A MODEL OF BRILL-NOETHER THEORY FOR RANK TWO VECTOR BUNDLES AND ITS PETRI MAP *

TAN XIAO-JIANG†

Abstract. We study here the Brill-Noether theory for rank two vector bundles. First we construct a parameter space \(H_d \) for all base point free rank two vector bundles of degree \(d \) which generated by its sections. Then for each \(E \in H_d \), we define a \(2g \times d \) matrix \(W_E \), which we call the Brill-Noether matrix of \(E \), it shares the same properties as the Brill-Noether matrix \(W_D \) for effective divisor \(D \). By using \(W_E \), the Brill-Noether variety \(C_d^r \) could be given by \(C_d^r = \{ E \in H_d | \dim H^0(C, E) \geq r + 1 \} \), so \(C_d^r \) is a determinant variety, we get its expected dimension is \(4(g-1)+1-(r+1)(2(g-1)-d+r+1)+2r+1 \). On the other hand, by using \(W_E \), we define the Petri map to be \(P : H^0(C, K(-E)) \otimes \text{Im}(H^0(C, E) \hookrightarrow H^0(C, [D])) \twoheadrightarrow H^0(C, K(D)(-E)) \), we show that \(C_d^r \) has the expected dimension if and only if the Petri map is injective.

1. Introduction. Let \(C \) be a smooth irreducible complex projective curve of genus \(g \) (a compact Riemann surface), \(L \) a line bundle on \(C \). We also use \(L \) to denote the sheaf of holomorphic sections of \(L \). The Brill-Noether theory for line bundles is to study those bundles \(L \) for which both \(H^0(C, L) \) and \(H^1(C, L) \) are non-zero (\(L \) is then called special line bundle).

Let \(C_d \) be the \(d \)-fold symmetric product of \(C \), \(C_d \) is a \(d \)-dimensional complex manifold. It is the space of all effective divisors of degree \(d \). Since each line bundle \(L \) with \(H^0(C, L) \neq 0 \) is defined by an effective divisor, so \(C_d \) could be considered as a parameter space for all line bundles \(L \) with \(\deg(L) = d \) and \(H^0(C, L) \neq 0 \).

Define on \(C_d \) the Brill-Noether variety \(C_d^r \) to be

\[
C_d^r = \{ D \in C_d | \dim H^0(C, [D]) \geq r + 1 \}.
\]

Where \([D] \) is the line bundle defined by divisor \(D \).

\(C_d^r \) could be considered as a parameter space for line bundles \(L \) with \(\deg(L) = d \) and \(\dim H^0(C, L) \geq r + 1 \). The key tool to study \(C_d^r \) is the Brill-Noether matrix.

Let \(D = n_1p_1 + \cdots + n_kp_k \) be a given effective divisor with \(d = \deg(D) = n_1 + \cdots + n_k \). For \(i = 1, \ldots, k \), let \(z_i \) be a local coordinate at \(p_i \) with \(z_i(p_i) = 0 \). Let \(\{w_1, \ldots, w_g\} \) be a linear basis of the space of all holomorphic forms on \(C \), for each \(i \) assume at \(p_i, w_t(z_i) = f_{ti}(z_i)dz_i \) for \(t = 1, \ldots, g \), let \(W_D \) be the matrix of the restrictions of \(\{w_1, \ldots, w_g\} \) on \(D \), that is

\[
W_D = \left[\begin{array}{c}
w_1 |_D \\
w_2 |_D \\
\vdots \\
w_g |_D \\
f_{11}(p_1) & \cdots & \frac{1}{(n_1-1)!}f_{11}^{(n_1-1)}(p_1) & \cdots & \frac{1}{(n_2-1)!}f_{12}^{(n_2-1)}(p_2) & \cdots \\
\vdots & \cdots & \vdots & \cdots & \vdots & \cdots \\
f_{g1}(p_1) & \cdots & \frac{1}{(n_k-1)!}f_{g1}^{(n_k-1)}(p_1) & \cdots & \frac{1}{(n_2-1)!}f_{g2}^{(n_2-1)}(p_2) & \cdots \\
\end{array} \right].
\]

* Received February 9, 2003; accepted for publication July 5, 2003. Project supported by National Natural Science Foundation of China.
† School of Mathematical Sciences, Peking University, Beijing 100871, P.R. China (tan@math.pku.edu.cn).
For a collection of Laurent tails \(\mu = \{ \mu_i = \sum_{k=-n_i}^{-1} b_{ik} z_i^k \} \), we denote it as a \(d \)-dimensional vector

\[
\mu = (b_{1-1}, b_{1-2}, \ldots, b_{1-n_1}, b_{2-1}, \ldots, b_{2-n_2}, \ldots) \in \mathbb{C}^d.
\]

Then \(\mu \) is the Laurent of a global meromorphic function if and only if \(W_D \cdot \mu^t = 0 \). From this one can get Riemann-Roch theorem easily.

The matrix \(W_D \) is called the Brill-Noether matrix of \(D \).

Now let \([D]|_D \) be the skyscraper sheaf of the restriction of \([D] \) on \(D \), then what we have above could be represented as

\[
\ker(W_D) = \{ \mu | \mu \in \mathbb{C}^d, W_D \cdot \mu^t = 0 \} \cong \text{Im}\{H^0(X, [D]) \to H^0(X, [D]|_D)\}
\]

and in particular, we get

\[
\dim H^0(X, [D]) = \deg(D) - \text{rank}(W_D) + 1.
\]

so \(C^r_d \) could be defined by

\[
C^r_d = \{ D \in \mathbb{C}^d | \text{Rank}(W_D) \leq d - r \}.
\]

It is a subvariety of \(C_d \) which locally is defined by the simultaneously vanishing of all \((d - r + 1) \times (d - r + 1)\) minors of \(W_D \) (Ref [ACGH] p159).

Now let \(M(m, n) = M \) be the variety of all \(m \times n \) complex matrices, and for \(0 \leq k \leq \min\{m, n\} \), denote by \(M_k(m, n) = M_k \) the locus of matrices of rank at most \(k \), that is

\[
M_k = \{ E \in M(m, n) | \text{Rank}(E) \leq k \}.
\]

\(M_k \) is an irreducible subvariety of \(M(m, n) \), and \(\text{codim}(M_k) = (n - k)(m - k) \) (Ref [ACGH] p67).

