FINITE-DIMENSIONAL FILTERS WITH NONLINEAR DRIFT XIII:
CLASSIFICATION OF FINITE-DIMENSIONAL ESTIMATION
ALGEBRAS OF MAXIMAL RANK WITH STATE SPACE
DIMENSION FIVE*

GUO-QING HU†, STEPHEN S. T. YAU‡, AND WEN-LIN CHIOU§

Abstract. The idea of using estimation algebras to construct finite dimensional nonlinear
filters was first proposed by Brockett and Mitter independently. For this approach, one needs to
know explicitly the structure of these estimation algebras in order to construct finite dimensional
nonlinear filters. Therefore Brockett proposed to classify all finite dimensional estimation algebras.
Chiou and Yau [ChYa1] classify all finite dimensional estimation algebras of maximal rank with
dimension of the state space less than or equal to two. The purpose of this paper is to give a new
result on classification of all finite dimensional estimation algebras of maximal rank with state space
dimension less than or equal to five.

1. Introduction. The idea of using estimation algebras to construct finite di-
mensional nonlinear filters was first proposed by Brockett [Br] and Mitter [Mi] inde-
pendently. The advantage of this infinite-dimensional nonlinear filter is at least the same
as Kalman-Bucy filter. Moreover, it avoids the disadvantages of Kalman-Bucy filter
such as Gaussian initial condition as well as linearity assumption of the drift term.
For more detail, we refer the readers to [TWY] and [Ya], in which the links between fi-
nite dimensional estimation algebras and finite dimensional filters were discussed. It is
clear from the works of [TWY] and [Ya] that one needs to know explicitly the structure
of these estimation algebras in order to construct finite dimensional nonlinear filters.
In 1983, Brockett proposed to classify all finite dimensional estimation algebras in his
talk at the International Congress of Mathematics. If the drift term of the nonlinear
filtering system has a potential function (i.e. drift term is a gradient vector field),
then the corresponding estimation algebra is called exact. In [TWY], Tarn, Wong and
Yau have classified all finite dimensional exact estimation algebras of maximal rank
with arbitrary state space dimension. In [ChYa1], Chiou and Yau are able to classify
all finite dimensional estimation algebras of maximal rank with state space dimension
less than or equal to two. The novelty of their theorem is that there is no assumption
on the drift term of the nonlinear filtering system. In [CYL1], Chen, Leung and Yau
classify all finite dimensional estimation algebras of maximal rank with state space
dimension equal to 3 (without any assumption on the drift term). They introduced a
new matrix equation in [CYL2] and showed that this matrix equation has only trivial
solution if the state space dimension is at most four. They reduced the classification
problem of finite dimensional estimation algebras with maximal rank to the problem
of nonexistence of nontrivial solution of this new matrix equation by using the fact
that \(\eta_4 \), homogeneous degree four part of \(\eta \), depends only on \(x_{k+1}, \ldots, x_n \) where \(k \)
is the quadratic rank of the estimation algebra. Recently Wu, Yau and Hu [WYH] have
a direct proof of nonexistence of nontrivial solution of this new matrix equation. In
this paper, we develop a completely different technique than [CYL2]. Moreover we

*Received July 8, 1999; accepted for publication January 13, 2000. Research partially supported
by U.S. Army Research Office Grant DA, AH04-95-0530.
†Department of MSCS (M/C 249), University of Illinois at Chicago, 851 South Morgan Street,
Chicago Illinois 60607-7045, USA.
‡Department of MSCS (M/C 249), University of Illinois at Chicago, 851 South Morgan Street,
Chicago Illinois 60607-7045, USA (yau@uic.edu).
§Department of Mathematics, Fu Jen University, Taipei, Taiwan, R.O.C.
can classify all finite dimensional estimation algebras with maximal rank with state space dimension \(n = 5 \) also. The following is our main theorem.

Main Theorem. Suppose that the state space of the filtering system (2.1) is of dimension \(n \leq 5 \). If \(E \) is the finite-dimensional estimation algebra of maximal rank, then the drift term \(f \) must be a linear vector field (i.e. each component is a polynomial of degree one) plus a gradient vector field and \(E \) is a real vector space of dimension \(2n + 2 \) with basis given by \(1, x_1, ..., x_n, D_1, ..., D_n \) and \(L_0 \). Moreover \(\eta \) is a degree two polynomial.

Let \(\omega_{ij} = \frac{\partial f_i}{\partial x_j} - \frac{\partial f_j}{\partial x_i} \), which was first introduced by Wong [Wo]. Our strategy is to prove that \(\omega_{ij} \)'s are constants for all \(i, j \). Then we can apply the result of [Ya] to finish the proof. This involves two steps. The first step is to prove that \(\omega_{ij} \)'s are degree one polynomials. This step was completed by Chen and Yau [ChYa2] for arbitrary \(n \). The second step is to prove that \(\omega_{ij} \)'s are actually constants. This is the hard part in the problem of classification of finite dimensional estimation algebras of maximal rank. The purpose of this paper is to deal with the hard part of the problem by proving that \(\omega_{ij} \)'s are constants for \(n \leq 5 \). We observed that Chen and Yau [ChYa2] have already proved that \(\omega_{ij}, 1 \leq i, j \leq k \), where \(k \) is the quadratic rank of the estimation algebra, are constants. In [ChYa3], Chen-Yau introduced many new ideas and claimed to prove that \(\omega_{ij} \)'s are constants for either \(1 \leq i \leq k, 1 \leq j \leq n \) or \(1 \leq i \leq n, 1 \leq j \leq k \), and \(\omega_{ij} \)'s are degree one polynomials in \(x_{k+1}, ..., x_n \) for \(k + 1 \leq i, j \leq n \). Unfortunately, the proof turns out to be incomplete.

Recently, Hu and Yau [HuYa] developed a new method and they proved that \(\omega_{ij} \)'s, \(1 \leq i, j \leq k + 1 \leq i, j \leq n \), are constants, and \(\omega_{ij} \)'s are degree one polynomials in \(x_1, ..., x_k \) for \(1 \leq i \leq k, k + 1 \leq j \leq n \) or \(k + 1 \leq i \leq n, 1 \leq j \leq k \). By using this result and new technique developed in this paper together with basic theory developed in [ChYa2], not only we can obtain entirely new results for \(n = 5 \), but also we have simple uniform proof for \(n \leq 4 \).

This paper is in essence a continuation of [Ya], [ChYa1], [ChYa2] and [HuYa] and we strongly recommend that readers familiarize themselves with the results in these papers. However, every effort will be made to make this paper as self-contained as possible, with minimal duplication of the previous papers.

2. Basic concepts. In this section, we shall recall some basic concepts and results from [Ya], [ChYa2] and [HuYa]. Consider a filtering problem based on the following signal observation model:

\[\begin{cases} dx(t) = f(x(t))dt + g(x(t))dv(t), & x(0) = x_0 \\ dy(t) = h(x(t))dt + dw(t), & y(0) = 0 \end{cases} \]

in which \(x, v, y, \) and \(w \) are, respectively, \(R^n, R^p, R^m \) valued processes and \(v \) and \(w \) have components which are independent, standard Brownian processes. We further assume that \(n = p, f, h \) are \(C^\infty \) smooth and that \(g \) is an orthogonal matrix. We shall refer to \(x(t) \) as the state of the system at time \(t \) and to \(y(t) \) as the observation at time \(t \).

Let \(\rho(t, x) \) denote the conditional probability density of the state given the observation \(\{y(s) : 0 \leq s \leq t\} \). It is well-known (see [DaMa]) that \(\rho(t, x) \) is given by normalizing a function \(\sigma(t, x) \) that satisfies the following Duncan-Mortensen-Zakai
finite dimensional filters with non-linear drift XIII

equation:

\begin{equation}
\sigma(t, x) = L_0 \sigma(t, x) dt + \sum_{i=1}^{m} L_i \sigma(t, x) dy_i(t), \quad \sigma(0, x) = \sigma_0,
\end{equation}

where \(L_0 = \frac{1}{2} \sum_{i=1}^{n} \frac{\partial^2}{\partial x_i^2} - \sum_{i=1}^{n} f_i \frac{\partial}{\partial x_i} - \sum_{i=1}^{n} \frac{\partial f_i}{\partial x_i} - \frac{1}{2} \sum_{i=1}^{m} h_i^2 \) and for \(i = 1, \ldots, m, L_i \)

is the zero-degree differential operator of multiplication by \(h_i, \sigma_0 \) is the probability density of the initial point \(x_0 \).

Equation (2.2) is a stochastic partial differential equation. Davis [Da] proposed some robust algorithms. In our case, his basic idea reduces to defining a new unnormalized density

\[u(t, x) = \exp \left(- \sum_{i=1}^{m} h_i(x) y_i(t) \right) \sigma(t, x) \]

Davis reduced (2.2) to the following time-varying partial differential equation, which is called the robust DMZ equation.

\begin{equation}
\begin{aligned}
\frac{\partial u}{\partial t}(t, x) &= L_0 u(t, x) + \sum_{i=1}^{m} y_i(t) [L_0, L_i] u(t, x) + \frac{1}{2} \sum_{i,j=1}^{m} y_i(t) y_j(t) [[L_0, L_i], L_j] u(t, x) \\
u(0, x) &= \sigma_0(x)
\end{aligned}
\end{equation}

Here we have used the following notation.

Definition 2.1. If \(X \) and \(Y \) are differential operators, then the Lie bracket of \(X \) and \(Y \), \([X, Y]\), is defined by \([X, Y] \phi = X(Y \phi) - Y(X \phi)\) for any \(C^\infty \) function \(\phi \).

Definition 2.2. The estimation algebra \(E \) of a filtering problem (2.1) is defined to be the Lie algebra generated by \([L_0, L_1, \ldots, L_m]\). \(E \) is said to be an estimation algebra of maximal rank if for any \(1 \leq i \leq n \) there exists a constant \(c_i \) such that \(x_i + c_i \) is in \(E \).

Most of the known finite-dimensional estimation algebras are maximal. For example, if (2.1) is linear, i.e., \(f(x) = Ax, g(x) = Bx \), and \(h(x) = Cx \), and if \((A, B, C)\) also is minimal, then the corresponding estimation algebra is of maximal rank [Ha]. We need the following basic result for later discussion.

Theorem 2.1 (Ocone). Let \(E \) be a finite-dimensional estimation algebra. If a function \(\xi \) is in \(E \), then \(\xi \) is a polynomial of degree at most two.

In [Wo], Wong introduced \(\Omega \) matrix whose \((i, j)\) element \(\omega_{ij} \) is \(\frac{\partial f_i}{\partial x_j} - \frac{\partial f_j}{\partial x_i} \). Define

\[D_i = \frac{\partial}{\partial x_i} - f_i \] and \(\eta = \sum_{i=1}^{n} \frac{\partial f_i}{\partial x_i} + \sum_{i=1}^{n} f_i^2 - \sum_{i=1}^{m} h_i^2 \).

Then \(L_0 = \frac{1}{2} (\sum_{i=1}^{n} D_i^2 - \eta) \).

The following theorem proved in [Ya] plays a fundamental role in the classification of finite-dimensional estimation algebras.

Theorem 2.2 (Yau). Let \(E \) be a finite-dimensional estimation algebra of (2.1) such that \(\omega_{ij} = \frac{\partial f_i}{\partial x_j} - \frac{\partial f_j}{\partial x_i} \) are constant functions. If \(E \) is of maximal rank, then \(E \) is a real vector space of dimension \(2n + 2 \) with basis given by \(1, x_1, x_2, \ldots, x_n, D_1, D_2, \ldots, D_n, \) and \(L_0 \).
Recently Chen and Yau [ChYa2] have made important progress in the program of classification of finite-dimensional estimation algebras of maximal rank. They study the quadratic forms in E and show that the Ω-matrix is linear in the sense that all ω_{ij} are degree one polynomials.

Definition 2.3. Let Q be the space of quadratic forms in n variables, namely, realy vector space spanned by $x_ix_j, 1 \leq i \leq j \leq n$. Let $X = (x_1, ..., x_n)^T$. For any quadratic form $p \in Q$, there exists a symmetric matrix A such that $p(x) = X^TAX$. The rank of the quadratic form p is denoted by $r(p)$ and is defined to be the rank of the matrix A. A fundamental quadratic form of the estimation algebra E is an element $p_0 \in E \cap Q$ with the greatest positive rank, that is, $r(p_0) > r(p)$ for any $p \in E \cap Q$. The maximal rank of quadratic forms in the estimation algebra E is defined to be $k = r(p_0)$ and is called the quadratic rank of E.

