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Abstract 

We calculate the metric on the D-brane vacuum moduli space for 
backgrounds of the form (C?/r for cyclic groups F. In the simplest 
procedure — starting with a flat "seed" metric on the covering space 
— we find that the resulting D-brane metric is not Ricci-flat. We argue 
that this is likely to be true of the true 0-brane metric at weak string 
coupling. 

1    Introduction 

During the last year, developments in nonperturbative string theory have 
made it possible to probe the structure of space-time on sub-stringy scales. 
In the context of weakly coupled la string theory, this emerges from the 
dynamics of gauge theory, the world-volume theories of Dirichlet zero-branes, 
and geometrical concepts appear to remain sensible all the way down to the 
eleven-dimensional Planck scale lpii [1]. Short distance geometry is similar 
to the long distance geometry probed by fundamental strings, as one would 
expect if the two are simply limits of a single idea of 'geometry,' but with 
interesting differences. 

In a recent paper [2] the first steps towards understanding short distance 
Calabi-Yau geometry were taken.   Comparing with problems with higher 
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supersymmetry, the most salient difference is that the metric can depend 
on an arbitrary function, the Kahler potential. Thus the questions of what 
metric is seen by DO-branes and whether it is determined by a local equation 
of motion can be studied directly. 

In [2], a study was made of backgrounds of the form <C?/r for cyclic 
subgroups F £ SU(3), focusing on comparing the topological properties 
probed by DO-branes with those probed by fundamental strings. As has 
been known for some time, fundamental strings probe a rich phase struc- 
ture in Calabi-Yau backgrounds which typically includes regions which are 
most directly described in a non-geometrical abstract conformal field the- 
ory language. These non-geometrical phases emerge from the linear sigma 
model analysis of [3]. As pointed out in [4] and utilized in [5], if one al- 
lows for analytic continuation from geometrical regions and uses physically 
motivated parameters, even these non-geometrical phases appear to have 
geometrical content in terms of Calabi-Yau spaces in which part or even the 
whole manifold has been shrunk to string or sub-stringy scales. 

The newfound power of D-branes allows us to go beyond the indirect 
method of analytically continued fundamental string conclusions. In [2], it 
was found that, in a rather novel manner, the topological properties probed 
by DO-branes in such backgrounds appear to match the analytically contin- 
ued fundamental string results at short distances. 

In this note we go beyond the topological questions considered in [2] and 
take a first look at metric properties. Our approach, although calculationally 
intensive beyond the simplest of examples, is a straightforward extension of 
the techniques used in [2,6,7]. Namely, we begin with D-branes on C3, 
arranged in the regular representation of the group F. We then truncate to 
the F-invariant sector of this D-brane Lagrangian. The result is a gauged 
sigma model whose low energy configuration space will be interpreted as 
sub-stringy space-time. This prescription can be justified by world-sheet 
computation at weak string coupling [6], while its primary justification at 
strong string coupling is simplicity and the need for the theory to remain 
non-singular in the orbifold limit [8]. 

In the case of DO-branes and quantum mechanics, quantum effects are 
controlled by the dimensionless parameters gs /m?, where the ra; are the 
masses of the degrees of freedom being integrated out to derive the low energy 
effective theory. Here the massive degrees of freedom are strings stretched 
between image branes, whose mass can be estimated as m2 ~ |CI/a/2 [9]- 
Restoring all the a"s, the condition 5s/m? << 1 translates into |C| >> ^n, 
so for blowup larger than the eleven-dimensional Planck scale the effective 
theory can be derived by classical considerations. 

The classical moduli space is a Kahler quotient (the same proposed in 
[10]), which allows direct determination of the quotient space metric. As we 
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shall see, the explicit calculations are facilitated by methods discussed in [11]. 
The result depends on the original (or "seed") metric of the gauged sigma 
model, but even starting with a flat seed metric produces quite non-trivial 
quotient metrics. 

