










































































38 NON-SPHERICAL HORIZONS, I 

sive (in AdS) or have divergent conformal weights (in the CFT) in the large 
N limit, this comparison suggests that some aspects of the theories agree at 
finite N. In the model at hand, each of the bifundamental hypermultiplets 
leads according to this prescription to a hypermultiplet of baryon states. 
The quantum symmetry permutes these baryons as it does the bifundamen- 
tal fields, and we can construct a basis of linear combinations with charges 
corresponding to the twisted sectors by discrete Fourier transform. Thus, 
there is one baryon (and one antibaryon) state in each sector, with conformal 
weight N (which is determined by the i2-charge, and is thus protected from 
quantum corrections). 

The supersymmetric completion of the RR two-form coupling shows that 
the two-form periods appear in the worldvolume action as 

^-Imjd'dJ^^BMWh ■ (5.2) 

Thus, the two-form periods enter the worldvolume theory as gauge couplings 
and 9 angles. It is interesting in this context that the two-form periods 
naturally parameterize a two-torus, since &/vs ~ ^iV5 + 1 while BRR ~ BRR + 
rs where T5 = ^ + — is the complexified string coupling. A striking 
confirmation of this identification was found in [14] , where this periodicity 
was shown to correspond to the known iS-duality group for an Af=2 orbifold 
model. The (bare) gauge couplings are thus given by 77 = rs + ^2j^lbj. 
The point bj = 0, which we interpret as the undeformed quotient theory, 
will have all two-form periods equal to one-half their maximal value [108] . 
We define our variables so that this point corresponds to bj = 0. Note that 
the nonzero two-form periods give the wrapped D3-brane strings mentioned 
above a tension of order a' , so they are expected to be absent from the 
low-energy theory. Indeed, the model we have described has no candidate 
tensionless strings, consistent with our interpretation of this point as the 
orbifold point at which the CFT is nonsingular. 

From the point of view of the dual AdS compactification, the horizon 
H6 = S'5/r is singular in these cases, as explained in section 4-3. The singu- 
larity occurs along the image of the circle \Z\ = 1, itself a circle in the quo- 
tient (of 1/k the size), with the transverse space described locally by C2/Z^. 
A supergravity theory compactified on this space would be singular, but as 
first pointed out in [12] we expect the IIB theory to be well-behaved. In par- 
ticular, we expect the same general structure of twisted sectors and twisted 
moduli for the compactification. The spectrum of states in the untwisted 
sector can be found by projecting the known spectrum of the AdSs x 55 

compactification to F-invariant states. Restricting attention to the Kaluza- 
Klein states of the supergravity theory reproduces the spectrum of chiral 
primary operators in the untwisted sector of the worldvolume theory whose 
conformal dimensions remain finite in the large N limit [18] .  (In the field 
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theory, untwisted states can be easily recognized by their invariance under 
the global "quantum" symmetry). The twisted sector states were first stud- 
ied in detail by Gukov [23] . The background curvature and five-form flux 
change the spectrum in a calculable way, and applying this correction Gukov 
was able to reproduce the spectrum of chiral primary fields charged under 
the quantum symmetry from the spectrum of twisted states in the AdS com- 
pactification in Af=2 orbifolds. In particular, this analysis demonstrates that 
the quantum symmetry is realized in these models as the quantum symmetry 
associated to the quotient singularity in i?5. 

The work of [18, 23] did not include the baryons in the spectra of the 
models. (These were, however, subsequently discussed in [32] .) Along the 
lines described by Witten [107] , one expects that the baryons are represented 
by D3-branes wrapped around three-cycles in iif5. Witten considers related 
theories, and points out that a D3-brane wrapping a nontrivial three-cycle in 
H5 would lead to a BPS particle with mass m ~ Vs/g. Since V3 ~ i?3 with 
R ~ (giV)1/4, the conformal dimension of the operator in the CFT coupling 
to this field is 

A - mR - N (5.3) 

independent of g. This is in accordance with the baryon-like particles we 
predict. 