After an orthogonal transformation, p_0 can be written as

$$p_0(x) = c_1x_1^2 + c_2x_2^2 + ... + c_kx_k^2, \quad c_i \neq 0, \quad 0 \leq k \leq n$$

From $p_0(x)$, we can construct a sequence of quadratic forms in $E \cap Q$ as follows:

$$q_0(x) = p_0(x)$$

$$q_j(x) = [[L_0, q_{j-1}], q_0] = \sum_{i=1}^{k} 4^j c_i^{j+1} x_i^2$$

In view of the invertibility of the Vandermonde matrix, we can assume that

$$p_0(x) = x_1^2 + x_2^2 + ... + x_k^2 \in E$$

Lemma 2.1 (Chen and Yau) [ChYa2]. If p is a quadratic form in the estimation algebra E of (2.1), then p is independent of x_j for $j \geq k$, where $k = r(p_0)$ is the quadratic rank of E. In other words, $\frac{\partial p}{\partial x_j} = 0$ for $k + 1 \leq j \leq n$.

Let $p_1 \in E \cap Q$ be an element with least positive rank, that is, $0 < r(p_1) \leq r(q)$ for any nonzero $q \in E \cap Q$. After an orthogonal transform that fixes $x_{k+1}, ..., x_n$ variables (i.e. an orthogonal transform on $x_1, x_2, ..., x_k$), and the Vandermonde matrix procedure as above, we can assume

$$p_1 = \sum_{i=1}^{k_1} x_i^2 \in E, \quad 1 \leq k_1 \leq k$$

Notice that the orthogonal transform on $x_1, ..., x_k$ leaves p_0 invariant. In summary, we deduce that $p_0 = \sum_{i=1}^{k} x_i^2$ has the greatest positive rank and $p_1 = \sum_{i=1}^{k_1} x_i^2$ has the least positive rank. Define

$$S_1 = \{1, 2, ..., k_1\} \subseteq S = \{1, 2, ..., k\}$$

and $Q_1 = \text{real vector space spanned by} \{x_ix_j : k_1 + 1 \leq i \leq j \leq k\} \subseteq Q$. If $k_1 < k$, then $Q_1 \cap E$ is a nontrivial space, since $p - p_0 \in E \cap Q$. In a similar procedure as above, there exist $k_2 > k_1$ and

$$p_2 = \sum_{i=k_1+1}^{k_2} x_i^2 \in E \cap Q$$
with the least positive rank in $E \cap Q$. By induction, we can construct a series of S_i, Q_i and p_i such that

$$S_i = \{k_{i-1} + 1, ..., k_i\}, \quad k_0 = 0 < k_1 < ... < k_i < ... \leq k$$

$$Q_i = \text{real vector space spanned by } \{x_l x_j : k_i + 1 \leq l \leq j \leq k\}$$

$$p_i = \sum_{j=k_{i-1}+1}^{k_i} x_j^2 = \sum_{j \in S_i} x_j^2, \quad i > 0$$

and p_i has the least positive rank in $E \cap Q_{i-1}$, for $i > 0$.

Lemma 2.2 (Chen and Yau) [ChYa2]. If $p \in E \cap Q$, then there exists a constant λ such that

$$p(0, ..., 0, x_{k_i-1+1}, ..., x_{k_i}, 0, ..., 0) = \lambda p_i, \quad \text{for } i > 0$$

Lemma 2.3 (Chen and Yau) [ChYa2]. If $p \in E \cap Q$, then

$$p(x_1, ..., x_{k_i-1+1}, 0, ..., 0, x_{k_i+1}, ..., x_n) \in E \quad \text{for } i > 0$$

The following theorem is the main result of Chen and Yau in [ChYa2].

Lemma 2.4 (Chen and Yau)[ChYa2]. Let $p = \sum_{i \in S_1} \sum_{j \in S_2} a_{ij} x_i x_j \in E$, where $a_{ij} \in \mathbb{R}$ and $l_1 < l_2$. Then $|S_1| = |S_2|$ and $A = (a_{ij}) = bT$ where b is a constant and T is an orthogonal matrix.

Theorem 2.3 (Chen-Yau). If E is a finite-dimensional estimation algebra of maximal rank, then all the entries $\omega_{ij} = \frac{\partial f_i}{\partial x_j} - \frac{\partial f_j}{\partial x_i}$ of Ω are degree one polynomials. Let k be the quadratic rank of E. Then there exists an orthogonal change of coordinates such that ω_{ij} are constants for $1 \leq i, j \leq k$, ω_{ij} are degree one polynomials in $x_1, ..., x_k$ for $1 \leq i \leq k$ or $1 \leq j \leq k$; and ω_{ij} are degree one polynomials in $x_{k+1}, ..., x_n$ for $k + 1 \leq i, j \leq n$.

For the convenience of the readers, we also list the following elementary lemma which was proven in [Ya] and [ChYa1].

Lemma 2.5.

(i) $[X, Y, Z] = X[Y, Z] + [X, Z]Y$, where X, Y and Z are differential operators;

(ii) $[aD_i, b] = a \frac{\partial b}{\partial x_i}, a$ and b are functions defined on \mathbb{R}^n;

(iii) $[aD_i, bD_j] = -ab\omega_{ij} + a \frac{\partial b}{\partial x_i} D_j - b \frac{\partial a}{\partial x_j} D_i$, where $\omega_{ji} = [D_i, D_j] = \frac{\partial f_i}{\partial x_j} - \frac{\partial f_j}{\partial x_i}$.

(iv) $[aD^2_i, b] = 2a \frac{\partial b}{\partial x_i} D_i + a \frac{\partial b}{\partial x_i}$

(v) $[D^2_i, bD_j] = 2 \frac{\partial b}{\partial x_i} D_i D_j - 2b\omega_{ij} D_i + \frac{\partial^2 b}{\partial x_i^2} D_j - b \frac{\partial \omega_{ij}}{\partial x_i} h$

(vi) $[D^2_1, D^2_2] = 4\omega_{12} D_1 D_2 + 2 \frac{\partial \omega_{12}}{\partial x_1} D_1 + 2 \frac{\partial \omega_{12}}{\partial x_2} D_2 + \frac{\partial^2 \omega_{12}}{\partial x_1 \partial x_2} + 2\omega_{12}^2$

(vii) $[D^2_k, bD_i D_j] = 2 b \frac{\partial \omega_{ik}}{\partial x_k} D_k D_i + 2b \frac{\partial \omega_{ij}}{\partial x_i} D_j + 2b \frac{\partial \omega_{ik}}{\partial x_k} D_k + 2b \frac{\partial \omega_{ik}}{\partial x_k} D_k$.
\((viii) \ [a D_i D_j, b D_k] = a \frac{\partial b}{\partial x_j} D_i D_k + a \frac{\partial b}{\partial x_i} D_j D_k + a b \omega_{kj} D_i + a b \omega_{ki} D_j + a b \omega_{ij} D_k + \frac{\partial b}{\partial x_i} D_i D_k - b \frac{\partial a}{\partial x_k} D_i D_j \)

The following lemma was observed in [Ya]

Lemma 2.6. Let \(E\) be a finite-dimensional estimation algebra with maximal rank. Then \(< l, x_1, \ldots, x_n, D_1, \ldots, D_n, L_0 > \subseteq E\).

We need the following important theorem from our previous paper [HuYa] which is frequently used in the proof of our Main Theorem of this paper.

Theorem 2.4 (Hu and Yau). Let \(E\) be a finite-dimensional estimation algebra of maximal rank and \(k\) be the quadratic rank of \(E\). Then \(\omega_{ij}\) are constants for \(1 \leq i, j \leq k\) or \(k + 1 \leq i, j \leq n\); \(\omega_{ij}\) are degree one polynomials in \(x_1, \ldots, x_k\) for \(1 \leq i \leq k\) or \(1 \leq j \leq k\). Moreover \(\alpha_j = \sum_{l=1}^k x_l \omega_{jl}\), for \(k + 1 \leq j \leq n\), are in \(E\).

3. Some useful lemmas.

Suppose that the estimation algebra \(E\) of (2.1) is finite-dimensional. Let \(k\) be the quadratic rank of \(E\). Let \(U_i\) be the space of differential operators with order at most \(i\). The following lemmas facilitate our proof of the main theorem in section 4.

Lemma 3.1. If \(x_j^2 \in E, j \leq k\), then \(\frac{\partial \omega_{ij}}{\partial x_j} = 0\) for all \(k + 1 \leq j \leq n\).

Proof. We shall construct a sequence of elements in \(E\) in the following manner:

\[
Z_1 = \frac{1}{2} [L_0, x_j^2] = \frac{1}{4} \sum_{i=1}^n [D_i^2, x_j^2] = x_j D_j + \frac{1}{2} \\
Z_2 = [L_0, Z_1] = \frac{1}{2} \sum_{i=1}^n [D_i^2, x_j D_j] \\
= \frac{1}{2} \sum_{i=1}^n \left(2 \frac{\partial x_j}{\partial x_i} D_i D_j - 2 x_j \omega_{ij} D_i \right) \mod U_0 \\
= D_j^2 + \sum_{i=1}^n x_j \omega_{ji} D_i \mod U_0 \\
Z_3 = [L_0, Z_2] = \frac{1}{2} \sum_{i=1}^n \left[D_i^2, D_j^2 + \sum_{l=1}^n x_j \omega_{jl} D_l \right] \mod U_1 \\
= 2 \sum_{i=1}^n \omega_{ji} D_j D_i + \sum_{i=1}^n \sum_{l=1}^n \frac{\partial (x_j \omega_{jl})}{\partial x_i} D_i D_l \\
= 2 \sum_{i=1}^n \omega_{ji} D_j D_i + \sum_{i=1}^n \sum_{l=1}^n \delta_{ji} \omega_{jl} D_i D_l + \sum_{i=1}^n \sum_{l=1}^n x_j \frac{\partial \omega_{jl}}{\partial x_i} D_i D_l \mod U_1 \\
= 3 \sum_{i=1}^n \omega_{ji} D_j D_i + \sum_{i=1}^{k+1} \sum_{l=1}^n x_j \frac{\partial \omega_{jl}}{\partial x_i} D_i D_l \mod U_1
\]
\[[Z_3, Z_1] = 3 \sum_{i=1}^{n} [\omega_{ji} D_j D_i, x_j D_j] + \sum_{i=1}^{k} \sum_{i=k+1}^{n} \left[x_j \frac{\partial \omega_{ji}}{\partial x_i} D_j D_i, x_j D_j \right] \mod U_1 \]
\[= 3 \sum_{i=1}^{n} \left(\omega_{ji} \frac{\partial j}{\partial x_j} D_j D_j + \omega_{ji} \frac{\partial j}{\partial x_j} D_j D_i - x_j \frac{\partial \omega_{ji}}{\partial x_j} D_j D_i \right) + \sum_{i=1}^{k} \sum_{i=k+1}^{n} \left(x_j \frac{\partial \omega_{ji}}{\partial x_j} D_j D_j + x_j \frac{\partial \omega_{ji}}{\partial x_j} D_j D_i \right) \mod U_1 \]
\[= 3 \sum_{i=1}^{n} \omega_{ji} D_j D_i - 3 \sum_{i=k+1}^{n} x_j \frac{\partial \omega_{ji}}{\partial x_j} D_j D_i + \sum_{i=k+1}^{n} x_j \frac{\partial \omega_{ji}}{\partial x_j} D_j D_i \mod U_1 \]
\[= 3 \sum_{i=1}^{n} \omega_{ji} D_j D_i - 2 \sum_{i=k+1}^{n} x_j \frac{\partial \omega_{ji}}{\partial x_j} D_j D_i \mod U_1 \]

(3.1)

\[Z_4 = \frac{1}{2} ([Z_3, Z_2] + Z_3) = 3 \sum_{i=1}^{n} \omega_{ji} D_j D_i - \sum_{i=k+1}^{n} x_j \frac{\partial \omega_{ji}}{\partial x_j} D_j D_i \mod U_1 \]

\[[Z_4, Z_1] = 3 \sum_{i=1}^{n} \omega_{ji} D_j D_i, x_j D_j - \sum_{i=k+1}^{n} [x_j \frac{\partial \omega_{ji}}{\partial x_j} D_j D_i, x_j D_j] \mod U_1 \]
\[= 3 \sum_{i=1}^{n} \omega_{ji} D_j D_i, x_j D_j - \sum_{i=k+1}^{n} [x_j \frac{\partial \omega_{ji}}{\partial x_j} D_j D_i, x_j D_j] \mod U_1 \]
\[= 3 \sum_{i=1}^{n} \omega_{ji} D_j D_i - 3 \sum_{i=k+1}^{n} x_j \frac{\partial \omega_{ji}}{\partial x_j} D_j D_i \]
\[- \sum_{i=k+1}^{n} \left(x_j \frac{\partial \omega_{ji}}{\partial x_j} D_j D_i + x_j \frac{\partial \omega_{ji}}{\partial x_j} D_j D_i - x_j \frac{\partial \omega_{ji}}{\partial x_j} D_j D_i \right) \mod U_1 \]
\[= 3 \sum_{i=1}^{n} \omega_{ji} D_j D_i - 3 \sum_{i=k+1}^{n} x_j \frac{\partial \omega_{ji}}{\partial x_j} D_j D_i \mod U_1 \]

