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Abstract

We calculate the metric on the D-brane vacuum moduli space for
backgrounds of the form C3/T for cyclic groups I'. In the simplest
procedure — starting with a flat “seed” metric on the covering space
— we find that the resulting D-brane metric is not Ricci-flat. We argue
that this is likely to be true of the true 0-brane metric at weak string
coupling.

1 Introduction

During the last year, developments in nonperturbative string theory have
made it possible to probe the structure of space-time on sub-stringy scales.
In the context of weakly coupled Ila string theory, this emerges from the
dynamics of gauge theory, the world-volume theories of Dirichlet zero-branes,
and geometrical concepts appear to remain sensible all the way down to the
eleven-dimensional Planck scale {,1; [1]. Short distance geometry is similar
to the long distance geometry probed by fundamental strings, as one would
expect if the two are simply limits of a single idea of ‘geometry,” but with
interesting differences.

In a recent paper [2] the first steps towards understanding short distance
Calabi-Yau geometry were taken. Comparing with problems with higher
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supersymmetry, the most salient difference is that the metric can depend
on an arbitrary function, the Kéhler potential. Thus the questions of what
metric is seen by D0-branes and whether it is determined by a local equation
of motion can be studied directly.

In [2], a study was made of backgrounds of the form C3/T" for cyclic
subgroups I' € SU(3), focusing on comparing the topological properties
probed by DO0-branes with those probed by fundamental strings. As has
been known for some time, fundamental strings probe a rich phase struc-
ture in Calabi-Yau backgrounds which typically includes regions which are
most directly described in a non-geometrical abstract conformal field the-
ory language. These non-geometrical phases emerge from the linear sigma
model analysis of [3]. As pointed out in [4] and utilized in [5], if one al-
lows for analytic continuation from geometrical regions and uses physically
motivated parameters, even these non-geometrical phases appear to have
geometrical content in terms of Calabi-Yau spaces in which part or even the
whole manifold has been shrunk to string or sub-stringy scales.

The newfound power of D-branes allows us to go beyond the indirect
method of analytically continued fundamental string conclusions. In [2], it
was found that, in a rather novel manner, the topological properties probed
by DO-branes in such backgrounds appear to match the analytically contin-
ued fundamental string results at short distances.

In this note we go beyond the topological questions considered in [2] and
take a first look at metric properties. Our approach, although calculationally
intensive beyond the simplest of examples, is a straightforward extension of
the techniques used in [2,6,7]. Namely, we begin with D-branes on C3,
arranged in the regular representation of the group I'. We then truncate to
the I'-invariant sector of this D-brane Lagrangian. The result is a gauged
sigma model whose low energy configuration space will be interpreted as
sub-stringy space-time. This prescription can be justified by world-sheet
computation at weak string coupling [6], while its primary justification at
strong string coupling is simplicity and the need for the theory to remain
non-singular in the orbifold limit [8].

In the case of DO-branes and quantum mechanics, quantum effects are
controlled by the dimensionless parameters gs/m?, where the m; are the
masses of the degrees of freedom being integrated out to derive the low energy
effective theory. Here the massive degrees of freedom are strings stretched
between image branes, whose mass can be estimated as m? ~ [¢|/a [9].
Restoring all the o’s, the condition g;/m? << 1 translates into |¢| >> 12},
so for blowup larger than the eleven-dimensional Planck scale the effective
theory can be derived by classical considerations.

The classical moduli space is a Kahler quotient (the same proposed in
[10]), which allows direct determination of the quotient space metric. As we
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shall see, the explicit calculations are facilitated by methods discussed in [11].
The result depends on the original (or “seed”) metric of the gauged sigma
model, but even starting with a flat seed metric produces quite non-trivial
quotient metrics.

In the case of C?/T for I lying in SU(2) considered in [6,7], the effec-
tive theory has eight real supercharges, and the quotient construction is of
hyperkahler type [11]. This ensures that the resulting metric is Ricci-flat.
In the Kahler quotients considered here, although the metric will be of the
correct topological type (zero first Chern class), nothing ensures a similar
Ricci-flatness condition. In fact, we shall find in the examples we study, that
the resulting metric is not Ricci-flat. In the mathematical context, this was
first pointed out by Sardo Infirri [10].

The result has different interpretations depending on whether we consider
weak or strong string coupling. At weak coupling, we know that fundamental
strings do not see a Ricci-flat metric, so it should not be surprising that
D-branes do not see one either.