Thus, we would like to find that the horizon in this case has a homology 
group H3 D Zk~1. Since the horizon is singular, this is somewhat delicate 
to compute explicitly and we give a heuristic description, motivated by the 
fact that it yields physically reasonable answers. As noted above, the local 
structure transverse to the singular circle is C2/Z&. This singularity, when 
resolved, leads to a chain of exceptional QP^s S^ with an intersection matrix 
given by (minus) the Cartan matrix of A^-i- We can construct a basis of 
three-cycles dual to this, given by Cj — S^ x S1. One can show that these 
transform under the quantum Z/. symmetry in all nontrivial one-dimensional 
representations, in accord with our expectation that we find one baryonic 
state in each twisted sector (the antibaryons are of course represented by 
D3-branes wrapped with the opposite orientation). In the quotient space, of 
course, all of these have vanishing volume and hence the scaling argument 
above is suspect. However, at the orbifold point we have nonzero two-form 
periods about these cycles, and we expect this to lead to a nonzero mass for 
these particles, scaling by dimensional analysis as in (5.3) . Constructing 
the untwisted baryon state is more difficult, since the supergravity approxi- 
mation breaks down for states as massive as this. 

These same three-cycles lead in the AdS theory to additional gauge sym- 
metries, whose gauge fields Aj = JCm A^ are the reduction of the self- 
dual RR four-form on the three-cycles. The baryon states described above 
are charged under these symmetries, which hence should correspond to the 
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baryon number global symmetries in the CFT. The charges of the baryons 
suggest that Aj couples to J2i^lJi where Ji is the worldvolume current for 
baryon number under the /th factor in the gauge group. In section 4 we saw 
that the i?-symmetry of the CFT is realized as a gauge symmetry in the 
>W£' compactification related to isometries of H5. In general, the Abelian 
symmetry described here will complete the continuous global symmetries 
of the worldvolume theory, so that we have a complete correspondence. In 
particular cases there may be an enhanced global symmetry on the worldvol- 
ume. As we will see in the examples we treat in detail, this will be matched 
by enhanced isometry groups for the horizon. 

The discrete global symmetries of the worldvolume theory will in general 
include the quantum symmetry mentioned above. This will not act on the 
geometric horizon iT5, as we might expect for quantum symmetries. On the 
other hand, there will be an action on the cycles Cj and hence on the baryon 
spectrum, as discussed above. There is one additional discrete symmetry 
that will arise in all of these models. In the field theory this is implemented as 
charge conjugation, exchanging the two chiral multiplets in a hyper mult iplet. 
The interpretation of this in the AdS model was discussed in [30] . Charge 
conjugation reverses the orientation of the open strings, and so corresponds 
to the action of the center of the 5L(2,Z) duality group of the IIB theory. 
This acts on the two-form fields as bjys —> —bj^s and BRR —> — &##. It thus 
reverses the sign of the two-form periods. This symmetry is thus unbroken 
for 5 = 0, but because of the periodicity, also for the orbifold value B = 
^(1 -f- rs), which describes the origin of our deformation space, as described 
above. 

Isolated singularities 

We now turn to the case of isolated quotient singularities occurring in 
codimension three. We consider the quotient C3 /Z^ with aj all nonzero. 
(This is isolated for most choices of the aj when k is odd, which we assume). 
Resolving this singularity leads to (A; — l)/2 new homology two-cycles. A 
new feature is that the dual four-cycles are in this case localized near the 
singularity. The k — 1 twisted sector fields are constrained by a reality 
condition 

Bj = B^j Rj = R^j . (5.4) 

The construction of [102] leads here to an Af=l theory with gauge group 
U(N)k, bifundamental chiral multiplets -X"//+a and a cubic superpotential 
(the restriction to the surviving fields of the cubic superpotential from J\f = 4 
super Yang-Mills theory). As always, the diagonal (7(1) decouples and is 
not included in the dual AdS model. Once more, the quantum Z^ symmetry 
acts by permuting the factors in the gauge group and permuting the chiral 
multiplets as dictated by their representation content. In addition, the model 
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has generically a t/(l)3 global symmetry,22 the /th factor of which acts by 
phases on all the fields descended from X1. One combination of these is 
anomalous and can be combined with the naive ^(1)^ symmetry to form a 
non-anomalous {7(1)^. 