(3.2)

\[Z_5 = \frac{1}{2} (Z_4 - [Z_4, Z_1]) = \sum_{i=k+1}^{n} x_j \frac{\partial \omega_{ji}}{\partial x_j} D_j D_i \mod U_1 \]

\[A^{(1)} = [L_0, Z_5] = \frac{1}{2} \sum_{i=1}^{n} \sum_{i=k+1}^{n} \left[D_i^2, x_j \frac{\partial \omega_{ji}}{\partial x_j} D_j D_i \right] \mod U_2 \]
\[= \sum_{i=1}^{n} \sum_{i=k+1}^{n} \frac{\partial j}{\partial x_j} D_j D_i \mod U_2 \]
\[= \sum_{i=k+1}^{n} \frac{\partial \omega_{ji}}{\partial x_j} D_i^2 \mod U_2 \]

\[A^{(2)} = [A^{(1)}, Z_5] = \sum_{i=k+1}^{n} \sum_{i=k+1}^{n} \left(\frac{\partial \omega_{ji}}{\partial x_j} D_i D_j, x_j \frac{\partial \omega_{ji}}{\partial x_j} D_j D_i \right) \mod U_3 \]
Now, we shall prove by induction on s that

$$A^{(s)} := [A^{(s-1)}, Z_5] = 2^{s-1} \left(\sum_{l=k+1}^{n} \frac{\partial \omega_{jl}}{\partial x_j} D_l \right)^s D_j^2 \mod U_{s+1}$$

Suppose that this is true for s. We are going to prove that the same formula is true for $s + 1$

$$A^{(s+1)} := [A^{(s)}, Z_5]$$

$$= 2^{s-1} \sum_{l_1, \ldots, l_s=k+1}^{n} \sum_{l=k+1}^{n} \left[\frac{\partial \omega_{jl}}{\partial x_j} \cdots \frac{\partial \omega_{jl}}{\partial x_j} \frac{\partial}{\partial x_j} \left(x_j \frac{\partial \omega_{jl}}{\partial x_j} \right) \right] D_{l_1} \cdots D_{l_s} D_j^2$$

$$+ \frac{\partial \omega_{ji}}{\partial x_j} D_j$$

$$= 2^{s-1} \sum_{l_1, \ldots, l_s=k+1}^{n} \sum_{l=k+1}^{n} 2 \frac{\partial \omega_{jl}}{\partial x_j} \cdots \frac{\partial \omega_{jl}}{\partial x_j} \frac{\partial \omega_{ji}}{\partial x_j} D_{l_1} \cdots D_{l_s} D_j^2 D_i$$

$$= 2^s \left(\sum_{l=k+1}^{n} \frac{\partial \omega_{jl}}{\partial x_j} D_l \right)^{s+1} D_j^2 \mod U_{s+2}$$

Hence we get a sequence of elements in E of the form

$$A^{(s)} = 2^{s-1} \left(\sum_{l=k+1}^{n} \frac{\partial \omega_{jl}}{\partial x_j} D_l \right)^s D_j^2 \mod U_{s+1}$$

Since E is finite dimensional, we conclude that

$$\frac{\partial \omega_{jl}}{\partial x_j} = 0, \quad \text{for all } k + 1 \leq l \leq n$$

Lemma 3.2. If $x_i^2 \in E$ and $x_j^2 \in E$, $1 \leq i, j \leq k$, $i \neq j$, then $\frac{\partial \omega_{jl}}{\partial x_j} = 0 = \frac{\partial \omega_{jl}}{\partial x_i}$ for all $k + 1 \leq l \leq n$.

Proof. From (3.1), (3.2) and (3.3) in the proof of Lemma 3.1, we have the following elements in E

$$[Z_3, Z_1] = 3 \sum_{i=1}^{n} \omega_{jl} D_j D_s - 2 \sum_{s=k+1}^{n} x_j \frac{\partial \omega_{js}}{\partial x_j} D_j D_s$$
\[-\sum_{s=1}^{k} \sum_{l=k+1}^{n} x_j \frac{\partial \omega_{jl}}{\partial x_s} D_s D_l \mod U_1\]

\[Z_4 = 3 \sum_{s=1}^{n} \omega_{is} D_j D_s - \sum_{s=k+1}^{n} x_j \frac{\partial \omega_{js}}{\partial x_j} D_j D_s \mod U_1\]

\[Z_5 = \sum_{s=k+1}^{n} x_j \frac{\partial \omega_{js}}{\partial x_j} D_j D_s \mod U_1\]

\[\overline{Z}_4 = -[Z_3, Z_1] + Z_4 - Z_5 = \sum_{s=1}^{k} \sum_{l=k+1}^{n} x_j \frac{\partial \omega_{jl}}{\partial x_s} D_s D_l \mod U_1\]

\[\overline{Z}_1 = [L_0, x_i^2] = \frac{1}{2} \sum_{s=1}^{n} [D_s^2, x_i^2] = x_i D_i + \frac{1}{2}\]

\[\overline{Z}_5 = [\overline{Z}_4, \overline{Z}_1] = \sum_{s=1}^{k} \sum_{l=k+1}^{n} [x_j \frac{\partial \omega_{jl}}{\partial x_s} D_s D_l, x_i D_i] \mod U_1\]

By interchanging the role of \(i\) and \(j\), we get the following element in \(E\)

\[\overline{Z}_6 = \sum_{l=k+1}^{n} x_i \frac{\partial \omega_{jl}}{\partial x_j} D_l D_j \mod U_1\]

By the cyclic relation \(\frac{\partial \omega_{ik}}{\partial x_j} + \frac{\partial \omega_{ij}}{\partial x_i} + \frac{\partial \omega_{ij}}{\partial x_j} = 0\) and Theorem 2.3, we deduce easily that \(\frac{\partial \omega_{ij}}{\partial x_j} = \frac{\partial \omega_{ij}}{\partial x_i}\) because \(\omega_{ij}\) is a constant.

Hence \(\overline{Z}_6\) can be rewritten as

\[\overline{Z}_6 = \sum_{l=k+1}^{n} x_i \frac{\partial \omega_{jl}}{\partial x_i} D_l D_j\]

We shall construct from \(\overline{Z}_5\) and \(\overline{Z}_6\) an infinite sequence of elements in \(E\)

\[\overline{A}^{(1)} = [L_0, \overline{Z}_5] = \frac{1}{2} \sum_{s=1}^{n} \sum_{l=k+1}^{n} [D_s^2, x_j \frac{\partial \omega_{jl}}{\partial x_s} D_l D_i] \mod U_2\]

\[= \sum_{s=1}^{n} \sum_{l=k+1}^{n} \left(\frac{\partial \omega_{jl}}{\partial x_s} \right) D_s D_l D_i \mod U_2\]

\[= \left(\sum_{l=k+1}^{n} \frac{\partial \omega_{jl}}{\partial x_i} D_l D_i \right) D_j D_i \mod U_2\]

\[\overline{A}^{(2)} = [\overline{A}^{(1)}, \overline{Z}_6] = \sum_{l=k+1}^{n} \sum_{s=1}^{n} \left[\frac{\partial \omega_{jl}}{\partial x_i} D_l D_j D_i, x_j \frac{\partial \omega_{js}}{\partial x_i} D_s D_l \right] \mod U_3\]
We shall prove by induction on s that

\[\overline{A}^{(2s-1)} := [\overline{A}^{(2s-2)}, \overline{Z}_6] = 2^{s-1} \left(\sum_{l=k+1}^{n} \frac{\partial \omega_{jl}}{\partial x_i} D_l \right)^{2s-1} D_i D_j \mod U_{2s+1} \]

and

\[\overline{A}^{(2s)} := [\overline{A}^{(2s-1)}, \overline{Z}_6] = 2^{s-1} \left(\sum_{l=k+1}^{n} \frac{\partial \omega_{jl}}{\partial x_i} D_l \right)^{2s} D_i^2 \mod U_{2s+1} \]

Suppose that this is true for $2s - 1$ and $2s$. We are going to prove that the same formulas are true for $2s + 1$ and $2s + 2$

\[\overline{A}^{(2s+1)} = [\overline{A}^{(2s)}, \overline{Z}_6] \]

\[= 2^{s-1} \sum_{l_1, \ldots, l_{2s} = k+1}^{n} \sum_{l = k+1}^{n} \left[\frac{\partial \omega_{j1}}{\partial x_i} \ldots \frac{\partial \omega_{jl_2}}{\partial x_i} D_{l_1} \ldots D_{l_2} D_i^2 \right] \mod U_{2s+2} \]

\[= 2^s \sum_{l_1, \ldots, l_{2s} = k+1}^{n} \sum_{l = k+1}^{n} \left[\frac{\partial \omega_{j1}}{\partial x_i} \ldots \frac{\partial \omega_{jl_2}}{\partial x_i} \frac{\partial \omega_{jl_1}}{\partial x_i} D_{l_1} \ldots D_{l_2} D_i \right] \mod U_{2s+2} \]

\[= 2^s \left(\sum_{l=k+1}^{n} \frac{\partial \omega_{jl}}{\partial x_i} D_l \right)^{2s+1} D_i D_j \mod U_{2s+2} \]
\[\overline{A}^{(2s+2)} = [\overline{A}^{(2s+1)}, Z_0] = 2^s \sum_{l_1, \ldots, l_{2s+1}=k+1}^{n} \sum_{i=k+1}^{n} \left[\frac{\partial \omega_{jl_1}}{\partial x_i} \ldots \frac{\partial \omega_{jl_2+1}}{\partial x_i} D_{l_1} \ldots D_{l_{2s+1}} D_i D_j \right] x_i \frac{\partial \omega_{jl}}{\partial x_i} D_i D_i \mod U_{2s+3} \]

\[= 2^s \sum_{l_1, \ldots, l_{2s+1}=k+1}^{n} \sum_{i=k+1}^{n} \left[\frac{\partial \omega_{jl_1}}{\partial x_i} \ldots \frac{\partial \omega_{jl_2+1}}{\partial x_i} \frac{\partial \omega_{jl}}{\partial x_i} D_{l_1} \ldots D_{l_{2s+1}} D_i \right] D_i D_i \mod U_{2s+3} \]

\[= 2^s \left(\sum_{l=k+1}^{n} \frac{\partial \omega_{jl}}{\partial x_i} D_i \right) D_i^2 \mod U_{2s+3} \]

Since \(E \) is finite-dimensional, we conclude that

\[\frac{\partial \omega_{jl}}{\partial x_i} = 0 \text{ for all } k+1 \leq l \leq n\]

Similarly, we have \(\frac{\partial \omega_{jl}}{\partial x_j} = 0 \) for all \(k+1 \leq l \leq n \). □

Lemma 3.3. If \(x_{k_1}^2 + \ldots + x_k^2 \in E \) and \(\frac{\partial \omega_{jl}}{\partial x_l} = 0 \) for all \(k+1 \leq l \leq n \) and \(k_1 \leq i \neq j \leq k \), then \(\frac{\partial \omega_{il}}{\partial x_i} = 0 \) for all \(k+1 \leq l \leq n \) and \(k_1 \leq i \leq k \).

Proof. We shall construct a sequence of elements in \(E \) in the following manner.

\[Z_1 = \frac{1}{2} [L_0, \ x_{k_1}^2 + \ldots + x_k^2] = \sum_{i=k_1}^{k} x_i D_i + \frac{1}{2} (k-k_1+1)\]

\[Z_2 = [L_0, Z_1] = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=k_1}^{k} [D_i^2, x_j D_j] \mod U_0\]

\[= \sum_{i=1}^{k} \sum_{j=k_1}^{k} \left(\frac{\partial x_j}{\partial x_i} D_i D_j - x_j \omega_{jl} D_i \right) \mod U_0\]

\[= \sum_{j=k_1}^{k} D_j^2 + \sum_{i=1}^{n} \sum_{j=k_1}^{k} x_j \omega_{jl} D_i \mod U_0\]

\[Z_3 = [L_0, Z_2] = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=k_1}^{k} [D_i^2, D_j^2] + \frac{1}{2} \sum_{i=1}^{n} \sum_{l=1}^{n} \sum_{j=k_1}^{k} [D_i^2, x_j \omega_{jl} D_l] \mod U_1\]

\[= 2 \sum_{i=1}^{n} \sum_{j=k_1}^{k} \omega_{ji} D_j D_i + \sum_{i=1}^{n} \sum_{l=1}^{n} \sum_{j=k_1}^{k} \frac{\partial (x_j \omega_{jl})}{\partial x_l} D_i D_l \mod U_1\]

\[= 2 \sum_{i=1}^{n} \sum_{j=k_1}^{k} \omega_{ji} D_j D_i + \sum_{l=1}^{k} \sum_{j=k_1}^{k} \omega_{jl} D_j D_l\]

\[+ \sum_{i=1}^{n} \sum_{l=k+1}^{k} \sum_{j=k_1}^{k} x_j \frac{\partial \omega_{jl}}{\partial x_i} D_i D_l \mod U_1\]
\[
3 \sum_{i=1}^{n} \sum_{j=k_1}^{k} \omega_{j} D_j D_i + \sum_{i=1}^{k} \sum_{l=k+1}^{n} \sum_{j=k_1}^{k} x_j \frac{\partial \omega_{jl}}{\partial x_i} D_i D_l \mod U_1
\]