By using the Brill-Noether matrix, locally we have a holomorphic map \(BN : C_d \to M(m, n) \) with \(BN(D) = W_D \) for each \(D \in C_d \). \(C^r_d \) is then could be given by \(C^r_d = BN^{-1}(M_{d-r}) \).

From the Theory of determinant variety, we get that if \(C^r_d \neq \emptyset \), then \(\text{codim}(C^r_d) \leq \text{codim}(M_{d-r}) = (g - (d - r))(d - (d - r)) \). So if \(C^r_d \neq \emptyset \), then

\[
\dim C^r_d \geq d - r(g - d + r) = g - (r + 1)(g - d + 1) = \rho(g, d, r) + r.
\]

where \(\rho(g, d, r) = g - (r + 1)(g - d + 1) \) is the Brill-Noether number for line bundles. (Ref [ACGH] p215).

It was conjectured by Brill-Noether and Proved by Griffiths-Harris [GH] that for generic \(C, C^r_d \) do have the expected dimension \(\rho(g, d, r) + r \).

On the other hand, by study the tangent map of \(BN : C_D \to M(m, n), D \mapsto W_D \), Petri got that the variety \(C^r_d \) is smooth and has the "expected dimension" \(\rho(g, d, r) + r \) at \(D \in C^r_d - C^r_d \) if and only if the cup product homomorphism

\[
\mu : H^0(C, [D]) \otimes H^0(C, K[-D]) \mapsto H^0(C, K)
\]

is injective, where, \(K \) is the canonical line bundle of \(C \) (Ref [ACGH] p163).

The map \(\mu \) is called the Petri map. Again, it was proved by Gieseker[G] that for generic \(C \), the cup product homomorphism \(\mu \) is indeed injective. This gives another prove of the result of Griffiths-Harris.

In this paper, we are trying to generalize those ideals to the study of rank two vector bundles.

First we will define a parameter space \(H_d \) for all base point free rank two vector bundles of degree \(d \) which generated by its sections (we called such vector bundles the effective vector bundles). \(H_d \) is a \(d \)-dimensional holomorphic vector bundle on \(C_d \), so it is a \(2d \)-dimensional complex manifold.
For each $E \in H_d$, we construct a $2g \times d$ matrix W_E for E which we call it the Brill-Noether matrix of E, it shares the same properties for E as the Brill-Noether matrix W_D for line bundle $[D]$. In particular, we have

$$\dim H^0(C, E) = d - \text{Rank}(W_E) + 2.$$

From this, the Brill-Noether variety of rank two vector bundles

$$C^r_{2,d} = \{ E \in H_d \mid \dim H^0(C, E) \geq r + 1 \}$$

could be given by

$$C^r_{2,d} = \{ E \in H_d \mid \text{Rank}(W_E) \leq d - r + 1 \}.$$

This defines $C^r_{2,d}$ as a subvariety of H_d.

Also by using W_E, locally we get a holomorphic map

$$BN : H_d \hookrightarrow M(2d, g); \ BN(E) = W_E,$$

so $C^r_{2,d} = BN^{-1}(M_{d-r+1})$, and from the theory of determinant variety, we get that if $C^r_{2,d} \neq \emptyset$ then

$$\text{codim} C^r_{2,d} \leq (2g - (d - r + 1))(d - (d - r + 1))$$

so if $C^r_{2,d} \neq \emptyset$, then

$$\dim C^r_{2,d} \geq 2d - (2g - (d - r + 1))(d - (d - r + 1)) = 2d - (r + 1)(2g - 1) - d + r + 1 =$$

$$2d - (r + 1)(2g - 1) - d + r + 1 + 2(2g - 1) - d + r + 1 =$$

$$4(g - 1) + 1 - (r + 1)(2g - 1) - d + r + 1 + 2r + 1 = \rho_2(g, d, r) + 2r + 1$$

here $\rho_2(g, d, r) = 4(g - 1) + 1 - (r + 1)(2g - 1) - d + r + 1$ is the Brill-Noether number for rank two vector bundles.

Also, by studying the tangent map of $BN : H_d \hookrightarrow M(2g, d)$, we generalize the Petri map to rank two vector bundles. This is for each $E \in C^r_{2,d}$, we define a cup product homomorphism

$$P : H^0(C, K(-E)) \otimes \text{Im}\{ H^0(C, E) \hookrightarrow H^0(C, [D]) \} \hookrightarrow H^0(C, K[D](-E)).$$

Here $[D] = E/I$ is the quotient bundle of E with respect to the trivial line bundle I. We call P the Petri map for rank two vector bundles, and we show that $C^r_{2,d}$ has the "expected dimension" $\rho_2(g, d, r) + 2r + 1$ if and only if the Petri map P is injective.

2. The parameter space H_d.

Definition 1. A point $p \in C$ is called a base point of vector bundle E if $s(p) = 0$ for all $s \in H^0(C, E)$. E is said to be base point free if E don't have base point.

Definition 2 [A]. A rank two vector bundle E is said to be generated by its sections, if E has a splitting

$$0 \hookrightarrow L_1 \hookrightarrow E \hookrightarrow L_2 \hookrightarrow 0$$

such that both $H^0(C, L_1)$ and $\text{Im}\{ H^0(C, E) \hookrightarrow H^0(C, L_2) \}$ are not zero. Where L_1 is a line sub-bundle of E, and $L_2 = E/L_1.$
The Brill-Noether theory for rank two vector bundles is to study those bundles \(E \) with both \(H^0(C, E) \) and \(H^1(C, E) \) are non-zero. \(E \) is then called special rank two vector bundle. If \(E \) has a base point \(p \), then \(E \otimes [-p] \) is also special and we have \(\dim H^0(C, E \otimes [-p]) = \dim H^0(C, E) \), \(\dim H^1(C, E \otimes [-p]) = \dim H^1(C, E) + 2 \) and \(\deg(E \otimes [-p]) = \deg(E) - 2 \). We can reduce the degree of \(E \). If \(E \) is not generated by its sections, since \(H^0(C, E) \neq 0 \), let \(s \in H^0(C, E) \) with \(s \neq 0 \), let \(L_1 \) be the line sub-bundle of \(E \) which generated by \(s \), \(L_2 = E/L_1 \). Since \(E \) is not generated by its sections, so \(H^0(C, E) = H^0(C, L_1) \), the study of \(H^0(C, E) \) could be reduced to the study of \(H^0(C, L_1) \), that is reduced to the study of Brill-Noether for line bundles. So to study the Brill-Noether for rank two vector bundles, we can restrict ourself to the study of base point free vector bundles which generated by its sections.