An important observation [109] is that for these singularities the world- 
volume theory is chiral and the Abelian factors in the gauge group as written 
above suffer from anomalies. This can be easily seen in the example above 
in which the U(l) factors have mixed anomalies with the nonabelian fac- 
tors. Under Abelian transformations with parameters ej the effective action 
changes by 

Y,Aweitr{FvAFlt) , (5.5) 
IV 

with 
Aw =N(5Vj+ai-5ljf_ai) . (5.6) 

This is puzzling, since we have derived the model in what seems like a con- 
sistent manner from an obviously well-defined string theory. The resolution 
of this puzzle was described in [109] .23 It requires an additional coupling 
(which can be expressed either in terms of the two-form potentials Cj or the 
scalars aj) 

-J    AC     J. ..    K     J. /v 

where IQ is the Chern-Simons form for the gauge fields and ej is a constant 
given by 

3 

ej^W 2sm(7rjaI) . (5.8) 
1=1 

We are not aware of a direct calculation of this coupling along the lines of 
[106, 101] but it easy to verify that it indeed cancels the anomaly (5.5) when 
we take into account the transformation properties of aj. In [101] a version 
of this argument was used to demonstrate the need for the Chern-Simons 
couplings. In the Af=2 examples above ej = 0.24 

As in the previous case, the Chern-Simons couplings show that the U(l) 
factors in the gauge group (apart from the diagonal) are broken, and the 
D-terms are given by the background moduli as [102] 

fc-i 

c^xy^i- (5.9) 
3=1 

22The global symmetry group is larger if the a/'s are not all distinct. 
23The mechanism described here is essentially an extension of the ideas of [110] . These 

were applied in a similar context to six-dimensional type I compactifications in [111]. 
24In general, for a non-isolated singularity leading to an JV=1 th< 

corresponding to the subgroup fixing the singular curve will vanish. 
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These are real by (5.4) and sum to zero since we omit the 7 = 0 term in 
(5.9). Note that in this case the baryon number symmetries are absent as 
global symmetries as well. Prom the point of view of the field theory they are 
broken by anomalies. (Note that the closely related gauge symmetries which 
act as baryon number on the worldvolume but also act on the RR fields are 
free of anomalies but, as discussed above, are broken by RR expectation 
values.) 

Once more, the absence of the Abelian factors predicts the presence 
of baryons in the spectrum. In general, there will be three families of k 
baryons arising from the projections of X7, forming three fc-dimensional 
representations of Z*.. We thus predict three baryons in each sector. Since 
the baryon number symmetries are broken by anomalies, baryon number 
will not in general be conserved. The three baryonic states in each sector 
will however be distinguished by their charges under the t/(l)3 symmetry 
mentioned above, since the baryon formed as (X7)^ will have charge N 
under the Jth U(l). 

The AdS dual theory is obtained [12] by letting the quotient group act 
on the horizon. In this case, as described in section ^.5, since the singularity 
is isolated the horizon is smooth. For the Abelian Y we are discussing here, 
the supersymmetric isometries given by (4.19) will extend the .R-symmetry 
to at least the /7(1)3 Cartan subgroup of /7(3), in agreement with the con- 
tinuous global symmetry of the generic quotient model as discussed above. 
In particular cases, this may be enhanced. Note that in this isolated case 
the self-dual RR four-form gives rise to no gauge fields in the AdS compact- 
ification because the homology is pure torsion; this reflects the breaking by 
anomalies of the corresponding global symmetries in the worldvolume theory. 
In addition, charge conjugation, together with the permutation i —>> k — i on 
the gauge groups and the corresponding permutation on the chiral matter 
multiplets, acts as a Z2 symmetry. In the AdS theory this will as usual be 
realized as the center of the 51/(2, Z) duality group. Once more, this is a 
symmetry of the orbifold theory with both two-form periods equal to one- 
half their maximal value. In these models as well we find no trace of the 
tensionless strings expected to arise when the two-form periods vanish. This 
is a somewhat stronger statement here than in the non-isolated case. Since 
in this case the strings would be constrained by a potential to move on the 
brane worldvolume we would expect them to represent fluctuating degrees 
of freedom in the field theory. 