In the case of C2 /T for T lying in £77(2) considered in [6,7], the effec- 
tive theory has eight real supercharges, and the quotient construction is of 
hyperkdhler type [11]. This ensures that the resulting metric is Ricci-flat. 
In the Kahler quotients considered here, although the metric will be of the 
correct topological type (zero first Chern class), nothing ensures a similar 
Ricci-flatness condition. In fact, we shall find in the examples we study, that 
the resulting metric is not Ricci-flat. In the mathematical context, this was 
first pointed out by Sardo Infirri [10]. 

The result has different interpretations depending on whether we consider 
weak or strong string coupling. At weak coupling, we know that fundamental 
strings do not see a Ricci-flat metric, so it should not be surprising that 
D-branes do not see one either. 

In principle the DO-brane metric could be computed from world-sheet 
computation, in two ways. One could start with the Calabi-Yau sigma 
model, introduce general boundary conditions along the lines of [12], and 
derive the conditions for an RG fixed point. One would presumably obtain 
the Nambu-Born-Infeld action with an effective metric related to the Ricci- 
flat metric by a' corrections, a priori different from those of bulk renor- 
malization. Alternatively, one could compute the true seed metric of the 
gauged sigma model of [2] along the lines of [6], and then perform the quo- 
tient. In the orbifold limit, the seed metric is flat, and the analyticity of 
conformal perturbation theory implies that the true metric is an analytic 
function of the blow-up parameters. The expectation from both approaches 
is that, although the precise metric cannot be determined without additional 
world-sheet computation, there is no reason for it to be Ricci-flat. 

DO-branes are also the fundamental degrees of strongly coupled la theory, 
and a precise form of this statement is the M(atrix)-theory conjecture [13]. 
In the regime we study, their dynamics is governed by eleven-dimensional 
supergravity, leading inescapably to the conclusion that they move in a back- 
ground Ricci-flat metric. 

Now the original proposal of [13] asserts that M-theory is produced only 
by taking the large iV limit, and our result offers no contradiction to this 
statement. On the other hand, a more recent proposal of Susskind [14] 
asserts that the finite N theory also has an M-theory interpretation, as the 
theory with a compactified light-cone dimension. We see no reason why such 
compactification would modify the prediction of supergravity, in which case 
the model with a flat seed metric is in contradiction with this proposal. 

Now there is no a priori reason to take a flat seed metric in this context 
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and the simplest response to this result is to ask whether the model can be 
modified to produce a Ricci-flat metric. The simplest possibility would to be 
to define the model with a seed metric tuned to produce Ricci flatness after 
the quotient. Since the quotient metric has zero first Chern class and the 
seed metric has more parameters than the resulting Kahler potential, there 
is no obvious obstruction to doing this. However this leaves unanswered the 
question of what consistency condition forces this choice of seed metric. 

Although we leave this question for future work, we would like to point 
out here that a promising context for answering it is to consider the theory 
with more than one DO-brane. Unlike the case of a single DO-brane, now it 
is possible for massive strings to become light (when component DO-branes 
approach to distances d ^ /pii), and thus quantum effects can always become 
large. Thus we propose as an interesting goal for future work the construc- 
tion of actions which realize the axioms of [15] while remaining non-singular 
in the orbifold limit, presumably by deforming the seed metric in the N > 1 
version of the construction of [2]. 

2    D-branes on Orbifolds and Their Metrics 

In this section we briefly review our procedure for discussing D-branes on 
orbifolds of the form CP/F. For more details the reader should consult [2,6,7]. 

Our starting point is an Af = 4, d = 4 U(n) supersymmetric gauge theory 
where n = dim JFj, arising from D-brane 'compactification' on C3. We then 
specify an action of F on the fields of the covering theory, and truncate 
the Af = 4 Lagrangian to the fields transforming trivially under this action. 
The result is a gauged supersymmetric linear sigma model with a nontrivial 
superpotential. 