In principle the D0-brane metric could be computed from world-sheet
computation, in two ways. One could start with the Calabi-Yau sigma
model, introduce general boundary conditions along the lines of [12], and
derive the conditions for an RG fixed point. One would presumably obtain
the Nambu-Born-Infeld action with an effective metric related to the Ricci-
flat metric by o' corrections, a priori different from those of bulk renor-
malization. Alternatively, one could compute the true seed metric of the
gauged sigma model of [2] along the lines of [6], and then perform the quo-
tient. In the orbifold limit, the seed metric is flat, and the analyticity of
conformal perturbation theory implies that the true metric is an analytic
function of the blow-up parameters. The expectation from both approaches
is that, although the precise metric cannot be determined without additional
world-sheet computation, there is no reason for it to be Ricci-flat.

DO0-branes are also the fundamental degrees of strongly coupled Ia theory,
and a precise form of this statement is the M(atrix)-theory conjecture [13].
In the regime we study, their dynamics is governed by eleven-dimensional
supergravity, leading inescapably to the conclusion that they move in a back-
ground Ricci-flat metric.

Now the original proposal of [13] asserts that M-theory is produced only
by taking the large N limit, and our result offers no contradiction to this
statement. On the other hand, a more recent proposal of Susskind [14]
asserts that the finite N theory also has an M-theory interpretation, as the
theory with a compactified light-cone dimension. We see no reason why such
compactification would modify the prediction of supergravity, in which case
the model with a flat seed metric is in contradiction with this proposal.

Now there is no a priori reason to take a flat seed metric in this context
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and the simplest response to this result is to ask whether the model can be
modified to produce a Ricci-flat metric. The simplest possibility would to be
to define the model with a seed metric tuned to produce Ricci flatness after
the quotient. Since the quotient metric has zero first Chern class and the
seed metric has more parameters than the resulting K&hler potential, there
is no obvious obstruction to doing this. However this leaves unanswered the
question of what consistency condition forces this choice of seed metric.

Although we leave this question for future work, we would like to point
out here that a promising context for answering it is to consider the theory
with more than one D0-brane. Unlike the case of a single D0-brane, now it
is possible for massive strings to become light (when component DO0-branes
approach to distances d ~ l,11), and thus quantum effects can always become
large. Thus we propose as an interesting goal for future work the construc-
tion of actions which realize the axioms of [15] while remaining non-singular
in the orbifold limit, presumably by deforming the seed metric in the N > 1
version of the construction of [2].

2 D-branes on Orbifolds and Their Metrics

In this section we briefly review our procedure for discussing D-branes on
orbifolds of the form C3 /T". For more details the reader should consult [2,6,7].

Our starting point is an /' = 4, d = 4 U(n) supersymmetric gauge theory
where n = dim T, arising from D-brane ‘compactification’ on C*. We then
specify an action of I' on the fields of the covering theory, and truncate
the N = 4 Lagrangian to the fields transforming trivially under this action.
The result is a gauged supersymmetric linear sigma model with a nontrivial
superpotential.

Specifically, we take I' to act on the Chan-Paton degrees of freedom
(which ultimately become the D-brane spatial coordinates) in the regular
representation (other possibilities are discussed in [8] and [2]), and on the
C® coordinates Z* via Z' — w% Z* with w = exp(2mi/n) and a3 +ag+a3z =0
(mod n). The latter condition ensures that IT' lies in SU(3) and hence, from
a four-dimensional perspective, we have N/ = 1 in the open string sector,
and M = 2 in the closed string sector.

In [2] it was found to be convenient to think of the constraints arising from
the superpotential as if they were D-term constraints in an auxiliary linear
sigma model. The latter was shown to yield a vacuum phase structure which
meshes well with that of the analytically continued fundamental string, at
least as far as topological properties are concerned.

Our present purpose is to understand metric properties. We will do
so by utilizing our supersymmetric gauged sigma models (or “linear sigma
models”) to produce classical moduli space metrics of this quotient form [11].
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Specifically, we will determine the metric in two steps. First, we restrict the
original flat metric to solutions of 0W = 0 where W is the superpotential.
Second, we restrict this metric to solutions of the D-flatness conditions and
quotient by the gauge action. This second step is a symplectic reduction or
“Kéahler quotient” as it is guaranteed to produce a Kahler metric.