The projection to F-invariant states of the supergravity spectrum on 
55 reproduces the chiral primary untwisted states whose conformal weight 
remains finite at large N in the worldvolume theory [18] . The origin of 
the twisted states is not so clear. Because the group action is free, twisted 
states involve strings with a minimal length of order R, so naively these 
cannot correspond to the charged vertex operators of low dimension present 
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in the CFT. An example of the latter would be 

k 

Xyvo*?), (5.10) 
Z=l 

for j = 1,... k, with conformal dimension 2. We do not know a satisfactory 
resolution to this problem. 

We can also consider the AdS counterparts to the baryon states. We 
would like to describe these as D3-branes wrapped on three-cycles in if5; 
the only available cycles are torsion classes. In fact, as shown in 4-3 the 
relevant homology group is H^H5) — Z*.. The k — 1 torsion cycles have 
three-volumes of order i?3 so D3-branes wrapping them will lead to BPS 
particles with mass as in (5.3) . Note that these torsion cycles do not lead to 
additional gauge symmetry in the AdS compactification, in agreement with 
the fact that the corresponding global symmetries on the worldvolume are 
broken by anomalies. 

As discussed in ^.5, there are explicit geometric representatives for some 
of these cycles. Consider an 53 C S'5 determined by setting X1 — 0 for some 
/. This (homologically trivial) submanifold is preserved by F, so projects 
to a submanifold in the quotient, given by S'3/r. The triviality upstairs, 
however, only demonstrates that the cycle so obtained is a torsion cycle. 
We thus find three representatives (labelled by /) for each homology class 
in #3, in agreement with the baryon spectrum in the CFT. The three 
states are characterized by their charges under the U(l)z symmetry. But the 
representation theory of f7(l)3 xi Z^ together with the fact that the charge 
under the diagonal U(l) is determined by the five-form flux will fix these 
to agree with those found in the worldvolume theory. Note that the fact 
that these are associated to D3-branes wrapping torsion cycles implies that 
their number is conserved only mod k. This is in accord with the fact that 
baryon number is broken (note that the mod k conservation is not related 
to an unbroken subgroup of this but rather to the quantum symmetry). 

5.2     Branes at a Z2 x Z2 singularity 

We now turn to a detailed study of a particular quotient singularity, which 
we will use as a tool to generate new examples in section 6. We first discuss 
the worldvolume theory, comparing in the next subsection with the AdS 
picture. We consider the theory of N D3-branes at the origin of a space 
locally described as C3/Z2 x Z2. We can take the Z2 x Z2 action 

(x,y,z)  ->  (-x,-y,z) 
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(5.11) 

{X,Y,Z)   ->   {-X,Y,-Z). 

Following [102] we model N branes near this by using AN branes on the 
covering space, leading to an ^=4 theory with gauge group U(4N) on the 
worldvolume. This is projected to the orbifold by letting the discrete group 
act on Chan-Paton indices via the regular representation in addition to its 
action on the spacetime indices. The projection leaves an J\f=l theory with 
gauge group U(N)4i (of which the diagonal 17(1) decouples completely) and 
the chiral multiplets surviving the projection are 

^14^23,^41,^32 

Yl3,131,^24, ^42 (5.12) 

where X-, transforms in the representation (N, N) of U(N)i x U(N)j. These 
interact via a superpotential descended from the J\f=4: theory 

W   -   tr(z12(X23Y31-Y2AX4i) + Z21(X14Y42-Yl3X32) + 

Z34(X41YU - Y42X23) + Z43(XS2Y24 - ^31*14)) •        (5.13) 

As discussed above, the gauge symmetry is in fact broken to SU(N)4. 
The model has a non-anomalous global symmetry group 

G - ([/(I)3 x [/(I)3 x 54) x Z2 . (5.14) 

The first ?7(1)3 factor is the (effective) baryon number symmetry (recall 
that the diagonal acts trivially). As discussed above, this arises from RR 
symmetries in the AdS model. The second U(l)s factor acts by phases on 
the chiral multiplets, and we can choose a basis of generators acting on chiral 
multiplets arising from one of the complex coordinates with charge one. 