Lemma 1. If \(E \) is a base point free rank two vector bundle which generated by its sections, then the trivial line bundle \(I \) is a line sub-bundle of \(E \).

Proof. This is a special case of Lemma 1.1 of [TE].

Let \(E \) be a base point free rank two vector bundles which generated by its sections, assume \(\deg(E) = d \), by our Lemma, \(I \) is a line sub-bundle of \(E \), so \(E \) has a splitting

\[
0 \rightarrow I \rightarrow E \rightarrow L \rightarrow 0
\]

where \(L = E/I \). Since \(E \) is generated by its sections, we have \(\text{Im}\{H^0(C, E) \rightarrow H^0(C, L)\} \neq 0 \). Choose \(s \in \text{Im}\{H^0(C, E) \rightarrow H^0(C, L)\} \) with \(s \neq 0 \), let \(D = \text{div}(s) \), then \(D \geq 0 \), and \(L = [D] \). \(E \) is then an extension of \([D]\) by \(I \), it is determined by an element \(e \in H^1(C, [-D]) \).

Since \(s \in H^0(C, [D]) \) can be lift to a section of \(E \), we get in particular that \(s \cdot e = 0 \), and from sequence

\[
0 \rightarrow [D] \rightarrow \ast I \rightarrow I \mid_D \rightarrow 0 \quad (***)
\]

we get an exact sequence

\[
0 \rightarrow H^0(C, [D]) \rightarrow H^0(C, I) \rightarrow H^0(C, I \mid_D) \rightarrow H^1(C, [-D]) \rightarrow \cdots
\]

\(s \cdot e = 0 \) if and only if \(e \in \text{Im}\{H^0(C, I \mid_D) \rightarrow H^1(C, [-D])\} \). Let \(e \) be the image of some \(f \in H^0(C, I \mid_D) \), \(f \) is then determined uniquely up to a constant. So from \(E \) we get a triple \(\{I, D, f\} \).

Conversely, if we have a triple \(\{I, D, f\} \), where \(D \) is an effective divisor of degree \(d \), and \(f \in H^0(C, I \mid_D) \), then let \(e \in H^1(C, [-D]) \) be the image of \(f \) in the map \(H^0(C, I \mid_D) \rightarrow H^1(C, [-D]) \) which induced from sequence \((***)\), let \(E \) be the extension of \([D]\) by \(I \) which determined by \(e \), then \(E \) has a splitting \(0 \rightarrow I \rightarrow E \rightarrow [D] \rightarrow 0 \), and \(s \in \text{Im}\{H^0(C, E) \rightarrow H^0(C, [D])\} \), where \(s \) is the canonical section of \(D \) \((s \in H^0(C, [D]) \), with \(\text{div}(s) = D \) \). We get a base point free rank two vector bundle \(E \) of degree \(d \) which generated by its sections.

So to give a base point free rank two vector bundle of degree \(d \) which generated by its sections will be the same as to give a triple \(\{I, D, f\} \), here \(D \subseteq C_d \) and \(f \in H^0(C, [D] \mid_D) \), or the same the set of all base point free rank two vector bundle of degree \(d \) which generated by its sections could be represented by the set of all triples \(\{I, D, f\} \). We will denote this as \(E = \{I, D, f\} \).

Now let \(H_d \) be the vector bundle on \(C_d \) which for each \(D \in C_d \), \(H_d \mid_D = H^0(C, I \mid_D) \), by using local coordinate, it is easy to see that \(H_d \) is a holomorphic vector bundle of dimension \(d \) on \(C_d \).

Each point of \(H_d \) could be represented as a triple \(E = \{I, D, f\} \), and each triple \(E = \{I, D, f\} \) could be represented as a point in \(H_d \), so \(H_d \) could be considered as a parameter space for the set of all base point free rank two vector bundles of degree \(d \) which generated by its sections.
3. Brill-Neother matrix for $E = \{I, D, f\}$. Let L be a line bundle, $D = n_1p_1 + \cdots + n_kp_k \geq 0$ be a given effective divisor of degree d. For $i = 1, \ldots, k$, let z_i be a local coordinate at p_i with $z_i(p_i) = 0$. Then each $f \in H^0(C, L | D)$ could be represented as a set of polynomials $f = \{f_i(z_i)\}_{i=1}^k$, where $f_i(z_i) = a_0^i z_i + a_1^i z_i^2 + \cdots + a_{n_i-1}^i z_i^{n_i-1}$ is a polynomial of z_i of degree less than n_i. So f could also be denoted as a d-dimensional vector $f = (a_0^1, a_1^1, \ldots, a_{n_1-1}^1; a_0^2, a_1^2, \ldots, a_{n_2-1}^2; \cdots)$. This gives $H^0(C, L | D) \cong \mathbb{C}^d$, where $d = \text{deg}(d)$.

Definition 3. Let L_1, L_2 be two line bundles, $D = n_1p_1 + \cdots + n_kp_k \geq 0$ be a given effective divisor. For $f = \{f_i(z_i)\}_{i=1}^k \in H^0(C, L_1 | D)$ and $g = \{g_i(z_i)\}_{i=1}^k \in H^0(C, L_2 | D)$, we define $f \ast g \in H^0(C, L_1 \otimes L_2 | D)$ to be

$$f \ast g = \{f_i(z_i)g_i(z_i)(\text{mod}(z_i^{n_i}))\}_{i=1}^k.$$

Lemma 2. $f \ast g = g \ast f$, and $(f \ast g) \ast h = f \ast (g \ast h)$.