We note that if we were to take the superpotential in the first step to be
the one determined by A/ = 2, d = 4 supersymmetry and perform both steps,
the resulting procedure is the hyperkéhler quotient. On general grounds the
hyperkahler quotient is guaranteed to produce a Ricci-flat metric. Phys-
ically, this would be the relevant construction if we were considering two-
dimensional orbifolds C? /T'. In the three-dimensional case of present interest,
though, there is no guarantee that the Kahler quotient construction yields a
Ricci-flat metric; indeed in the simplest example, a hypersurface with ¢; = 0
in a P" realized as the usual quotient of C**! by a U(1) action, it is not so.
We emphasize that this is so in our case even though we take I" to lie inside
of SU(3). This ensures that we preserve the ¢; = 0 condition, but it does
not ensure that the specific metric produced is Ricci-flat. We shall explicitly
see this in what follows.

3 Calculational Procedure

The two step procedure for determining the D-brane metric outlined above
can be carried out as follows. For the time being, we start with the flat
Kahler potential on the covering space

Kr=) lal*,
i

where the coordinates z; run over the subset of the original 3|T'| chiral fields
that survive the orbifold projection.

The first step in the projection is simply to restrict to the submanifold
by solving the conditions dW = 0. To carry out the second step, we use the
complex reduction procedure of [11]. In physical terms, we write the action
with the coupling to vector superfields Vj, and then integrate them out. The
highest component of V' becomes a Lagrange multiplier for the D-flatness
condition. This action has a complexified gauge invariance which can then
be fixed arbitrarily.

Explicitly, we write the gauged Kéhler potential

K = (il exp Y 68V - YW
i a a

where t¢ is the charge of z; under the a’th U(1), and (, are the Fayet-
Iliopoulos parameters. We will also let g, = exp V; in the following.
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To derive an explicit metric, we choose a gauge slice X, with local coor-
dinates z*. The gauged Kahler potential on the slice is K = K({z*}, {¢’},
{¢x}). We then determine the ¢’ by solving the equations

0;K|x =0, (3.1)

and find the metric
guy = 6#81/K|X.

In these and other expression, 9, and 8; are with respect to z* and ¢. We
can also write this as

9w = 0,0,K + 0,0;Kd,¢’ + 8,0, K¢’ + 8,0;K0,¢’ 0,uq".
The partials qui are determined by considering

d
a?:auK = 0,
which implies '

0,0;K = —0;0;K0,¢’

and

g’ = —(0,0,K)(0;0,K)7"

where the latter inverse is in the matrix sense. Using both of these equations
we find

where A = (4;,) = (0;0,K) and B = (B;;) = (0;0;B).

This determines the metric explicitly given the ability to solve the equa-
tions (3.1). In practice, except in the simplest of examples, this equation
must be solved numerically.

We will describe the results in two examples below. As our interest will
be to determine if the D-brane metrics are Ricci-flat, we first, as a point
of comparison, briefly review relevant work of Calabi on the construction of
Ricci-flat metrics.

4 Ricci Flat Metrics a la Calabi

In [16], explicit constant curvature Kahler metrics are constructed on non-
compact spaces. One starts with a constant curvature Kahler metric on M
of complex dimension n — 1, and writes a metric ansatz on a line bundle £
over M for which the differential equation R;; = cg;; can be solved explicitly.
If € is the canonical line bundle, the resulting metric will be Ricci-flat.
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Let 2* be coordinates on M and Ky(z, Z) the Kahler potential, satisfying
det gg.)) = det 0i53K0 = e~'%0|(holomorphic) 2.
Let w be a coordinate on the fiber. The metric ansatz on £ is then
K = Ko + u(a(z, 2)|w|?). (4.1)

Since z = a|w|? is a Hermitian form on the fiber, it has an associated con-
nection L = dloga and curvature S = OL.

Metrics derived from the ansatz (4.1) can be expressed simply in terms
of the basis of one-forms dz* and Vuw = dw + wL:

00K = (gg.)) + wu’(w)Si,;le.-“)dzidzi + (' (z) + zu" (z))aldw + wL|? ,

where J is the complex structure. In this basis, det g is not hard to compute.
Next, one takes for a the form induced on the canonical line bundle from

the constant curvature metric. Coordinates can be chosen in which this is

just a = %0, and S;; = lw;;. The equation det g = const then reduces to

(1 + lzu')" L (zu” + u') = const.

This has the explicit real solution

n—1 n .
u(z) = (,"/1 +cxz — 1) - -}-Z(l - wj) log (_—;,l-i-ca:—wj)

1—wi

~13

j=1
with w = e2™/"_ The holomorphic n-form is simply
Q™ =dzl AL A dw.

We now take M = IP""!, and apply this construction to obtain a Ricci-
flat metric on Opn-1(—n). For n = 2 this produces the Eguchi-Hanson
metric. In general Calabi showed the metric is complete but the ALE nature
of the space seems to have not been explicitly addressed. Fortunately, since
the asymptotic behavior for large z will be governed by the first term in ,
K ~ z'/™ 4 O(log z) with z ~ |w|?e*K°, it is fairly easy to show that a given
example is ALE.