\[
[Z_3, Z_1] = 3 \sum_{i=1}^{n} \sum_{j=k_1}^{k} \sum_{l=k_1}^{k} [\omega_{j} D_j D_i, x_l D_l]
\]

\[
+ \sum_{i=1}^{k} \sum_{l=k+1}^{n} \sum_{j=k_1}^{k} [x_j \frac{\partial \omega_{jl}}{\partial x_i} D_i D_l, x_p D_p] \mod U_1
\]

\[
= 3 \sum_{i=1}^{n} \sum_{j=k_1}^{k} \sum_{l=k_1}^{k} \left(\omega_{j} \frac{\partial x_l}{\partial x_i} D_j D_l + \omega_{j} \frac{\partial x_l}{\partial x_j} D_i D_l - x_l \frac{\partial \omega_{jl}}{\partial x_i} D_l D_i \right)
\]

\[
+ \sum_{i=1}^{k} \sum_{l=k+1}^{n} \sum_{j=k_1}^{k} \left(x_j \frac{\partial \omega_{jl}}{\partial x_i} \frac{\partial x_p}{\partial x_i} D_l D_p + x_j \frac{\partial \omega_{jl}}{\partial x_i} \frac{\partial x_p}{\partial x_i} D_l D_p \right)
\]

\[
- x_p \frac{\partial \omega_{jl}}{\partial x_i} D_i D_l \mod U_1
\]

\[
= 3 \sum_{j=k_1}^{k} \sum_{l=k_1}^{k} \omega_{j} D_j D_l - 3 \sum_{i=1}^{n} \sum_{j=k_1}^{k} x_l \frac{\partial \omega_{jl}}{\partial x_i} D_l D_i
\]

\[
+ \sum_{i=1}^{k} \sum_{l=k+1}^{n} \sum_{j=k_1}^{k} x_j \frac{\partial \omega_{jl}}{\partial x_i} D_l D_l \mod U_1
\]

\[
Z_4 = \frac{1}{2} ([Z_3, Z_1] + Z_3) = 3 \sum_{i=1}^{n} \sum_{j=k_1}^{k} \omega_{j} D_i D_j
\]

\[
- \sum_{i=1}^{k} \sum_{l=k+1}^{n} \sum_{j=k_1}^{k} x_j \frac{\partial \omega_{jl}}{\partial x_i} D_i D_l \mod U_1
\]

\[
[Z_4, Z_1] = 3 \sum_{i=1}^{n} \sum_{j=k_1}^{k} \sum_{l=k_1}^{k} [\omega_{j} D_i D_j, x_l D_l] - \sum_{i=1}^{k} \sum_{j=k_1}^{k} \sum_{l=k_1}^{k} \sum_{p=k_1}^{k} [x_j \frac{\partial \omega_{jl}}{\partial x_i} D_i D_l, x_p D_p]
\]

\[
= 3 \sum_{i=1}^{n} \sum_{j=k_1}^{k} \omega_{j} D_i D_j - 3 \sum_{i=1}^{k} \sum_{l=k+1}^{n} \sum_{j=k_1}^{k} x_j \frac{\partial \omega_{jl}}{\partial x_i} D_l D_l \mod U_1
\]

\[
Z_5 = \frac{1}{2} (Z_4 - [Z_4, Z_1]) = \sum_{i=1}^{k_1} \sum_{l=k+1}^{n} \sum_{j=k_1}^{k} x_j \frac{\partial \omega_{jl}}{\partial x_i} D_i D_l \mod U_1
\]
Since $\frac{\partial \omega_{ij}}{\partial x_i} = 0$ for all $k+1 \leq l \leq n$ and $k_1 \leq i \neq j \leq k$, by hypothesis, we have

$$Z_5 = \sum_{i=k_1}^{k} \sum_{l=k+1}^{n} x_i \frac{\partial \omega_{il}}{\partial x_i} D_l D_i \mod U_1$$

$$= \sum_{i=k_1}^{k} x_i \left(\sum_{l=k+1}^{n} \frac{\partial \omega_{il}}{\partial x_i} D_l \right) D_i \mod U_1$$

$$A^{(1)} = [L_0, Z_5] = \frac{1}{2} \sum_{p=1}^{n} \sum_{i=k_1}^{k} \sum_{l=k+1}^{n} [D_p^2, x_i \frac{\partial \omega_{il}}{\partial x_i} D_l D_i] \mod U_2$$

$$= \sum_{p=1}^{n} \sum_{i=k_1}^{k} \sum_{l=k+1}^{n} \frac{\partial}{\partial x_p} \left(x_i \frac{\partial \omega_{il}}{\partial x_i} \right) D_p D_l D_i \mod U_2$$

$$= \sum_{i=k_1}^{k} \sum_{l=k+1}^{n} \frac{\partial \omega_{il}}{\partial x_i} D_l^2 D_i \mod U_2$$

$$= \sum_{i=k_1}^{k} \left(\sum_{l=k+1}^{n} \frac{\partial \omega_{il}}{\partial x_i} D_l \right) D_i^2 \mod U_2$$

$$A^{(2)} = [A^{(1)}, Z_5] = \sum_{i=k_1}^{k} \sum_{l=k+1}^{n} \sum_{p=k_1}^{k} \sum_{q=k+1}^{n} \left[\frac{\partial \omega_{il}}{\partial x_i} D_l^2 D_i, x_p \frac{\partial \omega_{pq}}{\partial x_p} D_p D_q \right] \mod U_3$$

$$= \sum_{i=k_1}^{k} \sum_{l=k+1}^{n} \sum_{p=k_1}^{k} \sum_{q=k+1}^{n} 2 \frac{\partial \omega_{il}}{\partial x_i} D_i D_l D_p D_q \mod U_3$$

$$= 2 \sum_{i=k_1}^{k} \sum_{l=k+1}^{n} \sum_{p=k_1}^{k} \sum_{q=k+1}^{n} \frac{\partial \omega_{il}}{\partial x_i} \frac{\partial \omega_{pq}}{\partial x_p} D_l D_i D_p D_q \mod U_3$$

$$= 2 \sum_{i=k_1}^{k} \left(\sum_{l=k+1}^{n} \frac{\partial \omega_{il}}{\partial x_i} D_l \right)^2 D_i \mod U_3$$

$$A^{(3)} = [A^{(2)}, Z_5] = 2 \sum_{i=k_1}^{k} \sum_{l_1=k+1}^{n} \sum_{l_2=k+1}^{n} \sum_{p=k_1}^{k} \sum_{q=k+1}^{n} \sum_{l_1=k+1}^{n} \sum_{l_2=k+1}^{n} \sum_{p=k_1}^{k} \sum_{q=k+1}^{n} \sum_{l_1=k+1}^{n} \sum_{l_2=k+1}^{n} \sum_{p=k_1}^{k} \sum_{q=k+1}^{n} \frac{\partial \omega_{il_1}}{\partial x_i} \frac{\partial \omega_{il_2}}{\partial x_i} D_i D_{l_1} D_{l_2} D_i$$

$$x_p \frac{\partial \omega_{pq}}{\partial x_p} D_p D_q \mod U_4$$

$$= 2^2 \sum_{i=k_1}^{k} \sum_{l_1=k+1}^{n} \sum_{l_2=k+1}^{n} \sum_{p=k_1}^{k} \sum_{q=k+1}^{n} \frac{\partial \omega_{il_1}}{\partial x_i} \frac{\partial \omega_{il_2}}{\partial x_i} \frac{\partial}{\partial x_i} \left(x_p \frac{\partial \omega_{pq}}{\partial x_p} \right) D_i D_{l_1} D_{l_2} D_i$$

$$D_p D_q \mod U_4$$

$$= 2^2 \sum_{i=k_1}^{k} \sum_{l_1=k+1}^{n} \sum_{l_2=k+1}^{n} \sum_{p=k_1}^{k} \sum_{q=k+1}^{n} \frac{\partial \omega_{il_1}}{\partial x_i} \frac{\partial \omega_{il_2}}{\partial x_i} \frac{\partial \omega_{iq}}{\partial x_i} D_i D_{l_1} D_{l_2} D_i^2 D_q \mod U_4$$

$$= 2^2 \sum_{i=k_1}^{k} \left(\sum_{l=k+1}^{n} \frac{\partial \omega_{il}}{\partial x_i} D_l \right)^3 D_i \mod U_4$$
By induction, we get an infinite sequence in E of the form

$$A^{(s)} = 2^{s-1} \sum_{i=k_1}^{k} \left(\sum_{l=k+1}^{n} \frac{\partial \omega_{il}}{\partial x_i} D_l \right) D_i^2 \mod U_{s-1}$$

Since E is finite dimensional, we conclude that

$$\frac{\partial \omega_{il}}{\partial x_i} = 0 \text{ for all } k + 1 \leq l \leq n \text{ and } k_1 \leq i \leq k$$

4. Classification of finite-dimensional estimation algebras of maximal rank with state space less than or equal to five. In order to prove our Main Theorem in section 1, we only need to prove that $\omega_{ij}, 1 \leq i, j \leq n$ are constants because of Theorem 2.2. Let k be the quadratic rank of the estimation algebra E. In view of Theorem 2.4, we can assume that $0 < k < n$. In the subsequent discussion, we shall let k_1, k_2, \ldots be the sequence defined in (2.6) – (2.10).

4.1. State space dimension $n=2$.
In this case, we only need to consider $k = 1$. By Theorem 2.4, the Ω matrix is of the following form

$$\Omega = (\omega_{ij}) = \begin{pmatrix} 0 & \omega_{12} \\ \omega_{21} & 0 \end{pmatrix}$$

where $\omega_{12} = -\omega_{21} = a_{12}^1 x_1 + c_{12}$. Since $k = 1$, we have $x_1^2 \in E$.

By Lemma 3.1, we have $\frac{\partial \omega_{12}}{\partial x_1} = 0$ which implies ω_{12} is a constant.

Therefore the following result of Chiou-Yau follows from Theorem 2.2.

Theorem 4.1. Suppose that the state space of the filtering system (2.1) is of dimension two. If E is the finite-dimensional estimation algebra with maximal rank, then E is a real vector space of dimension 6 with basis given by $1, x_1, x_2, D_1, D_2$ and L_0.

4.2. State space dimension $n=3$.

In this case, we only need to consider two subcases: $k = 1$ or $k = 2$. case(I): $k = 1$ By Theorem 2.4, the Ω-matrix is of the following form

$$\Omega = (\omega_{ij}) = \begin{pmatrix} 0 & \omega_{12} & \omega_{13} \\ \omega_{21} & 0 & \omega_{23} \\ \omega_{31} & \omega_{32} & 0 \end{pmatrix}$$

where:

$$\omega_{12} = -\omega_{21} = a_{12}^1 x_1 + c_{12}$$

$$\omega_{13} = -\omega_{31} = a_{13}^1 x_1 + c_{13}$$

Since $k = 1$, we have $x_1^2 \in E$. Lemma 3.1 implies $\frac{\partial \omega_{12}}{\partial x_1} = 0 = \frac{\partial \omega_{13}}{\partial x_1}$

Hence ω_{12} and ω_{13} are also constants.
case (II): \(k=2 \) By Theorem 2.4, the \(\Omega \)-matrix is of the following form

\[
\Omega = (\omega_{ij}) = \begin{pmatrix}
0 & c_{12} & \omega_{13} \\
c_{21} & 0 & \omega_{23} \\
\vdots & \vdots & \vdots \\
\omega_{31} & \omega_{32} & 0
\end{pmatrix}
\]

where

\[
\omega_{13} = -\omega_{31} = a_{13}x_1 + a_{23}x_2 + c_{13}
\]

\[
\omega_{23} = -\omega_{32} = a_{23}x_1 + a_{23}x_2 + c_{23}
\]

We need to consider two subcases.

Subcase (IIa): \(k_1 = 1 < k_2 = k = 2 \). In this case, we have \(x_1^2 \in E \) and \(x_2^2 \in E \).

By Lemma 3.1, we have \(\frac{\partial \omega_{13}}{\partial x_1} = 0 \) and \(\frac{\partial \omega_{23}}{\partial x_2} = 0 \).

On the other hand, \(\frac{\partial \omega_{13}}{\partial x_2} = 0 = \frac{\partial \omega_{23}}{\partial x_1} \) by Lemma 3.2. Therefore \(\omega_{13} \) and \(\omega_{23} \) are constants in this case.

Subcase (IIb): \(k_1 = k = 2 \). In this case, we have \(x_1^2 + x_2^2 \in E \).

By cyclic relation \(\frac{\partial \omega_{13}}{\partial x_2} + \frac{\partial \omega_{23}}{\partial x_1} + \frac{\partial \omega_{31}}{\partial x} = 0 \), we have \(\frac{\partial \omega_{13}}{\partial x_2} = \frac{\partial \omega_{23}}{\partial x_1} \).