Proof. Trivial.

Lemma 3. For $E = \{I, D, f\}$, a section $s \in H^0(C, [D])$ could be lift to be a section of $H^0(C, E)$ (which means $s \in \text{Im} \{H^0(C, E) \hookrightarrow H^0(C, [D])\}$), if and only if

$$s |_{D} \ast f \in \text{Im} \{H^0(C, [D]) \hookrightarrow H^0(C, [D] | D)\}.$$

Proof. See [T].

Now let (w_1, \cdots, w_g) be a linear basis of $H^0(C, K)$ of the space of all holomorphic forms on C. then for effective divisor D, the Brill-Noether matrix W_D for D could be defined by

$$W_D = \begin{bmatrix} w_1 | D \\ w_2 | D \\ \vdots \\ w_g | D \end{bmatrix}.$$

An element $t \in H^0(C, [D] | D)$ is in the image of map $H^0(C, [D]) \hookrightarrow H^0(C, [D] | D)$, if and only if

$$W_D \ast t = \begin{bmatrix} w_1 | D \ast t \\ w_2 | D \ast t \\ \vdots \\ w_g | D \ast t \end{bmatrix} = 0.$$

That is $\text{Im} \{H^0(C, [D]) \hookrightarrow H^0(C, [D] | D)\} = \text{Ker} \{W_D\}$.

Now for $E = \{I, D, f\}$, we define its Brill-Noether matrix W_E to be

$$W_E = \begin{bmatrix} w_1 | D \\ w_2 | D \\ \vdots \\ w_g | D \\ w_1 | D \ast f \\ w_2 | D \ast f \\ \vdots \\ w_g | D \ast f \end{bmatrix} = \begin{bmatrix} W_D \\ W_D \ast f \end{bmatrix}.$$

Theorem 1. $\text{Ker} \{W_E\} = \{v \in \mathbb{C}^d | W_E \cdot v = 0\} \cong \text{Im} \{H^0(C, E) \hookrightarrow H^0(C, [D]) \hookrightarrow H^0(C, [D] | D)\}.$
Proof. By $H^0(C, [D]) \cong C^d$, each $v \in C^d$ could be identified to an element $v \in H^0(C, [D]) |_D$, let W_D be the Brill-Noether matrix for D, then $W_D \cdot v = W_D * v$, and $(W_D * f) * v = W_D * (f * v)$. So $W_D \cdot v = 0$ if and only if $W_D * v = 0$ and $W_D * (f * v) = 0$. From $W_D * v = 0$, we get that $v \in Im \{H^0(C, [D]) \rightarrow H^0(C, [D])|_D\}$. Let it be the image of some $s \in H^0(C, [D])$, this is $v = s |_D$. Then from $(W_D * f) * v = 0$, we get $(W_D * f) * s |_D = W_D * (f * s |_D) = 0$. That means $f * s |_D \in Im \{H^0(C, [D]) \rightarrow H^0(C, [D])|_D\}$. By our Lemma 3, s is then can be lift to a section of E.

Conversely, if $v \in Im \{H^0(C, [D]) \rightarrow H^0(C, [D])|_D\}$, let it be the image of some $s \in H^0(C, [D])$, so $W_D \cdot v = 0$, and since s can be lift to a section of E, by our Lemma 3, $f * v \in Im \{H^0(C, [D]) \rightarrow H^0(C, [D])|_D\}$, so $W_D * f * v = 0$, we get $W_E \cdot v = 0$. This completes the proof.

Now from the exact sequence

$$0 \rightarrow I \rightarrow E \rightarrow [D] \rightarrow 0$$

we get exact sequence

$$0 \rightarrow H^0(C, I) \rightarrow H^0(C, E) \rightarrow H^0(C, [D]) \rightarrow H^1(C, I) \rightarrow \cdots.$$

Since $\dim H^0(C, I) = 1$, so

$$\dim H^0(C, E) = \dim Im \{H^0(C, E) \rightarrow H^0(C, [D])\} + 1 =$$

$$\dim Im \{H^0(C, E) \rightarrow H^0(C, [D]) \rightarrow H^0(C, [D])|_D\} + 2 =$$

$$\dim \ker (W_E) + 2 = d - \text{rank}(W_E) + 2.$$

That is

Theorem 2. Let $E = \{I, D, F\}$ and W_E be its Brill-Noether matrix, then we have $\ker (W_E) \cong Im \{H^0(C, E) \rightarrow H^0(C, [D]) \rightarrow H^0(C, [D])|_D\}$, and in particular $\dim H^0(C, E) = d - \text{rank}(W_E) + 2$.

Now we define the Brill-Noether variety $C^r_{2, d}$ for rank two vector bundles to be

$$C^r_{2, d} = \{E \in H_d \mid \dim H^0(C, E) \geq r + 1\}.$$

By Theorem 2, $C^r_{2, d}$ could also be given by

$$C^r_{2, d} = \{E \in H_d \mid \text{rank}(W_E) \leq d - r + 1\}.$$

This gives $C^r_{2, d}$ as a subvariety of H_d which $C^r_{2, d}$ is defined locally by the simultaneously vanishing of all $(d - r + 2) \times (d - r + 2)$ minors of W_E.

By using the Brill-Noether matrix W_E, locally, we get a holomorphic map $BN : H_d \rightarrow M(2g, d)$ with $BN(E) = W_E$ for each $E \in H_d$, where $M(2g, d)$ is the variety of all $2g \times d$ complex matrices. Let

$$M_{d-r+1} = \{E \in M(2g, d) \mid \text{rank}(E) \leq d - r + 1\}.$$

Then M_{d-r+1} is a subvariety of $M(2g, d)$, and $\text{codim}(M_{d-r+1}) = (2g - (d - r + 1)) \times (d - (d - r + 1))$. By definition, we have $C^r_{2, d} = BN^{-1}(M_{d-r+1})$. So from the Theory of determinant variety, we get that if $C^r_{2, d} \neq \emptyset$, then

$$\text{codim} C^r_{2, d} \leq (2g - (d - r + 1)) \times (d - (d - r + 1)).$$

This is

$$\dim C^r_{2, d} \geq 2d - (2g - (d - r + 1)) \times (d - (d - r + 1)) =$$
Here \(\rho_2(g, d, r) = 4(g - 1) + 1 - (r + 1)(2(g - 1) - d + r + 1) \) is the Brill-Noether number for rank two vector bundles. Same as the case of line bundles, we get that the expected dimension of \(C_{2,d} \) is \(\rho_2(g, d, r) + 2r + 1 \), this is

Theorem 3. If \(C_{2,d} \neq \emptyset \), then each component of \(C_{2,d} \) will have dimension at least \(\rho_2(g, d, r) + 2r + 1 \).