For n = 3, the resulting total space will be Op2(—3), which is a blowup
of C3/Z3. The constant curvature metric has Ko = (log Y |%|? with [ = 3.
The original P? is w = 0 so ¢ becomes the volume of the two-cycle.

5 Examples

In this section, we carry out the Kahler reduction to determine the orbifold
and blown-up metric probed by D-branes.
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5.1 Example: the Eguchi-Hanson Metric

As shown in [6,7], the D-brane model realizes Kronheimer’s construction as
a hyperkahler quotient of C* by a U(1) action. Usually this is done in a
way which makes the SU(2) acting on the complex structures manifest, and
produces the metric in the form given by Gibbons and Hawking. Here we
want a single complex structure manifest, so we do the complex reduction.

We start with four complex fields by, b1, by and b; with charges +2, —2,
—2 and +2 respectively. The original holomorphic two-form is

Qy = dbo A dbo + dby A db;. (5.1)
The gauged Kahler potential is
K =" (|bol* + [b1|?) + €7V (1ba]? + [Bo|?) — ¢RV
while the constraints W = 0 are
bobo — b1b1 = (c.

The resulting metric is invariant under rotating the parameter ¢, so we take
Cc = 0 and relabel (g = (.

Write ¢ = €Y, by = z, by = w, set the gauge b; = 1 and solve b; = zw.
We then have

K = q(1+|4?) + 5(1 + 2P)hl? — Clogg.

The condition 0K/0g = 0 determines

0 =¢—|uf - iy

4 = 3 (C £V +4(1+ |z|2)2|w|2)

and after substituting back,

K = +£/C2 +4(1 + |2?)2|w|2 — ¢ logg.

Notice that we have made a fortuitous choice of coordinates: the combination
(14]2]?)?|w|? is the z of Calabi’s construction, and we get the metric exactly
in his form. (The prefactor ¢ is controlling the overall scale and could be
put inside by change of coordinates.) The simple way to find this is to look
for a choice which turns (5.1) into dz A dw.
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5.2 C3/Z

Now, as in [2], the model starts with nine complex fields X?, Y* and Z%
there are two U(1) actions which we associate with vector superfields U and
V. As before, let U = logp and V = —log q, then the gauged Kahler form
is

K= S (X°P+[Y°P+[2°P) +q(X P+ Y1 +]2')

(5.2)
+p(| X2 + [Y2? + | Z2[?) — (1 logp — (2 logg.

_ There are nine constraints X‘YJ = XJYi XiZJ = XIZ' and
Y:ZJ =Y Z* of which four are independent, leaving us with a five-dimen-
sional solution space. By using complexified gauge transformations we can
go to the three-dimensional slice Z; = Z3 = 1. The holomorphic three-form
is

Q6) =Y. dX AdYH! AdZH?

5.3
—dX'AdY?2 AdZ0, (5:3)

which will be non-singular assuming these are single-valued coordinates. The
constraints are solved by Y2 =Y1, X2 = X1 y0=Yy120 X0 = X120,

Comparison of three-forms and the symmetry of the situation motivate
the identification

z2=X' =YY" w=2° (5.4)
after which (5.2) becomes

,w2
K= (1+ |21 + |22|?) (p+q+ l—p;—) —¢1logp — (2 logg.

p and ¢ can again be eliminated explicitly. Let A = 1 + |22 + |22|?, B =
Alw|?, then

B
K=A(p+q)+E—C1logp—Czlogq
and 0K = 0 implies
0 =p?qgA—pglL— B
0 =pq?A—pgla—B,

which combine to
P—q9A =G—-C
(p—q)B = pq(q¢1 — pC2)-
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Let u=p — g and v = A(g¢1 — p¢2)/(¢1 — ¢2), then

u = (C1—¢)/A
p =(v+G)/A
g =@v+g)/A

r =A’B=v(w+)w+()
K = (2 -+ C11<2) v — (1 log(v+ (1) — (elog(v + C2) + (¢ +¢2) log A .

Notice that this expression shows a strong resemblance to Calabi’s ex-
pression. In particular, if we take £ = v(v + ¢1)(v + ¢2) with (; =1 —w and
(3 = 1—w? the result is exactly that of Calabi. However, the Fayet-Iliopoulos
parameters are physically (and mathematically) dictated to be real. There-
fore, the choice we have taken in order to make contact with Calabi’s work is
not physical; at best it is an analytic continuation from the physical domain.
For real values of (1,{2 we find that the resulting metric is not Ricci-flat.
Thus, although we have come tantalizingly close to a Ricci-flat metric, in
reality the quotient construction will not produce one except in the trivial
case ¢ = 0.