This implies \(a_{13}^2 = a_{23} \). Since \(\alpha_3 = \sum_{i=1}^2 x_i \omega_{3i} \), we have \(a_{13}^1 x_1^2 + 2a_{13} x_1 x_2 + a_{23} x_2^2 \in E \).

By Lemma 2.2, any quadratic form in \(E \) must be a constant multiple of \(x_1^2 + x_2^2 \). Therefore \(a_{13}^2 = a_{23} = 0 \) and \(a_{13} = a_{23} \). In view of Lemma 3.3, we have \(\frac{\partial \omega_{13}}{\partial x_1} = 0 = \frac{\partial \omega_{23}}{\partial x_2} \). Hence \(\omega_{13} \) and \(\omega_{23} \) are constants. Consequently, the following result of [CYL1] follows from Theorem 2.2.

Theorem 4.2. Suppose that the state space of the filtering system (2.1) is of dimension three. If \(E \) is the finite-dimensional estimation algebra with maximal rank, then \(E \) is a real vector space of dimension 8 with a basis given by \(1, x_1, x_2, x_3, D_1, D_2, D_3 \) and \(L_0 \).

4.3. **State space dimension** \(n = 4 \). In this case, we only need to consider three subcases: \(k = 1, k = 2 \) or \(k = 3 \)

Case (I): \(k = 1 \) By theorem 2.4, the \(\Omega \)-matrix is of the following form

\[
\Omega = (\omega_{ij}) = \begin{pmatrix}
0 & \omega_{12} & \omega_{13} & \omega_{14} \\
\omega_{21} & 0 & c_{23} & c_{24} \\
\omega_{31} & c_{32} & 0 & c_{34} \\
\omega_{41} & c_{42} & c_{43} & 0
\end{pmatrix}
\]

where

\[
\omega_{12} = -\omega_{21} = a_{12}x_1 + c_{12}
\]

\[
\omega_{13} = -\omega_{31} = a_{13}x_1 + c_{13}
\]

\[
\omega_{14} = -\omega_{41} = a_{14}x_1 + c_{14}
\]

Since \(k = 1 \), we have \(x_1^2 \in E \). Lemma 3.1 implies \(\frac{\partial \omega_{12}}{\partial x_1} = 0 = \frac{\partial \omega_{13}}{\partial x_1} = \frac{\partial \omega_{14}}{\partial x_1} \).

Hence \(\omega_{12}, \omega_{13} \) and \(\omega_{14} \) are constants.
case (II): $k = 2$ By theorem 2.4, the Ω-matrix is of the following form

$$\Omega = (\omega_{ij}) = \begin{pmatrix}
0 & c_{12} & \omega_{13} & \omega_{14} \\
c_{21} & 0 & \omega_{23} & \omega_{24} \\
\omega_{31} & \omega_{32} & 0 & c_{34} \\
\omega_{41} & \omega_{42} & c_{43} & 0
\end{pmatrix}$$

where

$$\omega_{13} = -\omega_{31} = a_{131}x_1 + a_{132}x_2 + c_{13}$$
$$\omega_{14} = -\omega_{41} = a_{141}x_1 + a_{142}x_2 + c_{14}$$
$$\omega_{23} = -\omega_{32} = a_{231}x_1 + a_{232}x_2 + c_{23}$$
$$\omega_{24} = -\omega_{42} = a_{241}x_1 + a_{242}x_2 + c_{24}$$

We need to consider two subcases.

subcase (IIa): $k_1 = 1 < k_2 = k = 2$. In this case we have $x_1^2 \in E$ and $x_2^2 \in E$.

By Lemma 3.1, we have $\frac{\partial \omega_{13}}{\partial x_1} = \frac{\partial \omega_{14}}{\partial x_1} = \frac{\partial \omega_{23}}{\partial x_2} = \frac{\partial \omega_{24}}{\partial x_2} = 0$.

On the other hand, in view of Lemma 3.2, we have $\frac{\partial \omega_{13}}{\partial x_1} = 0 = \frac{\partial \omega_{23}}{\partial x_2}$ and $\frac{\partial \omega_{14}}{\partial x_1} = 0 = \frac{\partial \omega_{24}}{\partial x_2}$. Therefore $\omega_{13}, \omega_{14}, \omega_{23}$ and ω_{24} are constants.

subcase (IIb): $k_1 = k = 2$. In this case we have $x_1^2 + x_2^2 \in E$.

By cyclic relations $\frac{\partial \omega_{13}}{\partial x_2} + \frac{\partial \omega_{14}}{\partial x_2} + \frac{\partial \omega_{23}}{\partial x_1} = 0$, $\frac{\partial \omega_{14}}{\partial x_2} + \frac{\partial \omega_{24}}{\partial x_1} + \frac{\partial \omega_{34}}{\partial x_1} = 0$, we have $a_{13} = \frac{\partial \omega_{13}}{\partial x_2} = \frac{\partial \omega_{23}}{\partial x_1} = a_{23}$ and $a_{14} = \frac{\partial \omega_{14}}{\partial x_2} = \frac{\partial \omega_{24}}{\partial x_1} = a_{24}$.

By Theorem 2.4, the following elements are in E

$$-\alpha_3 = \sum_{i=1}^{2} x_i \omega_{i3} = a_{131}x_1^2 + 2a_{132}x_1x_2 + a_{231}x_2^2 + c_{13}x_1 + c_{23}x_2 \in E$$
$$-\alpha_4 = \sum_{i=1}^{2} x_i \omega_{i4} = a_{141}x_1^2 + 2a_{142}x_1x_2 + a_{241}x_2^2 + c_{14}x_1 + c_{24}x_2 \in E$$

As E is of maximal rank, we have $a_{13}x_1^2 + 2a_{131}x_1x_2 + a_{23}x_2^2 \in E$ and $a_{14}x_1^2 + 2a_{141}x_1x_2 + a_{24}x_2^2 \in E$. In view of Lemma 2.3, we have $a_{13} = a_{23} = 0$ and $a_{14} = a_{24} = 0$. By Lemma 3.3, we have $\frac{\partial \omega_{13}}{\partial x_1} = 0 = \frac{\partial \omega_{23}}{\partial x_2}$, $\frac{\partial \omega_{14}}{\partial x_1} = 0 = \frac{\partial \omega_{24}}{\partial x_2}$. Therefore $\omega_{13}, \omega_{14}, \omega_{23}$ and ω_{24} are constants.

case (III): $k = 3$ By theorem 2.4, the Ω-matrix is of the following form

$$\Omega = (\omega_{ij}) = \begin{pmatrix}
0 & c_{12} & c_{13} & \omega_{14} \\
c_{21} & 0 & c_{23} & \omega_{24} \\
c_{31} & c_{32} & 0 & \omega_{34} \\
\omega_{41} & \omega_{42} & \omega_{43} & 0
\end{pmatrix}$$

where

$$\omega_{14} = -\omega_{41} = a_{141}x_1 + a_{142}x_2 + a_{143}x_3 + c_{14}$$
$$\omega_{24} = -\omega_{42} = a_{241}x_1 + a_{242}x_2 + a_{243}x_3 + c_{24}$$
$$\omega_{34} = -\omega_{43} = a_{341}x_1 + a_{342}x_2 + a_{343}x_3 + c_{34}$$
subcase(IIIa): \(k_1 = 1 < k_2 = 2 < k_3 = k = 3 \). In this case we have \(x_1^2 \in E \) and \(x_2^2 \in E \). By Lemma 3.1, we have \(\frac{\partial \omega_{14}}{\partial x_1} = 0 = \frac{\partial \omega_{24}}{\partial x_2} = \frac{\partial \omega_{34}}{\partial x_3} \). By Lemma 3.2, we have \(\frac{\partial \omega_{14}}{\partial x_1} = \frac{\partial \omega_{24}}{\partial x_2} = 0, \frac{\partial \omega_{13}}{\partial x_3} = 0 \) and \(\frac{\partial \omega_{24}}{\partial x_3} = \frac{\partial \omega_{34}}{\partial x_3} = 0 \). Therefore \(\omega_{14}, \omega_{24} \) and \(\omega_{34} \) are constants in this case.

For subcase(IIIb) and subcase(IIIc) below, we shall use the following observations. The cyclic relations

\[
\frac{\partial \omega_{14}}{\partial x_2} + \frac{\partial \omega_{21}}{\partial x_4} + \frac{\partial \omega_{42}}{\partial x_3} = 0, \quad \frac{\partial \omega_{14}}{\partial x_3} + \frac{\partial \omega_{31}}{\partial x_4} + \frac{\partial \omega_{43}}{\partial x_1} = 0 \quad \text{and} \quad \frac{\partial \omega_{14}}{\partial x_4} + \frac{\partial \omega_{42}}{\partial x_1} + \frac{\partial \omega_{24}}{\partial x_3} = 0
\]

imply

\[
a_{14}^{2} = \frac{\partial \omega_{14}}{\partial x_2} = \frac{\partial \omega_{24}}{\partial x_1} = a_{14}^{3}, \quad a_{14}^{3} = \frac{\partial \omega_{14}}{\partial x_3} = \frac{\partial \omega_{34}}{\partial x_1} = a_{34}^{1},
\]

and

\[
a_{24}^{3} = \frac{\partial \omega_{24}}{\partial x_3} = \frac{\partial \omega_{34}}{\partial x_2} = a_{34}^{2}.
\]

subcase(IIIb): \(k_1 = 1 < k_2 = 3 = k \). In this case, we have \(x_1^2 \in E, x_2^2 + x_3^2 \in E \). By Lemma 3.1, we have \(\frac{\partial \omega_{14}}{\partial x_1} = 0 \). In view of Theorem 2.4, we have

\[
-\alpha_4 = \sum_{i=1}^{3} x_i \omega_{14} = a_{14}^{1} x_1^2 + 2 a_{24}^{2} x_2^2 + a_{34}^{3} x_3^2 + 2 a_{14}^{1} x_1 x_2 + 2 a_{14}^{3} x_1 x_3 + 2 a_{24}^{2} x_2 x_3 + c_{14} x_1 + c_{24} x_2 + c_{34} x_3 \in E
\]

Since \(E \) is of maximal rank, (4.1)

\[
\alpha_4 = a_{14}^{1} x_1^2 + a_{24}^{2} x_2^2 + a_{34}^{3} x_3^2 + 2 a_{14}^{1} x_1 x_2 + 2 a_{14}^{3} x_1 x_3 + 2 a_{24}^{2} x_2 x_3 \in E
\]

By Lemma 2.2, \(-\alpha_4 (0, x_2, x_3) = a_{24}^{2} x_2^2 + a_{34}^{3} x_3^2 + 2 a_{24}^{2} x_2 x_3 \) is a constant multiple of \(x_3^2 + x_2^3 \). We have \(a_{34}^{3} = 0 = a_{24}^{2} \). As \(x_1^2 \in E \), we have \(\frac{\partial \omega_{14}}{\partial x_1} = a_{14}^{1} = 0 \) by Lemma 3.1. On the other hand, by Lemma 3.3, we have \(\frac{\partial \omega_{24}}{\partial x_2} = \frac{\partial \omega_{34}}{\partial x_3} = 0 \). By (4.1), we have

\[
2 a_{24}^{2} x_2 x_3 + a_{14}^{1} x_1 x_2 + 2 a_{34}^{3} x_1 x_3 \in E
\]

In view of Lemma 2.4 and the fact that \(|\{1\}| < |\{2,3\}| \), we conclude that \(a_{14}^{1} = 0 = a_{34}^{3} \). Hence \(\omega_{13}, \omega_{14}, \omega_{23} \) and \(\omega_{24} \) are constants.

subcase(IIIc): \(k_1 = 3 = k \). In this case, we have \(x_1^2 + x_2^2 + x_3^2 \in E \). As in the proof of subcase(IIIb), we have

\[
\alpha_4 = a_{14}^{1} x_1^2 + a_{24}^{2} x_2^2 + a_{34}^{3} x_3^2 + 2 a_{14}^{1} x_1 x_2 + 2 a_{14}^{3} x_1 x_3 + 2 a_{24}^{2} x_2 x_3 \in E
\]

By Lemma 2.2 this quadratic form is a constant multiple of \(x_1^2 + x_2^2 + x_3^2 \). Consequently, we have \(a_{14}^{1} = a_{24}^{2} = a_{34}^{3} = 0 \). It follows that \(\frac{\partial \omega_{14}}{\partial x_1} = \frac{\partial \omega_{24}}{\partial x_2} = \frac{\partial \omega_{34}}{\partial x_3} \) by Lemma 3.3. Therefore \(\omega_{14}, \omega_{24} \) and \(\omega_{34} \) are constants.

We have proved the following result which was claimed in [CLY2].