4. The Petri map. Since \(C_d = \text{BN}^{-1}(M_d-r+1) \), to get the dimension of \(C_d \), analogous to the case of line bundles, we should consider the tangent map

\[\text{BN}^*: T_E \to T_{\text{BN}(E)} \]

for each \(E = \{I, f, D\} \in H_d \). Here \(T_E \) and \(T_{\text{BN}(E)} \) are the tangent space of \(E \) and \(\text{BN}(E) \) in \(H_d \) and \(M(2g, d) \).

Now let \(E = \{I, D, f\} \), then

\[\text{BN}(E) = W_E = \begin{bmatrix} W_D \\ W_D * f \end{bmatrix} \]

Since for each \(D \in C_d \), the tangent space of \(C_d \) at \(D \) is \(T_D = H^0(C, [D] \mid D) \) (Ref [ACGH] P160), so by definition we get that the tangent space of \(H_d \) at \(E \) is \(T_E = H^0(C, [D] \mid D) \oplus H^0(C, I \mid D) \).

Now let \(t = (-v, u) \in T_E = H^0(C, [D] \mid D) \oplus H^0(C, I \mid D) \), then by direct calculation, we have

\[\text{BN}^*(t) = \begin{bmatrix} W_D * (-v) \\ W_D * (-v) * f + W_D * u \end{bmatrix} \]

Where \(W_D \) means the differential of \(W_D \) with respect to the local coordinates, and \(f = I \).

To get the dimension of \(C_{2,d} \), we need to get the dimension of the space \(V = \{t \in T_E \mid \text{BN}^*(t) \in T_{\text{BN}(E)}(M_d-r+1)\} \). But from the theory of determinant variety (Ref [ACGH] p69), we know that \(\text{BN}^*(t) \in T_{\text{BN}(E)}(M_d-r+1) \) if and only if \(\text{Ker}(W_E) \cdot \text{BN}^*(t) \subset \text{Im}(W_E) = C^d \cdot W_E \). Here \(\text{Ker}(W_E) = \{(b, e) = (b_1, \ldots, b_g; e_1, \ldots, e_g) \in C^d \mid (b, e)W_E = 0\} \).

Now let \((b, e) = (b_1, \ldots, b_g; e_1, \ldots, e_g) \in \text{Ker}(W_E) \), this is \((b, e) \cdot W_E = b \cdot W_D + e \cdot W_D * f = 0 \). Choose an open cover \(\{U_a\}_{a=1}^k \) of \(C \), let \(s = \{s_\alpha\}_{\alpha=1}^k \in H^0(C, [D]) \) be the canonical section of \([D] \), this is \(s \in H^0(C, [D]) \) and \(\text{div}(s) = D \). For the linear basis \(\{w_1, \ldots, w_g\} \) of the holomorphic forms, let \(w_i \) be given with respect to the open cover by \(w_i = \{w_{i1}\} \), let \(bw = b_1w_1 + \cdots + b_gw_g = \{b_1w_{i1} + \cdots + b_gw_{i1}\} = \{bw_{i1}\} \in H^0(C, K) \), and \(ew = e_1w_1 + \cdots + e_gw_g = \{e_1w_{i1} + \cdots + e_gw_{i1}\} = \{ew_{i1}\} \in H^0(C, K) \), let \(f = \{f_\alpha\} \) be a given representation for \(f \in H^0(C, I \mid D) \), where \(f_\alpha \) is a holomorphic function on \(U_\alpha \).

Lemma 4. \((b, e) \in \text{Ker}(W_E) \) if and only if

\[F = \{F_\alpha = \begin{bmatrix} e \cdot w_\alpha \\ -(b \cdot w_\alpha + e \cdot w_\alpha * f_\alpha)/s_\alpha \end{bmatrix} \} \in H^0(C, K(-E)). \]

Here \((-E) \) is the dual vector bundle of \(E \).

Proof. For later using and also for making our notations easy to understand, we will give a proof of this Lemma in detail, and we will also use the proof to give a proof of Riemann-Roch Theorem for rank two vector bundles.

Let \(\{U_\alpha\}_{\alpha=1}^k \) be the open cover of \(C \). Then on \(U_\alpha \cap U_\beta \), the transition matrix of \(E = \{I, f, D\} \) can be given by

\[E_{\alpha\beta} = \begin{bmatrix} 1 & (f_\alpha - f_\beta)/s_\beta \\ 0 & s_\alpha/s_\beta \end{bmatrix} \]
where $e = \{e_{\alpha\beta} = (f_{\alpha} - f_{\beta})/s_{\beta}\}$ is a representation of $e \in H^1(C, [-D])$.

From $E_{\alpha\beta}$, and by the definition of dual vector bundle, the transition matrix of $K(-E)$ can be given on $U_{\alpha} \cap U_{\beta}$ by

$$(K(-E))_{\alpha\beta} = \begin{bmatrix} k_{\alpha\beta} & 0 \\ -k_{\alpha\beta}(f_{\alpha} - f_{\beta})/s_{\beta} & k_{\alpha\beta}s_{\beta}/s_{\alpha} \end{bmatrix}$$

where $\{k_{\alpha\beta}\}$ is the transition function of the canonical line bundle K.

By definition, $K(-E)$ is an extension of K by $K[-D]$, which determined also by $f \in H^0(C, I_D)$.