The non-Ricci flatness of this metric was first found in [10] using a less ex-
plicit argument. The construction presented here not only gives the explicit
form of the quotient metric but indeed allows writing explicit one-parameter
families of metrics interpolating between the Ricci-flat and quotient metrics,
by allowing the parameters { to move off into the complex plane. The physi-
cal DO-brane metrics form such a family, interpolating between Ricci-flat for
¢ >> o and a true quotient metric for ( << o, and one is led to wonder if
they can be described in this way.

It is also interesting to note that while the Ricci-flat metrics form a
family with one real parameter (the volume of the $2), the non-Ricci flat
metrics naturally depend on two real parameters, the (;. The volume of the
S? corresponds to one linear combination (which one depends on the signs
of the {’s as described in [2]), but the full metric depends on both. The
other parameter becomes [ B in the large blowup limit, and in this sense we
see that the sub-stringy geometry explicitly depends on moduli which were
non-metric moduli at large volume.

53 C¥/Zn,n>3

For n > 3, the analogous equations are easy to write down but do not
appear to admit analytic solutions for general . However, they are certainly
amenable to numerical evaluation. To assess whether or not the metric is
Ricci-flat, it is simplest to compute det g and see whether or not it is constant
over the manifold. In the present circumstances, constant det g is equivalent
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to Ricci-flatness. We have done this for n = 5 and n = 7 for various choices
of the Fayet-Iliopoulos parameters. We find that the metric, once again, is
not Ricci-flat.

6 Conclusions

For weak string coupling and sub-stringy blowup parameters, D0-branes
propagating on an ALE space of three complex dimensions see a metric which
is calculable in principle by a combination of world-sheet techniques and the
quotient construction described here. It depends on the full complexified
Kahler class, not just the real part. There is no reason to expect the result
to be Ricci-flat.

We gave explicit forms for the Ricci-flat metric on C®/Z3 and for the
quotient metric obtained by starting with a flat seed metric. Although we
found that the quotient construction could indeed produce a Ricci-flat met-
ric in this case, this was obtained by a rather formal procedure of “complex
reduction with complex Fayet-Iliopoulos parameters” for which we did not
find a satisfactory physical (or mathematical) interpretation. (It would be
interesting if there were one.) We also found no evidence that similar adapta-
tion of the quotient construction could produce Ricci-flat metrics in general,
and suspect that it arose from particular simplicities of the Z3 case. It does
provide a nice family of metrics interpolating between Ricci-flat and quotient
metrics.

In the M-theory limit, we believe it is possible to postulate a seed met-
ric which reproduces the expected physical result, that after quotienting a
DO0-brane sees a Ricci-flat metric. We furthermore pointed out that the same
construction applies to bound states of N > 1 DO-branes, and that quantum
effects can become large in this case, possibly leading to new consistency
conditions.

We close by listing further interesting questions to address in the present
framework:

1. What is the geometric interpretation of the dependence of the metric
on the complexified Kahler class? We know that in quantum geometry
the effective volumes of two-cycles and four-cycles can be controlled
independently [17]; this should translate into statements about the
masses of wrapped branes outlined in [2], but can we relate these brane
masses to the explicit metric? Can we postulate a B-field on the two-
cycle which reproduces quantum volumes as proposed there?

2. We argued that on grounds of genericity there exists a seed metric for
which the quotient metric will be Ricci-flat. Is it true that this seed
metric will be the flat metric plus corrections analytic in (, as we might
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expect to get either from conformal field theory considerations or from
the background considerations in [9] 7 This would allow corrections ex-
pressed as a double series in /o’ and (/2. An even stronger condition
which might emerge from deeper study of the world-sheet computation
is that the corrections to the seed metric should be real analytic in the
coordinates as well. This would preclude (/22 corrections and imply
that in the limit [{| << o' the D0-brane metric reduces to the quotient
metric computed here.

3. Is there any simple equation which the true weak coupling D0-brane
metric should satisfy (e.g. a S-function equation with all &' corrections
included). Because this metric is physically observable, this question
is better motivated than for the analogous fundamental string metric.
One possibility (suggested by G. Tian) is to try 0 = R;; + 65/dgi;
for S some generating functional for an anomaly of a six-dimensional
Dirac operator. S would be an eight-form constructed from curvatures,
which fits with the known three-loop sigma model correction, but we
have no real justification for this idea at present.
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