One linear combination of the latter three ?7(l)'s (the diagonal) is anoma- 
lous, and combines with the anomalous £/(!)# symmetry of the model (under 
which all lowest components of superfields are fixed, gluinos have charge 1 
and quarks charge —1) to a non-anomalous U(iyR subgroup of G, under 
which the squarks all have charge 2/3. The 84 permutes the four factors 
of the gauge group. It also acts on the twelve chiral multiplets, permuting 
these as dictated by the index structure. For example, the permutation (12) 
exchanges X14 with Y24 and X23 with Y13 (as well as the fields in the conju- 
gate representations), and Zi2 with Z21. The superpotential is not invariant 
under 54, so odd permutations must be combined with a U(1)R rotation 
by |.25   The final Z2 factor in G acts on the vector multiplets by charge 

25 A potential anomaly in this symmetry, along with the reason for its cancellation, was 
pointed out in [30] . We are being somewhat imprecise here; we restrict attention to the 
action on bosons. Thus we ignore the fact that el7rH = (—1)F is not the identity. 
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conjugation and exchanges X-j with Xj^ This too changes the sign of W so 

must be combined with a U(1)R rotation by |. Thus, a ^(l)5 xi A4 subgroup 
are not i?-symmetries. The quantum symmetry discussed above is a Z2 x Z2 
subgroup of G. As we shall see, this is precisely the subgroup of £4 which 
permutes the chiral fields in (5.12) along rows only. More abstractly, it is 
the kernel of the natural map 54 —> S3 giving the action on the spacetime 
indices and its nontrivial elements are products of disjoint two-cycles. 

The moduli space of classical vacua is given by the solutions to the F- 
term equations following from (5.13) and the i?-term equations, modulo 
SU(N)4 gauge transformations. It is parameterized by the holomorphic 
gauge-invariants in the chiral superfields modulo the Jacobian ideal of (5.13) 
. These include meson-like operators constructed by finding products which 
transform in the adjoint representation of some SU(N) factor and then tak- 
ing traces of products of these. Since we are taking the trace, products which 
are related by cyclic permutations of the factors will lead to identical invari- 
ants. Modulo the equations of motion following from (5.13), these invariants 
are generated by 

Xi     =    X14X41 yi = 113*31 zi = Z12Z21 

(5.15) 

X2     =     X23X32 2/2 = ^24^42 ^2 = ^34^43 

and 

a = X14Y42Z21 , 

where a is the unique cubic adjoint in the sense that when traces are taken 
all cubics are equal modulo the equations of motion. In addition, there are 
baryon-like operators formed, as discussed above, by antisymmetrizing on 
both gauge indices a product of N bifundamental fields. This yields twelve 
baryonic invariants By ~ Xfj , subject to relations of the form (suppressing 
numerical factors) 

B14B41    =    x1 B13B31 = y1 B12B21 = z1 

B23B32    —    X2 B24B42 = 2/2 -B34J343 = Z2   . 

Together with (5.15) these give coordinates on the full moduli space. 

(5.16) 

To forge the connection to the construction of [102] we note that the bary- 
onic ?7(1)3 symmetry acts on the classical moduli space M(N) preserving 
the symplectic structure. We can thus construct, if we wish, the symplectic 
reduction by this group action (or equivalently a holomorphic quotient by 
the complexified group action). The symplectic reduction is determined by 
a choice of the values of the moment map /JL : M{N) -^ R3. This reduction is 
equivalent to computing the moduli space of a theory with the same matter 
content but a larger gauge group U(N)4:/U(l). The components in E3 of the 
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moment map correspond to the values £2- of the three independent Fayet- 
Iliopoulos ZMerms which enter this latter construction. Thus, A4(N) fibers 
over M3 with the fiber over £ being a U(l)3 bundle over the reduced space 
.Mo(Af; C)- In view of our discussion above, the transition from MQ to the 
full moduli space can be reinterpreted as reinstating the baryonic invariants. 
We thus restrict attention to (5.15), and notice that these commute (when 
traces are taken) using (5.13) , and satisfy the relations 

XiyjZk = a2 . (5.17) 

Note that if we treat the variables as scalars then the solution of xyz — a2 

is .Mo(l;0) = C3/Z2 x Z2, precisely our transverse space. 