Now let $(b, e) \in Ker(W_E)$, that is $b \cdot W_D + e \cdot W_D \ast f = 0$, let $ew = e_1w_1 + \cdots + e_gw_g \in H^0(C, K)$, $bw = b_1w_1 + \cdots + b_gw_g \in H^0(C, K)$, then $b \cdot W_D + e \cdot W_D \ast f = 0$ means $ew \mid_D \ast f = -bw \mid_D$, by our Lemma 3 (also Ref [T]), that means, ew can be lift to a section of $K(-E)$ and

$$F = \{F_{\alpha} = [e \cdot w_{\alpha} - (b \cdot w_{\alpha} + e \cdot w_{\alpha} \ast f_{\alpha})/s_{\alpha}] \} \in H^0(C, K(-E)).$$

is one of the lift. This can also be proved by direct computation that $F_{\alpha} = K(-E)_{\alpha\beta} \cdot F_{\beta}$.

Conversely, let

$$F = \{F_{\alpha} = [e \cdot w_{\alpha} / v_{\alpha}] \} \in H^0(C, K(-E)).$$

then $ew = e_1w_1 + \cdots + e_gw_g \in \{ew_{\alpha} = e_1w_1 \mid v_{\alpha} + \cdots + e_gw_g \mid v_{\alpha}\}$, is a section of K, here $e = (e_1, \cdots, e_g)$, and F is a lift of ew. $ew \in H^0(C, K)$ can be lift to a section of $H^0(C, K(-E))$, by our Lemma 3, there exists an $bw = b_1w_1 + \cdots + b_gw_g \in H^0(C, K)$, such that $ew \mid_D \ast f = -bw \mid_D$, or the same, $ew \mid_D \ast f + bw \mid_D = 0$, that is $(b, e) \cdot W_E = 0$, so $(b, e) \in Ker(W_E)$.

Now if $ew = 0$, that is $e = 0$, then $F = \{F_{\alpha} = [0 \mid v_{\alpha}] \} \in H^0(C, K(-E))$ means $v = \{v_{\alpha}\} \in H^0(C, K \otimes [-D])$, but we know that $H^0(C, K \otimes [-D]) = \{w \in H^0(C, K) \mid w \mid_D = 0\}$. Assume $v = b_1w_1 + \cdots + b_gw_g = bw$, here $b = (b_1, \cdots, b_g)$, then $bw \mid_D = 0$ means $bW_D = 0$, so $(b, 0)W_E = 0$, this is $(b, 0) \in Ker(W_E)$. That completes the proof.

From the proof, we get

COROLLARY 1. $H^0(C, K(-E)) \cong Ker(W_E)$, and in particular

$$\dim H^0(C, K(-E)) = 2g - \text{rank}(W_E).$$

But from the definition of W_E, we know that

$$\dim H^0(C, E) = d - \text{rank}(W_E) + 2.$$
A MODEL OF BN THEORY FOR RANK TWO VECTOR BUNDLES

547

\[(b,e)BN^*(t) = (b,e) \left[W_D * (-v) \right. \]

\[\left. W_D * (-v) * f + W_D * u \right] \subseteq \text{Im}(W_E).\]

for all \((b,e) \in \text{Ker}(W_E)\). For this, we will first define a short exact sequence of sheaves.

Let \(V\) be a vector bundle on \(C\), we will use \(V\) itself to denote the sheaf of holomorphic sections of \(V\). For \(E = \{I, f, D\}\), let \(\{U_\alpha\}_{\alpha=1}^k\) be the given open cover of \(C\), and \(s = \{s_\alpha\}_{\alpha=1}^k \in H^0(C, [D])\) be the canonical section of \([D]\), this is \(s \in H^0(C, [D])\) and \(\text{div}(s) = D\).

Let \(f = \{f_\alpha\}\) be a given representation for \(f \in H^0(C, I_{|D})\), where \(f_\alpha\) is a holomorphic function on \(U_\alpha\). Then by using the transition matrix \(E_{\alpha\beta}\) given in the proof of Lemma 4, one can check directly that

\[F = \{F_\alpha = \begin{bmatrix} f_\alpha \\ s_\alpha \end{bmatrix} \} \in H^0(C, E).\]

is the lift of the canonical section \(s\). Now let \(P_1 : K(-E) \twoheadrightarrow K\) be the projective map which induced from sequence \(0 \twoheadrightarrow K[-D] \twoheadrightarrow K \otimes [-E] \twoheadrightarrow K \twoheadrightarrow 0\), then from \(F\) and \(P_1\), we define a map of sheaves \(K(-E) \twoheadrightarrow K \oplus K\) by

\[x \mapsto (P_1(x), -(x, F))\]

here \(x \in K(-E)\), and \((\ , \) : (K(-E) \otimes E) \twoheadrightarrow K\) is the duality map. We also define a map of sheaves \(K \oplus K \twoheadrightarrow K_{|D}\) to be \((s, t) \mapsto (s_{|D} * f + t_{|D})\) for \((s, t) \in K \oplus K\).

Locally, let \(\{U_\alpha\}\) be the given open cover of \(C\), if \(G \subseteq K(-E) \cap U_\alpha\), then \(K(-E) \twoheadrightarrow K\) is defined by \(\begin{bmatrix} a \\ b \end{bmatrix} \mapsto (a, -a f_\alpha - b s_\alpha)\), and the map \(K \oplus K \twoheadrightarrow K_{|D}\) could be given by \((c, d) \mapsto (c_{|D} * f + d_{|D})\).

Lemma 5. The sequence \(0 \twoheadrightarrow K(-E) \twoheadrightarrow K \oplus K \twoheadrightarrow K_{|D} \twoheadrightarrow 0\) is a short exact sequence of sheaves on \(C\).

Proof. We will use the local representation to give the proof.

If \(\begin{bmatrix} a \\ b \end{bmatrix} \in K(-E),\) and \(\begin{bmatrix} a \\ b \end{bmatrix} \mapsto (a, -(a f - b s)) = 0\), then \(a = 0\), and since \(s \neq 0\) so \(bs = 0\) means \(b = 0\), the map \(K(-E) \twoheadrightarrow K \oplus K\) is injective.