Specifically, we take F to act on the Chan-Paton degrees of freedom 
(which ultimately become the D-brane spatial coordinates) in the regular 
representation (other possibilities are discussed in [8] and [2]), and on the 
C3 coordinates Zl via Z% -* uaiZl with u = exp(27ri/n) and ai + a2 + a3 = 0 
(mod n). The latter condition ensures that F lies in SU(3>) and hence, from 
a four-dimensional perspective, we have J\f = 1 in the open string sector, 
and Af = 2 in the closed string sector. 

In [2] it was found to be convenient to think of the constraints arising from 
the superpotential as if they were D-term constraints in an auxiliary linear 
sigma model. The latter was shown to yield a vacuum phase structure which 
meshes well with that of the analytically continued fundamental string, at 
least as far as topological properties are concerned. 

Our present purpose is to understand metric properties. We will do 
so by utilizing our supersymmetric gauged sigma models (or "linear sigma 
models") to produce classical moduli space metrics of this quotient form [11]. 
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Specifically, we will determine the metric in two steps. First, we restrict the 
original flat metric to solutions of dW = 0 where W is the superpotential. 
Second, we restrict this metric to solutions of the .D-flatness conditions and 
quotient by the gauge action. This second step is a symplectic reduction or 
"Kahler quotient" as it is guaranteed to produce a Kahler metric. 

We note that if we were to take the superpotential in the first step to be 
the one determined by Af = 2, d = 4 supersymmetry and perform both steps, 
the resulting procedure is the hyperkahler quotient. On general grounds the 
hyperkahler quotient is guaranteed to produce a Ricci-flat metric. Phys- 
ically, this would be the relevant construction if we were considering too- 
dimensional orbifolds C2 /T. In the three-dimensional case of present interest, 
though, there is no guarantee that the Kahler quotient construction yields a 
Ricci-flat metric; indeed in the simplest example, a hypersurface with ci = 0 
in a P71 realized as the usual quotient of C1"1"1 by a U(l) action, it is not so. 
We emphasize that this is so in our case even though we take F to lie inside 
of SU(3). This ensures that we preserve the ci = 0 condition, but it does 
not ensure that the specific metric produced is Ricci-flat. We shall explicitly 
see this in what follows. 

3    Calculational Procedure 

The two step procedure for determining the D-brane metric outlined above 
can be carried out as follows. For the time being, we start with the flat 
Kahler potential on the covering space 

^/ = £N2' 
i 

where the coordinates Zi run over the subset of the original 3|r| chiral fields 
that survive the orbifold projection. 

The first step in the projection is simply to restrict to the submanifold 
by solving the conditions SW = 0. To carry out the second step, we use the 
complex reduction procedure of [11]. In physical terms, we write the action 
with the coupling to vector superfields Vi, and then integrate them out. The 
highest component of V becomes a Lagrange multiplier for the D-flatness 
condition. This action has a complexified gauge invariance which can then 
be fixed arbitrarily. 

Explicitly, we write the gauged Kahler potential 

K = J^exp^TO - £CaK , 
i a a 

where tf is the charge of Zi under the a'th [/(I), and Ca are the Fayet- 
Iliopoulos parameters. We will also let qa = exp Va in the following. 



M. R. DOUGLAS, B. K. GREENE 189 

To derive an explicit metric, we choose a gauge slice X, with local coor- 
dinates xl. The gauged Kahler potential on the slice is K = K^xt1}, {g*7}, 
{Ck})- We then determine the qi by solving the equations 

djKlx = 0, (3.1) 

and find the metric 

9^ ^d^dvKlx- 

In these and other expression, d^ and dj are with respect to x*1 and qi. We 
can also write this as 

9^ = dpdvK + d^djKdvqi + dydjKd^ + didjKd^O^q1. 

The partials d^q1 are determined by considering 

d 

which implies 

and 

dA*'0- 

d^diK = -didjKd^ 

d»qj = -(d^diK^djdiK)-1 , 

where the latter inverse is in the matrix sense. Using both of these equations 
we find 

g^^dpdvK-AtiB-yA, 

where A = (A^) = {did^K) and B = (By) = {didjB). 
This determines the metric explicitly given the ability to solve the equa- 

tions (3.1). In practice, except in the simplest of examples, this equation 
must be solved numerically. 