Theorem 4.3. Suppose that the state space of filtering system (2.1) is of dimension four. If \(E \) is the finite-dimensional estimation algebra with maximal rank, then \(E \) is a real vector space of dimension 10 with a base given by 1, \(x_1, x_2, x_3, x_4, D_1, D_2, D_3, D_4 \) and \(L_0 \).
4.4. State Space Dimension $n = 5$. In this case, we only need to consider four subcases: $k = 1, k = 2, k = 3$ and $k = 4$.

case (I): $k = 1$. By Theorem 2.4, the Ω-matrix is of the following form

$$
\Omega = (\omega_{ij}) = \begin{pmatrix}
0 & \omega_{12} & \omega_{13} & \omega_{14} & \omega_{15} \\
\omega_{21} & 0 & c_{23} & c_{24} & c_{25} \\
\omega_{31} & c_{32} & 0 & c_{34} & c_{35} \\
\omega_{41} & c_{42} & c_{43} & 0 & c_{45} \\
\omega_{51} & c_{52} & c_{53} & c_{54} & 0
\end{pmatrix}
$$

where

$$
\omega_{12} = -\omega_{21} = a_{12}^1x_1 + c_{12}, \\
\omega_{13} = -\omega_{31} = a_{13}^1x_1 + c_{13}, \\
\omega_{14} = -\omega_{41} = a_{14}^1x_1 + c_{14}, \\
\omega_{15} = -\omega_{51} = a_{15}^1x_1 + c_{15}.
$$

By Lemma 3.1, we have $\frac{\partial \omega_{ii}}{\partial x_1} = 0$, for all $2 \leq j \leq 5$, which means that $\omega_{12}, \omega_{13}, \omega_{14}$ and ω_{15} are constants.

case (II): $k = 2$. By Theorem 2.4, the Ω-matrix is of the following form

$$
\Omega = (\omega_{ij}) = \begin{pmatrix}
0 & c_{12} & \omega_{13} & \omega_{14} & \omega_{15} \\
c_{21} & 0 & \omega_{23} & \omega_{24} & \omega_{25} \\
\omega_{31} & \omega_{32} & 0 & c_{34} & c_{35} \\
\omega_{41} & \omega_{42} & c_{43} & 0 & c_{45} \\
\omega_{51} & \omega_{52} & c_{53} & c_{54} & 0
\end{pmatrix}
$$

where

$$
\omega_{13} = -\omega_{31} = a_{13}^1x_1 + a_{13}^2x_2 + c_{13}, \\
\omega_{14} = -\omega_{41} = a_{14}^1x_1 + a_{14}^2x_2 + c_{14}, \\
\omega_{15} = -\omega_{51} = a_{15}^1x_1 + a_{15}^2x_2 + c_{15}, \\
\omega_{23} = -\omega_{32} = a_{23}^1x_1 + a_{23}^2x_2 + c_{23}, \\
\omega_{24} = -\omega_{42} = a_{24}^1x_1 + a_{24}^2x_2 + c_{24}, \\
\omega_{25} = -\omega_{52} = a_{25}^1x_1 + a_{25}^2x_2 + c_{25}.
$$

subcase (IIa): $k_1 = 1 < k_2 = 2 = k$. In this case we have $x_1^2 \in E$ and $x_2^2 \in E$. By Lemma 3.1, we have $\frac{\partial \omega_{ii}}{\partial x_1} = 0 = \frac{\partial \omega_{ij}}{\partial x_2}$ for all $3 \leq j \leq 5$. By Lemma 3.2, we have $\frac{\partial \omega_{ii}}{\partial x_2} = \frac{\partial \omega_{ij}}{\partial x_1} = 0$, for all $3 \leq j \leq 5$. Therefore ω_{ij}, for all $1 \leq i \leq 2$ and $3 \leq j \leq 5$ are constants.

subcase (IIb): $k_1 = k = 2$. In this case, we only have $x_1^2 + x_2^2 \in E$. By the cyclic relations $\frac{\partial \omega_{13}}{\partial x_2} + \frac{\partial \omega_{23}}{\partial x_3} + \frac{\partial \omega_{32}}{\partial x_1} = 0$, $\frac{\partial \omega_{14}}{\partial x_2} + \frac{\partial \omega_{24}}{\partial x_4} + \frac{\partial \omega_{42}}{\partial x_1} = 0$ and $\frac{\partial \omega_{15}}{\partial x_2} + \frac{\partial \omega_{25}}{\partial x_5} + \frac{\partial \omega_{52}}{\partial x_1} = 0$ imply
Since
\[a_{13}^{2} = \frac{\partial \omega_{13}}{\partial x_{2}} = \frac{\partial \omega_{23}}{\partial x_{1}} = a_{23}^{1}, a_{14}^{2} = \frac{\partial \omega_{14}}{\partial x_{2}} = \frac{\partial \omega_{24}}{\partial x_{1}} = a_{24}^{1}, \\ a_{15}^{2} = \frac{\partial \omega_{15}}{\partial x_{2}} = \frac{\partial \omega_{25}}{\partial x_{1}} = a_{25}^{1}, \]

are in \(E \), we deduce easily that the following elements are in \(E \).

\[
\begin{align*}
\tilde{\alpha}_{3} &= a_{13}^{1}x_{1}^{2} + 2a_{13}x_{1}x_{2} + a_{23}x_{2}^{2} \in E, \\
\tilde{\alpha}_{4} &= a_{14}^{1}x_{1}^{2} + 2a_{14}x_{1}x_{2} + a_{24}x_{2}^{2} \in E, \\
\tilde{\alpha}_{5} &= a_{15}^{1}x_{1}^{2} + 2a_{15}x_{1}x_{2} + a_{25}x_{2}^{2} \in E.
\end{align*}
\]

By Lemma 2.2, \(\tilde{\alpha}_{3}, \tilde{\alpha}_{4} \) and \(\tilde{\alpha}_{5} \) are constant multiple of \(x_{1}^{2} + x_{2}^{2} \). Hence we have
\[a_{13}^{2} = 0 = a_{14}^{2} = a_{15}^{2}. \] In view of Lemma 3.3, we have \(\frac{\partial \omega_{1i}}{\partial x_{j}} = 0 \) for all \(1 \leq i \leq 2 \) and \(3 \leq j \leq 5 \). Therefore \(\omega_{ij} \), for all \(1 \leq i \leq 2 \) and \(3 \leq j \leq 5 \), are constants.

Case (III): \(k = 3 \). By Theorem 2.4, the \(\Omega \)-matrix is of the following form

\[
\Omega = (\omega_{ij}) = \begin{pmatrix}
0 & c_{12} & c_{13} & \omega_{14} & \omega_{15} \\
c_{21} & 0 & c_{23} & \omega_{24} & \omega_{25} \\
c_{31} & c_{32} & 0 & \omega_{34} & \omega_{35} \\
\omega_{41} & \omega_{42} & \omega_{43} & 0 & c_{45} \\
\omega_{51} & \omega_{52} & \omega_{53} & c_{54} & 0
\end{pmatrix}
\]

where

\[
\begin{align*}
\omega_{14} &= -\omega_{41} = a_{14}^{1}x_{1} + a_{14}x_{2} + a_{14}x_{3} + c_{14}, \\
\omega_{15} &= -\omega_{51} = a_{15}^{1}x_{1} + a_{15}x_{2} + a_{15}x_{3} + c_{15}, \\
\omega_{24} &= -\omega_{42} = a_{24}^{1}x_{1} + a_{24}x_{2} + a_{24}x_{3} + c_{24}, \\
\omega_{25} &= -\omega_{52} = a_{25}^{1}x_{1} + a_{25}x_{2} + a_{25}x_{3} + c_{25}, \\
\omega_{34} &= -\omega_{43} = a_{34}^{1}x_{1} + a_{34}x_{2} + a_{34}x_{3} + c_{34}, \\
\omega_{35} &= -\omega_{53} = a_{35}^{1}x_{1} + a_{35}x_{2} + a_{35}x_{3} + c_{35}.
\end{align*}
\]

Subcase (IIIa): \(k_{1} = 1 < k_{2} = 2 < k_{3} = k \). In this case we have \(x_{1}^{2} \in E, x_{2}^{2} \in E \) and \(x_{3}^{2} \in E \). By Lemma 3.1, we have \(\frac{\partial \omega_{1i}}{\partial x_{j}} = 0 = \frac{\partial \omega_{2i}}{\partial x_{j}} = \frac{\partial \omega_{3i}}{\partial x_{j}} \) for all \(4 \leq j \leq 5 \).

By Lemma 3.2, we have \(\frac{\partial \omega_{1j}}{\partial x_{i}} = 0 = \frac{\partial \omega_{2j}}{\partial x_{i}} = \frac{\partial \omega_{3j}}{\partial x_{i}} \) for all \(4 \leq j \leq 5 \). Therefore \(\omega_{ij} \), for all \(1 \leq i \leq 3 \) and \(4 \leq j \leq 5 \), are constants.

For subcase (IIIb) and subcase (IIIc) below, we shall use the following observations.

The cyclic relations \(\frac{\partial \omega_{1j}}{\partial x_{2}} + \frac{\partial \omega_{2j}}{\partial x_{1}} + \frac{\partial \omega_{3j}}{\partial x_{3}} = 0, \frac{\partial \omega_{3j}}{\partial x_{1}} + \frac{\partial \omega_{1j}}{\partial x_{2}} + \frac{\partial \omega_{2j}}{\partial x_{3}} = 0 \) for \(j = 4,5 \) imply \(a_{1j}^{2} = \frac{\partial \omega_{1j}}{\partial x_{1}} = a_{2j}^{1}, a_{1j}^{3} = \frac{\partial \omega_{1j}}{\partial x_{1}} = a_{3j}^{1}, \frac{\partial \omega_{3j}}{\partial x_{3}} = a_{1j}^{3}, a_{3j}^{2} = \frac{\partial \omega_{3j}}{\partial x_{3}} = a_{2j}^{3} \) for \(j = 4,5 \).

Subcase (IIIb): \(k_{1} = 1 < k_{2} = 3 = k \). In this case we have \(x_{1}^{2} \in E, x_{2}^{2} + x_{3}^{2} \in E \). By Lemma 3.1, we have \(a_{14}^{1} = \frac{\partial \omega_{14}}{\partial x_{1}} = 0 \) and \(a_{15}^{1} = \frac{\partial \omega_{15}}{\partial x_{1}} = 0 \). Since \(-\alpha_{3} = \sum_{i=1}^{3} x_{i} \omega_{1i} \) and \(-\alpha_{3} = \sum_{i=1}^{3} x_{i} \omega_{1i} \) are in \(E \) by Theorem 2.4, it is easy to see that the following quadratic forms are in \(E \).

\[
(4.2) \quad \alpha_{4} = 2a_{14}^{2}x_{1}x_{2} + 2a_{14}^{3}x_{1}x_{3} + a_{24}^{2}x_{2}^{2} + a_{34}^{2}x_{3}^{2} + 2a_{24}^{3}x_{2}x_{3} \in E.
\]
\[(4.3) \quad \tilde{\omega}_5 = 2a^2_{15}x_1x_2 + 2a^3_{15}x_1x_3 + a^3_{25}x_2^2 + a^3_{35}x_3^2 + 2a^3_{25}x_2x_3 \in E.\]

By Lemma 2.2, \(\tilde{\omega}_4(0,x_2,x_3)\) and \(\tilde{\omega}_5(0,x_2,x_3)\) are constant multiple of \(x_2^2 + x_3^2\). Hence we have \(a^2_{34} = 0 = a^3_{25}\). In view of Lemma 3.3 we have \(\frac{\partial \omega_{14}}{\partial x_2} = 0 = \frac{\partial \omega_{24}}{\partial x_2} = \frac{\partial \omega_{34}}{\partial x_2}\). By (4.2) and (4.3), we have

\[
\tilde{\omega}_4 = 2a^2_{14}x_1x_2 + 2a^2_{14}x_1x_3 \in E \quad \text{and} \quad \tilde{\omega}_5 = 2a^2_{15}x_1x_2 + 2a^3_{15}x_1x_3 \in E.
\]

In view of Lemma 2.4 and the fact that \(|\{1\}| < |\{2,3\}|\), we conclude that \(a^2_{14} = a^2_{15} = a^3_{14} = a^3_{15} = 0\). Hence \(\omega_{14}, \omega_{15}, \omega_{24}, \omega_{25}, \omega_{34}\) and \(\omega_{35}\) are constants.

Subcase (IIIc): \(k_1 = 3 = k\). In this case, we have \(x_1^2 + x_2^2 + x_3^2 \in E\).