If \((c, d) \in K \oplus K\), and \((c, d) \mapsto (c_{|D} * f + d_{|D}) = 0\), we then get \(c_{|D} * f = -d_{|D}\), by our Lemma 3, \(c\) can be lift locally to section of \(K(-E)\) and same as Lemma 4, \(\begin{bmatrix} c \\ -(c f + d)/s \end{bmatrix} \in K(-E)\) is one of the lift. But \(\begin{bmatrix} c \\ -(c f + d)/s \end{bmatrix} \mapsto (c, -c f + (c f + d)) = (c, d)\).

This shows that the sequence is exact at \(K \oplus K\).

Also it is easy to see that the map \(K \oplus K \twoheadrightarrow K_{|D}\) is an onto map. This completes the proof.

From this short exact sequence, we get a long exact sequence

\[0 \twoheadrightarrow \text{H}^0(C, K(-E)) \twoheadrightarrow \text{H}^0(C, K \oplus K) \twoheadrightarrow \text{H}^0(C, K_{|D}) \twoheadrightarrow \text{H}^1(C, K(-E)) \twoheadrightarrow \cdots\]

\(a \in \text{H}^0(C, K_{|D})\) is in the image of map \(\text{H}^0(C, K \oplus K) = \text{H}^0(C, K) \oplus \text{H}^0(C, K) \twoheadrightarrow \text{H}^0(C, K_{|D})\) if and only if \(\delta(a) = 0\), here \(\delta : \text{H}^0(C, K_{|D}) \twoheadrightarrow \text{H}^1(C, K(-E))\) is the co-boundary map. But from Serra duality, we know that for \(\delta(a) \in \text{H}^1(C, K(-E))\), \(\delta(a) = 0\) if and only if for any \(f \in \text{H}^0(C, E)\), we have \(\langle \delta(a), f \rangle = 0\). Here \((\ , \) : \text{H}^1(C, K(-E)) \otimes \text{H}^0(C, E) \twoheadrightarrow \text{H}^1(C, K)\) is the duality map.

Now assume, for open cover \(\{U_\alpha\}\), \(a\) is given by \(a = \{a_\alpha\}\), where \(a_\alpha \in \text{H}^0(U_\alpha, K_{|U_\alpha})\) and \(a_\alpha |_{D \cup U_\alpha} = a |_{D \cup U_\alpha}\). Then by direct calculation, we get \(\delta(a) \in \text{H}^1(C, K(-E))\), could be represented as

\(\delta(a) = \left\{ \begin{bmatrix} k_{\alpha\beta}(-a_\alpha + a_\beta)/s_\alpha \end{bmatrix} \right\} = \begin{bmatrix} 0 \\ \tilde{\delta}(a) \end{bmatrix}\),
where \(\delta : H^0(C, K \mid_D) \rightarrow H^1(C, K[-D]) \) is the co-boundary map from the following sequence

\[
0 \rightarrow H^0(C, K[-D]) \rightarrow^\ast H^0(C, K) \rightarrow H^0(C, K \mid_D) \rightarrow H^1(C, K[-D]) \rightarrow \cdots.
\]

So for any \(f = \begin{bmatrix} y_\alpha \\ x_\alpha \end{bmatrix} \in H^0(C, E) \), the dual map could be given by

\[
(\delta(a), f) = \left(\begin{bmatrix} 0 \\ (-a_\alpha + a_\beta)/s_\alpha \end{bmatrix}, \begin{bmatrix} y_\alpha \\ x_\alpha \end{bmatrix} \right)
= \left((-a_\alpha + a_\beta)/s_\alpha \cdot x_\alpha \right) = (\tilde{\delta}(a), \{x_\alpha\}).
\]

but \(\delta(a) = 0 \) if and only if \((\delta(a), f) = 0 \) for all \(f \in H^0(C, E) \), from what we get above, this is same that \(\delta(a) = 0 \) if and only if for any \(x = \{x_\alpha\} \in \text{Im}(H^0(C, E) \rightarrow H^0(C, [D])) \), \((\tilde{\delta}(a), x) = 0 \). We get the following Lemma.

Lemma 6. For \(a \in H^0(C, K \mid_D) \), \(\delta(a) \in H^1(C, K(-E)) \), with \(\delta(a) = 0 \) if and only if for any \(x = \{x_\alpha\} \in \text{Im}(H^0(C, E) \rightarrow H^0(C, [D])) \), \((\delta(a), x) = 0 \).

Now go back to the tangent map of \(BN : H_d \mapsto M(2g, d) \).

For \(E = \{I, f, D\} \in C_{2, d}^r \), we know

\[
BN(E) = WE = \begin{bmatrix} WD \\ WD \ast f \end{bmatrix}.
\]

if \(t = (u, -v) \in T_E = H^0(C, [D] \mid_D) \oplus H^0(C, I \mid_D) \), then

\[
BN^*(t) = \begin{bmatrix} W_D \ast (-v) \\ W_D \ast (-v) \ast f + W_D \ast u \end{bmatrix}.
\]

But we know that \(BN^*(t) \in T_{BN(E)}(M_{d-r+1}) \) if and only if \(Ker(W_E) \cdot BN^*(t) \in \text{Im}(W_E) \). Since \(\text{Im}(W_E) = C^{2g} \cdot W_E = \{(c, d) \begin{bmatrix} W_D \\ W_D \ast f \end{bmatrix} | (c, d) \in C^{2g}\} \). If we identify \(C^{2g} = C^g \oplus C^g \cong H^0(C, K) \oplus H^0(C, C) \), then we get

\[
\text{Im}(W_E) = \text{Im}(H^0(C, K) \oplus H^0(C, K) \mapsto H^0(C, K \mid_D)).
\]

Where the map \(H^0(C, K) \oplus H^0(C, K) \mapsto H^0(C, K \mid_D) \) is induced from above exact sequence.

From this we get \(BN^*(t) \in T_{BN(E)}(M_{d-r+1}) \) if and only if for any \((b, e) \in Ker(W_E) \), \((b, e)BN^*(t) \in \text{Im}(W_E) \). This is \(\delta((b, e)BN^*(t)) = 0 \). By Lemma 6, we get

Lemma 7. let \(t \in T_E \), then \(BN^*(t) \in T_{BN(E)}(M_{d-r+1}) \) if and only if for any \((b, e) \in Ker(W_E) \), we have \((\tilde{\delta}(b, e)BN^*(t), x) = 0 \) for all \(x \in \text{Im}(H^0(C, E) \mapsto H^0(C, [D])) \).