We will describe the results in two examples below. As our interest will 
be to determine if the D-brane metrics are Ricci-flat, we first, as a point 
of comparison, briefly review relevant work of Calabi on the construction of 
Ricci-flat metrics. 

4    Ricci Flat Metrics a la Calabi 

In [16], explicit constant curvature Kahler metrics are constructed on non- 
compact spaces. One starts with a constant curvature Kahler metric on M 
of complex dimension n — 1, and writes a metric ansatz on a line bundle £ 
over M for which the differential equation R^ = cg^ can be solved explicitly. 
If £ is the canonical line bundle, the resulting metric will be Ricci-flat. 
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Let zl be coordinates on M and Ko(z, z) the Kahler potential, satisfying 

detgl? = detdidjKo = e-lKo\(holomorphic)\2. 

Let w be a coordinate on the fiber. The metric ansatz on £ is then 

K = Ko + u(a{z,z)\w\2). (4.1) 

Since x = a\w\2 is a Hermitian form on the fiber, it has an associated con- 
nection L = d log a and curvature S = dL. 

Metrics derived from the ansatz (4.1) can be expressed simply in terms 
of the basis of one-forms dz1 and \7w = dw + wL: 

ddK = {gf + xuf{x)Si-kJf)dzidij + (u'(x) + xu"(x))a\dw + wL\2 , 

where J is the complex structure. In this basis, det g is not hard to compute. 
Next, one takes for a the form induced on the canonical line bundle from 

the constant curvature metric. Coordinates can be chosen in which this is 
just a = elKo, and S^j = Zu^j. The equation det # = const then reduces to 

(1 + Ixu'y^ixu" + v!) = const. 

This has the explicit real solution 

71-1 

u(x) = j ($1 + cx- 1) - y 2J(1 -^)log f V   1_^j J 
j=i 

with cv = e2m/n. The holomorphic n-form is simply 

fi(ri) = dz1 A ... A dw. 

We now take M = P71-1, and apply this construction to obtain a Ricci- 
flat metric on (!?pn-i(—n). For n = 2 this produces the Eguchi-Hanson 
metric. In general Calabi showed the metric is complete but the ALE nature 
of the space seems to have not been explicitly addressed. Fortunately, since 
the asymptotic behavior for large x will be governed by the first term in u, 
K ~ xl/n + O(logx) with x rsj \w\2elKo, it is fairly easy to show that a given 
example is ALE. 

For n = 3, the resulting total space will be Op2(-3), which is a blowup 
of C3/Z3. The constant curvature metric has KQ = ClogX) \zi\2 with ' = 3. 
The original P2 is w = 0 so £ becomes the volume of the two-cycle. 

5    Examples 

In this section, we carry out the Kahler reduction to determine the orbifold 
and blown-up metric probed by D-branes. 
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5.1    Example: the Eguchi-Hanson Metric 

As shown in [6,7], the D-brane model realizes Kronheimer's construction as 
a hyperkahler quotient of C4 by a U(l) action. Usually this is done in a 
way which makes the SU(2) acting on the complex structures manifest, and 
produces the metric in the form given by Gibbons and Hawking. Here we 
want a single complex structure manifest, so we do the complex reduction. 

We start with four complex fields bo, &i, 6o and 6i with charges +2, —2, 
—2 and +2 respectively. The original holomorphic two-form is 

Qf = dbo A dbo + dbi A dbi. (5.1) 

The gauged Kahler potential is 

K = ev(\bo\2 + |6i|2) + e-y(N2 + M2) - {RV 

while the constraints SW = 0 are 

&o&o - Mi = Cc- 

The resulting metric is invariant under rotating the parameter £, so we take 
(c = 0 and relabel (R = (. 