Since \(-a_4 = \sum_{l=1}^{3} x_l\omega_{14}\) and \(-a_5 = \sum_{l=1}^{3} x_l\omega_{15}\) are in \(E\) by Theorem 2.4, it is easy to see that the following quadratic forms are in \(E\).

\[
\tilde{\omega}_4 = a^1_{14}x_1^2 + 2a^2_{14}x_1x_2 + 2a^3_{14}x_1x_3 + a^2_{24}x_2^2 + a^3_{34}x_3^2 + 2a^3_{24}x_2x_3 \in E
\]
\[
\tilde{\omega}_5 = a^1_{15}x_1^2 + 2a^2_{15}x_1x_2 + 2a^3_{15}x_1x_3 + a^2_{25}x_2^2 + a^3_{35}x_3^2 + 2a^3_{25}x_2x_3 \in E
\]

By Lemma 2.2, \(\tilde{\omega}_4\) and \(\tilde{\omega}_5\) are constant multiple of \(x_1^2 + x_2^2 + x_3^2\). Therefore we have \(a^2_{14} = a^2_{15} = a^2_{24} = 0 = a^3_{14} = a^3_{15} = a^3_{25}\). In view of Lemma 3.3, we have \(\frac{\partial \omega_{14}}{\partial x_i} = 0\) for all \(4 \leq l \leq 5\) and \(1 \leq i \leq 3\). Hence \(\omega_{ij}\), for all \(1 \leq i \leq 3\) and \(4 \leq j \leq 5\), are also constants.

Case (IV): \(k = 4\). By Theorem 2.4, the \(\Omega\)-matrix is of the following form

\[
\Omega = (\omega_{ij}) = \begin{pmatrix} 0 & c_{12} & c_{13} & c_{14} & \omega_{15} \\ c_{21} & 0 & c_{23} & c_{24} & \omega_{25} \\ c_{31} & c_{32} & 0 & c_{34} & \omega_{35} \\ c_{41} & c_{42} & c_{43} & 0 & c_{45} \\ \omega_{51} & \omega_{52} & \omega_{53} & \omega_{54} & 0 \end{pmatrix}
\]

where

\[
\omega_{15} = -\omega_{51} = a^1_{15}x_1 + a^2_{15}x_2 + a^3_{15}x_3 + a^4_{15}x_4 + c_{15}
\]
\[
\omega_{25} = -\omega_{52} = a^1_{25}x_1 + a^2_{25}x_2 + a^3_{25}x_3 + a^4_{25}x_4 + c_{25}
\]
\[
\omega_{35} = -\omega_{53} = a^1_{35}x_1 + a^2_{35}x_2 + a^3_{35}x_3 + a^4_{35}x_4 + c_{35}
\]
\[
\omega_{45} = -\omega_{54} = a^1_{45}x_1 + a^2_{45}x_2 + a^3_{45}x_3 + a^4_{45}x_4 + c_{45}
\]

Subcase (IVA): \(k_1 = 1 < k_2 = 2 < k_3 < k_4 = 4 = k\). In this case we have \(x_1^2 \in E\), \(x_2^2 \in E\), \(x_3^2 \in E\) and \(x_4^2 \in E\). By Lemma 3.1, we have \(\frac{\partial \omega_{14}}{\partial x_1} = 0\) for all \(1 \leq l \leq 4\). On the other hand, Lemma 3.2 says that \(\frac{\partial \omega_{14}}{\partial x_l} = 0\) for all \(1 \leq l \leq 4, l \neq m\). Therefore \(\omega_{14}, \omega_{25}, \omega_{35}\) and \(\omega_{45}\) are constants.

For subcases (IVb), (IVc), (IVd) and (IVE) below. We shall use the following observations. The cyclic relations \(\frac{\partial \omega_{14}}{\partial x_1} + \frac{\partial \omega_{15}}{\partial x_2} + \frac{\partial \omega_{24}}{\partial x_1} = 0, \frac{\partial \omega_{14}}{\partial x_1} + \frac{\partial \omega_{24}}{\partial x_2} = 0, \frac{\partial \omega_{14}}{\partial x_1} + \frac{\partial \omega_{34}}{\partial x_3} = 0, \frac{\partial \omega_{14}}{\partial x_1} + \frac{\partial \omega_{45}}{\partial x_4} = 0, \frac{\partial \omega_{15}}{\partial x_2} + \frac{\partial \omega_{25}}{\partial x_2} = 0, \frac{\partial \omega_{15}}{\partial x_2} + \frac{\partial \omega_{35}}{\partial x_3} = 0, \frac{\partial \omega_{15}}{\partial x_2} + \frac{\partial \omega_{45}}{\partial x_4} = 0, \frac{\partial \omega_{25}}{\partial x_2} + \frac{\partial \omega_{35}}{\partial x_3} = 0, \frac{\partial \omega_{25}}{\partial x_2} + \frac{\partial \omega_{45}}{\partial x_4} = 0, \frac{\partial \omega_{35}}{\partial x_3} + \frac{\partial \omega_{45}}{\partial x_4} = 0, \frac{\partial \omega_{35}}{\partial x_3} + \frac{\partial \omega_{45}}{\partial x_4} = 0, \frac{\partial \omega_{45}}{\partial x_4} + \frac{\partial \omega_{45}}{\partial x_4} = 0\) imply \(a_{25}^1 = \frac{\partial \omega_{25}}{\partial x_2} = \frac{\partial \omega_{35}}{\partial x_3} = \frac{\partial \omega_{45}}{\partial x_4} = 0\), \(a_{35}^2 = \frac{\partial \omega_{35}}{\partial x_3} = \frac{\partial \omega_{45}}{\partial x_4} = 0\), \(a_{45}^3 = \frac{\partial \omega_{45}}{\partial x_4} = 0\) and \(a_{45}^4 = \frac{\partial \omega_{45}}{\partial x_4} = \frac{\partial \omega_{45}}{\partial x_4} = 0\).
subcase(IVb): $k_1 = 1 < k_2 = 2 < k_3 = 4 = k$. In this case we have $x_1^2 \in E$, $x_2^2 \in E$, $x_3^2 + x_4^2 \in E$. By Lemma 3.1, we have $a_{15} = \frac{\partial \omega_{15}}{\partial x_1} = 0$ and $a_{25} = \frac{\partial \omega_{25}}{\partial x_2} = 0$. On the other hand, Lemma 3.2 says that $a_{15}^2 = \frac{\partial \omega_{15}}{\partial x_1} = 0 = \frac{\partial \omega_{25}}{\partial x_1} = a_{25}$. Since $-\alpha_5 = \sum_{i=1}^{4} x_i \omega_{i5}$ is in E by Theorem 2.4, it is easy to see that the following quadratic form is in E.

$$\tilde{\alpha}_5 = 2a_{15}^3 x_1 x_2 + 2a_{15}^4 x_1 x_4 + 2a_{25}^3 x_2 x_3 + 2a_{25}^4 x_2 x_4 + a_{35}^3 x_3^2$$
$$+ 2a_{35}^4 x_3 x_4 + a_{45}^4 x_4^2 \in E$$

As $\tilde{\alpha}_5 (0, 0, x_3, x_4)$ is a constant multiple of $x_3^2 + x_4^2$, we have $a_{45}^4 = 0$. In view of Lemma 3.3, we have $\frac{\partial \omega_{45}}{\partial x_3} = 0 = \frac{\partial \omega_{45}}{\partial x_4}$.

Hence the following quadratic form is in E.

$$\beta_5 = 2a_{15}^3 x_1 x_3 + 2a_{15}^4 x_1 x_4 + 2a_{25}^3 x_2 x_3 + 2a_{25}^4 x_2 x_4 \in E$$

By Lemma 2.3, we have $\beta_5 (x_1, 0, x_3, x_4) = a_{15}^3 x_1 x_3 + 2a_{15}^4 x_1 x_4$ is in E. In view of Lemma 2.4 and the fact that $|\{1\}| < |\{3, 4\}|$, we conclude that $a_{15}^3 = 0 = a_{15}^4$.

Similarly, because of $\beta_5 (0, x_2, x_3, x_4) = 2a_{25}^3 x_2 x_3 + 2a_{25}^4 x_2 x_4$, we have $a_{25}^3 = 0 = a_{25}^4$ by Lemma 2.4. Hence $\omega_{15}, \omega_{25}, \omega_{35}$ and ω_{45} are constants.

subcase(IVc): $k_1 = 1 < k_2 = 4 = k$. In this case, we have $x_1^2 \in E$, $x_2^2 + x_3^2 + x_4^2 \in E$. By Lemma 3.1, we have $a_{15} = \frac{\partial \omega_{15}}{\partial x_1} = 0$.

Since $-\alpha_5 = \sum_{i=1}^{4} x_i \omega_{i5}$ is in E by Theorem 2.4, it is easy to see that the following quadratic form is in E.

$$\tilde{\alpha}_5 = 2a_{15}^3 x_1 x_2 + 2a_{15}^4 x_1 x_3 + 2a_{45}^3 x_1 x_4 + 2a_{45}^4 x_1 x_3 + 2a_{35}^3 x_2 x_3$$
$$+ 2a_{35}^4 x_2 x_4 + a_{45}^4 x_4^2 \in E$$

As $\tilde{\alpha}_5 (0, x_2, x_3, x_4)$ is a constant multiple of $x_2^2 + x_3^2 + x_4^2$, we have $a_{35}^3 = 0 = a_{35}^4$ by Lemma 2.3. Similarly, because of $\tilde{\alpha}_5 (0, x_1, x_3, x_4) = 2a_{45}^3 x_1 x_3 + 2a_{45}^4 x_1 x_4$ is in E, we have $a_{45}^3 = 0 = a_{45}^4$ by Lemma 2.3. Hence $\omega_{15}, \omega_{25}, \omega_{35}$ and ω_{45} are constants.

subcase(IVd): $k_1 = 2 < k_2 = 4 = k$. In this case, we have $x_1^2 + x_2^2 \in E$ and $x_3^2 + x_4^2 \in E$. Since $-\alpha_5 = \sum_{i=1}^{4} x_i \omega_{i5}$ is in E by Theorem 2.4, it is easy to see that the following quadratic form is in E.

$$\tilde{\alpha}_5 = a_{15}^3 x_1 x_2 + 2a_{15}^4 x_1 x_3 + 2a_{15}^4 x_1 x_4 + 2a_{25}^3 x_2 x_3 + 2a_{25}^4 x_2 x_4 + 2a_{35}^3 x_3 x_2$$
$$+ 2a_{35}^4 x_3 x_4 + 2a_{45}^3 x_4^2 + 2a_{45}^4 x_4^2$$

As $\tilde{\alpha}_5 (x_1, x_2, 0, 0)$ is a constant multiple of $x_1^2 + x_2^2$ and $\tilde{\alpha}_5 (0, 0, x_3, x_4)$ is a constant multiple of $x_3^2 + x_4^2$, we have $a_{45}^3 = 0 = a_{35}^4$ by Lemma 2.2. In view of Lemma 3.3, we have $a_{15}^3 = 0 = a_{15}^4$. Therefore $\omega_{15}, \omega_{25}, \omega_{35}$ and ω_{45} are constants.

By Lemma 2.4 we know that the matrix $\frac{\partial \omega_{15}}{\partial x_1}$, $\frac{\partial \omega_{25}}{\partial x_2}$, $\frac{\partial \omega_{35}}{\partial x_3}$, $\frac{\partial \omega_{45}}{\partial x_4}$ is a constant multiple of an orthogonal matrix. In particular, we have

$$a_{15}^3 a_{35}^2 + a_{15}^4 a_{45}^2 = 0 = a_{15}^3 a_{25} + a_{15}^4 a_{25}$$
\((4.5) \quad a_{35}^1 a_{35}^2 + a_{45}^1 a_{45}^2 = 0 = a_{35}^1 a_{45}^1 + a_{35}^2 a_{45}^2 \)

