) is an invariant. Hence

\[
J \in \mathbb{Q}[c_1, \ldots, c_7]^{W(E_7)} = \mathbb{Q}[p_0, p_1, q_0, \ldots, q_4].
\]

Lemma 5. For the normal form of type \(E_7 \), the vanishing of the invariant \(J \) is equivalent to the existence of a special flex.

Proof Assume \(J(\lambda') = 0 \) for \(\lambda' \in A^7 \). Then some factor in the product must be 0, so the two points of contact of a bitangent coincide. In other words, we have

\[
L \cdot \Gamma_{\lambda'} = 4A
\]

for this bitangent \(L \). Then this point \(A \) is a special flex of \(\Gamma_{\lambda'} \) with flex tangent \(L \). The converse is clear. \(\square \)

By the lemma, the vanishing of \(J \) has an invariant meaning in the sense of projective geometry. Hence \(J \) is a projective invariant, or more precisely, we have \(J = \phi_7(I) \) for a unique projective invariant \(I \in S(3,4) \). In view of Theorem 1, \(I \) has degree 60. Finally \(I \) belongs to the kernel of the map \(\phi_6 \), since the normal form of type \(E_6 \) has a special flex by definition.

This complete the proof of Theorem 3. \(\square \)

Presumably the invariant \(I \) constructed above should be the generator of \(\text{Ker}(\phi_6) \), but it is not yet proven.

Proof of Theorem 4. By [2], \(P \) is a polynomial subring of \(S \) such that \(S \) is integral over \(P \). Then by [5, Lemma 1], \(F(S) \) is an algebraic extension of \(F(P) \) of degree \(N(1) \) if \(N(T) \) denotes the numerator of the generating function of \(S \). In our case ([5, Appendix]), the generating function is equal to

\[
\frac{N(T)}{\prod_{d=1}^{6}(1 - T^d) \cdot (1 - T^9)} \quad (T = t^3)
\]

with

\[
N(T) = 1 + T^3 + T^4 + T^5 + 2T^6 + 3T^7 + 2T^8 + 3T^9 + 4T^{10} + 3T^{11} + 4T^{12} + 4T^{13} + 3T^{14} + 4T^{15} + 3T^{16} + 2T^{17} + 3T^{18} + 2T^{19} + T^{20} + T^{21} + T^{22} + T^{25}.
\]

Hence we have \(N(1) = 50 \), which shows \([F(S) : F(P)] = 50 \). It follows easily that we have \([F(S)(0) : F(P)(0)] = 50 \).

On the other hand, we view \(F(S) \) as a subfield of \(\mathbb{Q}(p_0, p_1, q_0, \ldots, q_4) \) via the injective map \(\phi_7 \) (Theorem 3). Suppose \(\Gamma \) is a generic plane quartic. Then it has
24 flexes, say ξ_ν, which are all ordinary flexes. For each choice of the flex ξ_ν, Γ is isomorphic to Γ_λ for some $\lambda = (p_i, q_j) \in \Lambda^7$, with ξ_ν mapped to $(0, 1, 0) \in \Gamma_\lambda$; moreover $\lambda = \lambda^{(\nu)}$ is uniquely determined by the condition $q_4 = 1$ for the given pair (Γ, ξ_ν) (see [8, §1]). Thus the 24 values of $\lambda^{(\nu)}$ corresponding to the 24 flexes are mutually conjugate over $F(S)_{(0)}$. It follows that $[F(Q[\lambda])_{(0)}, F(S)_{(0)}] = 24$. □

ACKNOWLEDGEMENT. The author owes the following valuable remarks to the referee:

(1) about the terminology. A point of undulation is a more standard word for a special flex used in this paper and [8]. See Salmon’s book [12], no. 50, p. 37 and no. 247, p. 218.

(2) about a characterization of undulation. Theorem 3 (ii) is classically known, and is a special case of the following fact. Salmon describes a projective invariant of degree $6(m - 3)(3m - 2)$ for a plane curve of degree m whose vanishing expresses the condition that the curve has a point of undulation ([12], no. 400, p. 362).

REFERENCES