But by direct calculation, we get

\[
(b, e)BN^*(t) = (b, e) \begin{bmatrix} \hat{W}_D \ast (-u) \\ \hat{W}_D \ast (-u) \ast f + \hat{W}_D \ast u \end{bmatrix} = b\hat{W}_D \ast u + e\hat{W}_D \ast u \ast f + eW_D \ast v
= \begin{bmatrix} eW_D \\ -(b\hat{W}_D + eW_D \ast f) \end{bmatrix} \ast \begin{bmatrix} u \\ -v \end{bmatrix}.
\]

Notice that by using local coordinate, it is easy to see that

\[
\begin{bmatrix} eW_D \\ -(b\hat{W}_D + eW_D \ast f) \end{bmatrix} = \begin{bmatrix} eW_D \\ -(b\hat{W}_D + eW_D \ast f)/s \end{bmatrix}.
\]

Since \((b, e) \in Ker(W_E) \), by Lemma 4, we get

\[
\begin{bmatrix} eW_D \\ -(b\hat{W}_D + eW_D \ast f)/s \end{bmatrix} \in \text{Im}(H^0(C, K(-E)) \mapsto H^0(C, K(-E) \mid_D)).
\]
let it be the image of some \(F \in H^0(C, K(-E)) \). Now notice that \(E |_D = I |_D \oplus [D] |_D = T_E \) and \(K(-E) |_D = K |_D \oplus [D] |_D = (I |_D \oplus [D] |_D)^* = T_E^* \) then follow the proof of Lemma 1.5 p162 [ACGH] step by step, for \(x \in \text{Im}\{H^0(C, E) \hookrightarrow H^0(C, [D])\} \), we have

\[
\delta ((b, e)BN^*(t)), x) = (\delta (F * t), x) = (\delta_1(t), (F \otimes x)) = (t, (F \otimes x) |_D)
\]

Where \(\delta_1 : (I |_D \oplus [D] |_D) \rightarrow H^1(C, E[-D]) \) is the co-boundary map follow from sequence \(0 \rightarrow E[-D] \rightarrow E \rightarrow E |_D \rightarrow 0 \). So \(t \in V = \{ t \in T_E \mid BN^*(t) \in T_{BN(E)}(M_{d-\tau +1}) \} \) if and only if for any \(F \in H^0(C, K(-E)) \) and \(x \in \text{Im}\{H^0(C, E) \hookrightarrow H^0(C, [D])\} \), we have \(\langle t, (F \otimes x) |_D \rangle = 0 \).

\[\text{LEMMA 8.} \quad t \in V = \{ t \in T_E \mid BN^*(t) \in T_{BN(E)}(M_{d-\tau +1}) \} \text{ if and only if} \]

\[t \in \{ \text{Im}\{H^0(C, K(-E)) \otimes \text{Im}\{H^0(C, E) \hookrightarrow H^0(C, [D])\}\} \]

\[\hookrightarrow H^0(C, K(-E)[D]) \hookrightarrow H^0(C, K(-E)[D] |_D) \} \]

\[\rightarrow H^0(C, K(-E)[D]) \hookrightarrow H^0(C, K(-E)[D] |_D) \} \]

Now assume \(E \in C_{2,d} - C_{2,d}^{r+1} \). From what we get above, the expected dimension of \(C_{2,d}^r \) at \(E \) could be given by

\[
\text{dim}(C_{2,d}^r) = \text{dim}(V) = 2d - \text{dim}\{\text{Im}\{H^0(C, K(-E)) \otimes \text{Im}\{H^0(C, E) \hookrightarrow H^0(C, [D])\}\} \}
\]

\[\rightarrow H^0(C, K(-E)[D]) \hookrightarrow H^0(C, K(-E)[D] |_D) \} \]

\[= 2d - (2(g - 1) - d + r + 1)r + 2(g - 1) - d + r + 1 + \text{dim}W. \]

where \((2(g - 1) - d + r + 1)r = \text{dim}\{H^0(C, K(-E)) \otimes \text{Im}\{H^0(C, E) \hookrightarrow H^0(C, [D])\}\} = \text{dim}H^0(C, K(-E)) \times \text{dim}\{H^0(C, E) \hookrightarrow H^0(C, [D])\} \}, \quad 2(g - 1) - d + r + 1 = \text{dim}\{H^0(C, K(-E)[D]) \hookrightarrow H^0(C, K(-E)[D] |_D) \}
\]

We then get

\[
\text{dim}(C_{2,d}^r) = 4(g - 1) + 1 - (r + 1)(2(g - 1) - d + r + 1) + 2r + 1 + \text{dim}W
\]

\[= \rho(2, d, r) + 2r + 1 + \text{dim}W. \]

\[\text{THEOREM 3.} \quad C_{2,d}^r \text{ has the expected dimension } \rho(2, d, r) + 2r + 1 \text{ at } E \in C_{2,d} - C_{2,d}^{r+1}, \text{ if and only if for all } E \in C_{2,d}^r, W = \{0\}. \]

This is the same that \(C_{2,d}^r \) has the expected dimension \(\rho(2, d, r) + 2r + 1 \), if and only if for all \(E \in C_{2,d}^r \), the map

\[
H^0(C, K(-E)) \otimes \text{Im}\{H^0(C, E) \hookrightarrow H^0(C, [D])\} \hookrightarrow H^0(C, K(-E)[D])
\]

is injective.

Compare with the case of line bundles, we then called the map

\[
H^0(C, K(-E)) \otimes \text{Im}\{H^0(C, E) \hookrightarrow H^0(C, [D])\} \hookrightarrow H^0(C, K(-E)[D])
\]

the Petri map for rank two vector bundles. We have

\[\text{THEOREM 4.} \quad C_{2,d}^r \text{ has the expected dimension } \rho(2, d, r) + 2r + 1, \text{ if and only if for all } E \in C_{2,d}^r, \text{ the Petri map is injective.} \]

This is a generalization of Lemma 1.6 of [ACGH] P163.
REFERENCES