Write q = ey, &o = ^, &o = ^5 set the gauge 6i = 1 and solve bi = zw. 
We then have 

K = q{l + \z\2) + ^l + \z\2)\w\2-Closq- 

The condition dK/dq = 0 determines 

i =2(rteF)(c±VC2 + 4(i + N2)2H2) 

and after substituting back, 

K = ±VC2 + 4(1 + |2|2)2M2 - Clogg. 

Notice that we have made a fortuitous choice of coordinates: the combination 
(l + |^|2)2|w;|2 is the x of Calabi's construction, and we get the metric exactly 
in his form. (The prefactor £ is controlling the overall scale and could be 
put inside by change of coordinates.) The simple way to find this is to look 
for a choice which turns (5.1) into dz A dw. 
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5.2    C3/Zs 

Now, as in [2], the model starts with nine complex fields X1, Yl and Zl; 
there are two U(l) actions which we associate with vector superfields U and 
V. As before, let U = logp and V = — logg, then the gauged Kahler form 
is 

K = ^(l^0l2 + m2 + \z0\2) + rfprT +1^1!2 + iz'l2) 
+P(|X

2
|
2
 + |y2|2 + |z2|2) - Ci logp - c2 logq. 

There are nine constraints X^ = X'Y*, XiZi = X^Zi and 
YlZ:> = Y^Z1 of which four are independent, leaving us with a five-dimen- 
sional solution space. By using complexified gauge transformations we can 
go to the three-dimensional slice Zi — Z2 = 1. The holomorphic three-form 
is 

ft(3)   = E,- dXi A dYi+1 A dZi+2 
1 (5.3) 

-»• dXx A dY"1 A dZ0, 

which will be non-singular assuming these are single-valued coordinates. The 
constraints are solved by F2 = r1, X2 = A"1, Y0 = y1^0, X0 = X1^0. 

Comparison of three-forms and the symmetry of the situation motivate 
the identification 

zx = X1        zi = Yl       w = Z0, (5.4) 

after which (5.2) becomes 

^=(l + kl|2 + k2|2)^ + g+^-)-Cll0gp-C2l0gg. 

p and q can again be eliminated explicitly. Let A = l + |^i|2 + |^2|25 -6 = 
A\w\2, then 

if = A{p + q) + Ci logP - C2logg pq 

and dK = 0 implies 

which combine to 

0   = p2qA - pqCi - B 

0   = pq2A - pqb - B , 

(p-q)A   =Cl-C2 

(p-q)B   =pq(qCl-P<2)- 
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Let u = p - q and v = A(q(i - p&fiCi - (2), then 

u   =(Ci-C2)M 

p =(v + Ci)M 

x    = A2B = t;(t; + Ci)(t; + C2) 

K   = (2 + ^) v - Ci log(v + Ci) - C2 log(« + C2) + (Ci + C2) log A . 

Notice that this expression shows a strong resemblance to Calabi's ex- 
pression. In particular, if we take x = v(v + Ci){v + C2) with Ci = 1 — ^ and 
(2 = 1—a;2 the result is exactly that of Calabi. However, the Fayet-Iliopoulos 
parameters are physically (and mathematically) dictated to be real. There- 
fore, the choice we have taken in order to make contact with Calabi's work is 
not physical; at best it is an analytic continuation from the physical domain. 
For real values of Ci>C2 we find that the resulting metric is not Ricci-flat. 
Thus, although we have come tantalizingly close to a Ricci-flat metric, in 
reality the quotient construction will not produce one except in the trivial 
case C = 0. 

The non-Ricci flatness of this metric was first found in [10] using a less ex- 
plicit argument. The construction presented here not only gives the explicit 
form of the quotient metric but indeed allows writing explicit one-parameter 
families of metrics interpolating between the Ricci-flat and quotient metrics, 
by allowing the parameters £ to move off into the complex plane. The physi- 
cal DO-brane metrics form such a family, interpolating between Ricci-flat for 
£ » af and a true quotient metric for ( << c/, and one is led to wonder if 
they can be described in this way. 