We shall construct a sequence of elements in \(E \)

\[
Z_1 = \frac{1}{2} \left[L_0, x_3^2 + x_4^2 \right] = \sum_{i=3}^4 x_i D_i + 1
\]

\[
Z_2 = \frac{1}{2} \left[L_0, Z_1 \right] = \frac{1}{2} \sum_{i=1}^5 \sum_{j=3}^4 \left[D_i^2, x_j D_j \right]
= \frac{1}{2} \sum_{i=1}^5 \sum_{j=3}^4 \left(\frac{\partial x_j D_i D_j - 2x_j \omega_{ij} D_i}{\partial x_i} \right) \mod U_0
= \sum_{j=3}^4 D_j^2 + \sum_{i=1}^5 \sum_{j=3}^4 x_j \omega_{ij} D_i \mod U_0
\]

\[
Z_3 = \frac{1}{2} \left[L_0, Z_2 \right] = \frac{1}{2} \sum_{i=1}^5 \sum_{j=3}^4 \left[D_i^2, D_j^2 \right] + \frac{1}{2} \sum_{i=1}^5 \sum_{l=1}^4 \sum_{j=3}^4 \left[D_i^2, x_j \omega_{jl} D_l \right] \mod U_1
= 2 \sum_{i=1}^5 \sum_{j=3}^4 \omega_{ij} D_j D_i + \sum_{i=1}^5 \sum_{l=1}^4 \sum_{j=3}^4 \omega \frac{x_j \omega_{jl}}{\partial x_i} D_i D_l \mod U_1
= 2 \sum_{i=1}^5 \sum_{j=3}^4 \omega_{ij} D_j D_i + \sum_{i=1}^5 \sum_{j=3}^4 \omega_{ij} D_j D_i + \sum_{i=1}^5 \sum_{j=3}^4 x_j \frac{\omega_{ij}}{\partial x_i} D_i D_5 \mod U_1
= 3 \sum_{i=1}^5 \sum_{j=3}^4 \omega_{ij} D_j D_i + \sum_{i=1}^5 \sum_{j=3}^4 x_j \frac{\omega_{ij}}{\partial x_i} D_i D_5 \mod U_1
\]

\[
[Z_3, Z_1] = 3 \sum_{i=1}^5 \sum_{j=3}^4 \sum_{l=3}^4 \left[\omega_{ij} D_j D_i, x_l D_l \right] + \sum_{i=1}^5 \sum_{j=3}^4 \sum_{p=3}^4 \left[\frac{x_j \omega_{ij}}{\partial x_i} D_i D_5, x_p D_p \right] \mod U_1
= 3 \sum_{i=1}^5 \sum_{j=3}^4 \sum_{l=3}^4 \left(\omega_{ij} \frac{\partial x_l}{\partial x_i} D_j D_l + \omega_{ij} \frac{x_l}{\partial x_j} D_j D_l - x_l \frac{\partial x_j}{\partial x_i} D_j D_l \right)
+ \sum_{i=1}^5 \sum_{j=3}^4 \sum_{p=3}^4 \left(x_j \frac{\omega_{ij}}{\partial x_i} D_5 D_p + x_j \frac{\omega_{ij}}{\partial x_i} D_p D_5 \right)
- x_p \frac{\partial \left(\frac{\omega_{ij}}{\partial x_i} \right)}{\partial x_p} D_5 \mod U_1
= 3 \sum_{j=3}^4 \sum_{l=3}^4 \omega_{jl} D_j D_l + 3 \sum_{i=1}^5 \sum_{j=3}^4 \omega_{ij} D_i D_j - 3 \sum_{j=3}^4 \sum_{l=3}^4 \omega_l \frac{\partial \omega_{ij}}{\partial x_i} D_j D_5
+ \sum_{i=1}^5 \sum_{j=3}^4 x_j \frac{\omega_{ij}}{\partial x_i} D_5 D_i - \sum_{i=1}^5 \sum_{j=3}^4 x_j \frac{\omega_{ij}}{\partial x_i} D_i D_5 \mod U_1
\]
\[Z_4 = \frac{1}{2} ([Z_3, Z_1] + Z_3) = 3 \sum_{i=1}^{5} \sum_{j=3}^{4} \omega_{ji} D_i D_j - 3 \sum_{i=3}^{4} \sum_{j=3}^{4} x_j \frac{\partial \omega_{j5}}{\partial x_i} D_i D_5 \mod U_1 \]

\[[Z_4, Z_1] = 3 \sum_{i=1}^{5} \sum_{j=3}^{4} \sum_{l=3}^{4} [\omega_{ji} D_i D_j, x_l D_l] \]

\[+ \sum_{i=3}^{4} \sum_{j=3}^{4} \sum_{p=3}^{4} \left[x_j \frac{\partial \omega_{j5}}{\partial x_i} D_i D_l, x_p D_p \right] \mod U_1 \]

\[Z_5 = \frac{1}{2} (Z_4 - [Z_4, Z_1]) = \sum_{i=3}^{4} \sum_{j=3}^{4} x_j \frac{\partial \omega_{j5}}{\partial x_i} D_i D_5 \mod U_1 \]

\[\overline{Z}_4 = - [Z_3, Z_1] + Z_4 - Z_5 = \sum_{i=1}^{4} \sum_{j=3}^{4} x_j \frac{\partial \omega_{j5}}{\partial x_i} D_i D_5 \mod U_1 \]

\[\overline{Z}_1 = \frac{1}{2} \left[L_0, x_1^2 + x_2^2 \right] = \sum_{i=1}^{2} x_i D_i + 1 \]

\[\overline{Z}_5 = [Z_4, \overline{Z}_1] = \sum_{i=1}^{4} \sum_{j=3}^{4} \sum_{p=1}^{2} \left[x_j \frac{\partial \omega_{j5}}{\partial x_i} D_i D_5, x_p D_p \right] \mod U_1 \]

\[= \sum_{i=1}^{4} \sum_{j=3}^{4} \sum_{p=1}^{2} x_j \frac{\partial \omega_{j5}}{\partial x_i} \frac{\partial x_p}{\partial x_i} D_5 D_p \mod U_1 \]

\[= \sum_{i=1}^{4} \sum_{j=3}^{4} x_j \frac{\partial \omega_{j5}}{\partial x_i} D_i D_5 \mod U_1 \]

\[= \sum_{j=3}^{4} \left[\sum_{i=1}^{2} \left(\frac{\partial \omega_{j5}}{\partial x_i} D_5 \right) D_i \right] \mod U_1 \]

By switching the roles of \(x_1^2 + x_2^2 \) and \(x_3^2 + x_4^2 \), we get the following element in E

\[\overline{Z}_6 = \sum_{i=1}^{2} \sum_{j=3}^{4} x_i \frac{\partial \omega_{j5}}{\partial x_j} D_j D_5 \mod U_1 \]
The cyclic relation \(\frac{\partial \omega_{j5}}{\partial x_i} + \frac{\partial \omega_{j5}}{\partial x_s} + \frac{\partial \omega_{j5}}{\partial x_j} = 0 \) implies \(\frac{\partial \omega_{j5}}{\partial x_i} = \frac{\partial \omega_{j5}}{\partial x_j} \) for \(1 \leq i \leq 2 \) and \(3 \leq j \leq 4 \). Therefore

\[
Z_6 = \sum_{i=1}^{2} \sum_{j=3}^{4} x_i \frac{\partial \omega_{j5}}{\partial x_i} D_j D_5 \mod U_1
\]

\[
= \sum_{i=1}^{2} x_i \sum_{j=3}^{4} (\frac{\partial \omega_{j5}}{\partial x_i} D_j)
\]

\[
A^{(1)} = [L_0, Z_5] = \frac{1}{2} \sum_{p=1}^{2} \sum_{i=1}^{2} \sum_{j=3}^{4} \left[D^2_p, x_j \frac{\partial \omega_{j5}}{\partial x_i} D_i D_5 \right] \mod U_2
\]

\[
= \sum_{p=1}^{2} \sum_{i=1}^{2} \sum_{j=3}^{4} \frac{\partial(x_j \frac{\partial \omega_{j5}}{\partial x_i})}{\partial x_p} D_p D_i D_5 \mod U_2
\]

\[
= \sum_{i=1}^{2} \sum_{j=3}^{4} \frac{\partial \omega_{j5}}{\partial x_i} D_j D_5 \mod U_2
\]

\[
= \sum_{i=1}^{2} \sum_{j=3}^{4} \frac{\partial \omega_{j5}}{\partial x_i} D_5 D_j \mod U_2
\]

\[
A^{(2)} = [A^{(1)}, Z_5] = \sum_{i=1}^{2} \sum_{j=3}^{4} \sum_{s=1}^{2} \left[(\frac{\partial \omega_{j5}}{\partial x_i} D_5) D_j, x_i (\frac{\partial \omega_{j5}}{\partial x_s} D_5) D_s \right] \mod U_3
\]

\[
= \sum_{i=1}^{2} \sum_{j=3}^{4} \sum_{s=1}^{2} (\frac{\partial \omega_{j5}}{\partial x_i} D_5) (\frac{\partial \omega_{j5}}{\partial x_s} D_5) D_i D_s \mod U_3
\]

\[
= \sum_{i=1}^{2} \left[\sum_{j=3}^{4} (\frac{\partial \omega_{j5}}{\partial x_i} D_5)^2 \right] D_i^2 + \sum_{i \neq s} \sum_{j=3}^{4} \frac{\partial \omega_{j5}}{\partial x_i} \frac{\partial \omega_{j5}}{\partial x_s} D_i^2 D_s \mod U_3
\]

Observe that for \(1 \leq i \neq s \leq 2 \)

\[
\sum_{j=3}^{4} \frac{\partial \omega_{j5}}{\partial x_i} \frac{\partial \omega_{j5}}{\partial x_s} = \sum_{j=3}^{4} a_{js}^i a_{js}^s = 0 \quad \text{by (4.5)}
\]

For \(1 \leq i \leq 2 \) and \(3 \leq j \leq 4 \), we denote

\[
\xi_{ij} = \frac{\partial \omega_{j5}}{\partial x_i} D_5 \quad \text{and} \quad \eta_i = \sum_{j=3}^{4} \xi_{ij}^2,
\]

Then

\[
A^{(2)} = \sum_{i=1}^{2} \eta_i D_i^2 \mod U_3
\]

\[
A^{(3)} = [A^{(2)}, Z_6] = \sum_{i=1}^{2} \sum_{s=1}^{2} \sum_{j=3}^{4} [\eta_i D_i^2, \xi_{si} x_s D_j] \mod U_4
\]
\[
A^{(4)} = [A^{(3)}, Z_5] = 2 \sum_{i=1}^{2} \sum_{j=3}^{4} \sum_{t=3}^{4} \sum_{s=1}^{2} \eta_i \xi_{ij} D_i D_j \xi_{st} x_t D_s \mod U_5
\]

\[
A^{(4)} = 2 \sum_{i=1}^{2} \sum_{j=3}^{4} \sum_{s=1}^{2} \eta_i \xi_{ij} \xi_{sj} D_i D_s \mod U_5
\]

\[
A^{(4)} = 2 \sum_{i=1}^{2} \eta_i^2 D_i^2 + 2 \sum_{i \neq s, t=3}^{4} (\sum_{j=3}^{4} \xi_{ij} \xi_{sj}) D_i D_s \mod U_5
\]

Observe that for \(1 \leq i \neq s \leq 2\)

\[
\sum_{j=3}^{4} \xi_{ij} \xi_{sj} = \sum_{j=3}^{4} \frac{\partial \omega_{js}}{\partial x_i} D_5 \frac{\partial \omega_{js}}{\partial x_s} D_5 = \sum_{j=3}^{4} a_{js}^i a_{js}^s D_5^2 = 0 \quad \text{by (4.5)}
\]

Hence

\[
A^{(4)} = 2 \sum_{i=1}^{2} \eta_i^2 D_i^2 \mod U_5
\]

By induction, we get an infinite sequence in \(E\) of the form

\[
A^{(2s+1)} = 2^s \sum_{i=1}^{2} \sum_{j=3}^{4} \eta_i \xi_{ij} D_i D_j \mod U_{2s+2}
\]

\[
A^{(2s+2)} = 2^s \sum_{i=1}^{2} \eta_i^{s+1} D_i^2 \mod U_{2s+3}
\]

Since \(E\) is finite dimensional, we conclude that for \(1 \leq i \leq 2\)

\[
\eta_i = \sum_{j=3}^{4} \xi_{ij} = \sum_{j=3}^{4} \left(\frac{\partial \omega_{js}}{\partial x_i}\right)^2 D_5^2 = 0
\]

Therefore \(\frac{\partial \omega_{js}}{\partial x_i} = 0\) for \(1 \leq i \leq 2\) and \(3 \leq j \leq 4\).

We have proved that \(\omega_{15}, \omega_{25}, \omega_{35}\) and \(\omega_{45}\) are constants.

Subcase (IVe) : \(k_1 = 4 = k\)

In this case we have \(x_1^2 + x_2^2 + x_3^2 + x_4^2 \in E\). Since \(-\alpha_5 = \sum_{i=1}^{4} x_i \omega_{15}\) is in \(E\) by Theorem 2.4, it is easy to see that the following quadratic form is in \(E\).

\[
\tilde{\alpha}_5 = a_{15}^2 x_1^2 + 2a_{15}^2 x_1 x_2 + 2a_{15}^2 x_1 x_3 + 2a_{15}^4 x_1 x_4 + a_{25}^2 x_2^2 + 2a_{25}^2 x_2 x_3 + 2a_{25}^4 x_2 x_4 + a_{35}^2 x_3^2 + 2a_{35}^4 x_3 x_4 + a_{45}^2 x_4^2
\]

By Lemma 2.2, \(\tilde{\alpha}_5\) is a constant multiple of \(x_1^2 + x_2^2 + x_3^2 + x_4^2\). Therefore we have \(\frac{\partial \omega_{js}}{\partial x_i} = 0\) for \(1 \leq i \neq j \leq 4\). It follows from Lemma 3.3 that \(\frac{\partial \omega_{js}}{\partial x_i} = 0\) for \(1 \leq i \leq 4\). Hence \(\omega_{15}, \omega_{25}, \omega_{35}\) and \(\omega_{45}\) are constants.
We have proved the following new result.

Theorem 4.4. Suppose that the state space of the filtering system (2.1) is of dimension five. If E is the finite-dimensional estimation algebra with maximal rank, then E is a real vector space of dimension 12 with a basis given by $1, x_1, x_2, x_3, x_4, x_5, D_1, D_2, D_3, D_4, D_5$ and L_0.

Add to the Proof: Recently Yau and Hu [YaHu] have completed the classification of finite dimensional estimation algebra of maximal rank with arbitrary state space dimension.

References