It is also interesting to note that while the Ricci-flat metrics form a 
family with one real parameter (the volume of the S2), the non-Ricci flat 
metrics naturally depend on two real parameters, the Q. The volume of the 
S2 corresponds to one linear combination (which one depends on the signs 
of the £'s as described in [2]), but the full metric depends on both. The 
other parameter becomes f B in the large blowup limit, and in this sense we 
see that the sub-stringy geometry explicitly depends on moduli which were 
non-metric moduli at large volume. 

5.3    C3/Zn,n>3 

For n > 3, the analogous equations are easy to write down but do not 
appear to admit analytic solutions for general £• However, they are certainly 
amenable to numerical evaluation. To assess whether or not the metric is 
Ricci-flat, it is simplest to compute det g and see whether or not it is constant 
over the manifold. In the present circumstances, constant det g is equivalent 
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to Ricci-flatness. We have done this for n = 5 and n = 7 for various choices 
of the Fayet-Iliopoulos parameters. We find that the metric, once again, is 
not Ricci-flat. 

6    Conclusions 

For weak string coupling and sub-stringy blowup parameters, DO-branes 
propagating on an ALE space of three complex dimensions see a metric which 
is calculable in principle by a combination of world-sheet techniques and the 
quotient construction described here. It depends on the full complexified 
Kahler class, not just the real part. There is no reason to expect the result 
to be Ricci-flat. 

We gave explicit forms for the Ricci-flat metric on C3 /Z3 and for the 
quotient metric obtained by starting with a flat seed metric. Although we 
found that the quotient construction could indeed produce a Ricci-flat met- 
ric in this case, this was obtained by a rather formal procedure of "complex 
reduction with complex Fayet-Iliopoulos parameters" for which we did not 
find a satisfactory physical (or mathematical) interpretation. (It would be 
interesting if there were one.) We also found no evidence that similar adapta- 
tion of the quotient construction could produce Ricci-flat metrics in general, 
and suspect that it arose from particular simplicities of the Z3 case. It does 
provide a nice family of metrics interpolating between Ricci-flat and quotient 
metrics. 

In the M-theory limit, we believe it is possible to postulate a seed met- 
ric which reproduces the expected physical result, that after quotienting a 
DO-brane sees a Ricci-flat metric. We furthermore pointed out that the same 
construction applies to bound states of N > 1 DO-branes, and that quantum 
effects can become large in this case, possibly leading to new consistency 
conditions. 

We close by listing further interesting questions to address in the present 
framework: 

1. What is the geometric interpretation of the dependence of the metric 
on the complexified Kahler class? We know that in quantum geometry 
the effective volumes of two-cycles and four-cycles can be controlled 
independently [17]; this should translate into statements about the 
masses of wrapped branes outlined in [2], but can we relate these brane 
masses to the explicit metric? Can we postulate a S-field on the two- 
cycle which reproduces quantum volumes as proposed there? 

2. We argued that on grounds of genericity there exists a seed metric for 
which the quotient metric will be Ricci-flat. Is it true that this seed 
metric will be the flat metric plus corrections analytic in (, as we might 
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expect to get either from conformal field theory considerations or from 
the background considerations in [9] ? This would allow corrections ex- 
pressed as a double series in £/a' and C/^2- An even stronger condition 
which might emerge from deeper study of the world-sheet computation 
is that the corrections to the seed metric should be real analytic in the 
coordinates as well. This would preclude £/z2 corrections and imply 
that in the limit |C| << a' the DO-brane metric reduces to the quotient 
metric computed here. 

3. Is there any simple equation which the true weak coupling DO-brane 
metric should satisfy (e.g. a ^-function equation with all a' corrections 
included). Because this metric is physically observable, this question 
is better motivated than for the analogous fundamental string metric. 
One possibility (suggested by G. Tian) is to try 0 = Rij + 5S/5gij 
for S some generating functional for an anomaly of a six-dimensional 
Dirac operator. S would be an eight-form constructed from curvatures, 
which fits with the known three-loop sigma model correction, but we 
have no real justification for this idea at present. 
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