The moduli space M(N) has several branches.26 At generic (nonzero) 
x,y,z, the equations of motion imply that xl = x1- and we can drop the 
subscripts. Thus on this branch of the moduli space the meson-like invari- 
ant traces parameterize the space of SN invariants of N numbers (roots of 
the characteristic polynomial) satisfying (5.17), i.e., parameterize the space 
MQ{1]Q)

N/SN which we can identify with MQ{N\G). The other level sets 
of 11 (which together fill out the full moduli space) will be ^(l)3 bundles 
over .Mo(Af; £) which—as is familiar from toric geometry—will be related to 
partial resolutions of M.Q(N]Q). (The C's serve to label the blowup mod- 
uli.) In fact, given the structure of the meson-like invariant traces we can 
identify Mo(N; () with MQ(1]C)

N
/SN- This is precisely the configuration 

space for motion of N branes on the (partially resolved) space .Mo(l; C)- At 
generic points on this branch, the gauge symmetry is broken to U(1)N~1

1 

and the only massless matter consists of 3 (iV — 1) neutral chiral multiplets, 
with no superpotential interaction. Thus the model has an accidental J\f=4: 
supersymmetry and is precisely the low-energy description of the motion of 
N branes at generic (smooth) points. 

The other branches of the moduli space are found by setting, say, all 
yi = Zi = 0. Then the meson-like invariants restricted to this branch are 
generated by the two Xi coordinates and parameterize a space (CN /SN) , 
meeting the previous branch along the diagonal in the square. Along this 
branch y and z are massive. The gauge symmetry is broken to [/(l)2^-1). 
The interpretation of this branch following [113, 102, 14, 114] is that the iV 
branes have split into 2N "fractional" branes, each with one-half the tension 
of a D3-brane. These are in fact D5-branes wrapped about a vanishing 
cycle (there is precisely one such cycle at generic points along the x axis). 
The two D5-branes wrap the two-cycle with opposite orientations; the total 
six-form charge thus vanishes. The D5-branes do, however, acquire a four- 
form charge through the Chern-Simons coupling, equal to 1/2 the charge of 

26This phenomenon was anticipated by Sardo Infirri [112], who pointed out that for 
non-isolated quotient singularities, the construction of [112] (the one applied in [102]) will 
yield a space satisfying the F-flatness conditions which has several components. 
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a fundamental D3-brane (and a tension in four dimensions determined by 
this charge and the BPS condition they satisfy). Notice that these wrapped 
branes are not able to move off in the y and z directions, in accordance with 
the fact that y and z are massive along this branch. Also, the restriction 

on the Ci above is in line with our interpretation of these as blowup moduli 
for the singularity. Along the "fractional" branch the cycle wrapped by the 
D5-branes is constrained to remain at zero size. Of course, two more such 
branches exist along the y and the z axes. Also, there are mixed branches 
in which some of the iV branes have split along each of the axes and some 
have remained unsplit and hence free to move off in any direction. At the 
origin of moduli space the nature of the objects is ambiguous, since they are 
free to move off on either branch. They are perhaps best described as bound 
states of D3-branes and wrapped D5-branes [114] . 

Prom these pieces we can now assemble our total moduli space of vacua, 
as a fibration over the space of ( values. At generic values we find a U(l)3 

bundle over the space A4o(N] £) which is the configuration space of N points 
moving on the resolved singularity with blowup parameters (. In codimen- 
sion one, whenever the sum of two Q vanishes, the fiber has an additional 
branch, meeting the previous branch along a complex curve in the base of 
the U(l)3 bundle. Along this new branch we find a U(l)2 fibration27 over 

(CN /SN)
2

- The moduli space of vacua thus contains both the moduli of the 
singularity and those describing motion of the branes along it. 

The utility of this indirect construction is the following. We have seen 
that for iV = 1 (5.15) parameterize the transverse space. The toric methods 
of [102] allow us to pursue this identification further; we can in fact iden- 
tify directly a map from the PI parameters Q appearing in the construction 
and the blowup moduli of the singularity (see appendix B for details of this 
as applied to this example, following [103] .) In this paper, our interest in 
this quotient singularity is in finding the loci in its classical moduli space 
at which nonabelian gauge groups are unbroken, and associating these to 
special partial resolutions of the singularity which contain nontrivial sin- 
gular points. We then identify these gauge theories as the worldvolume 
theory for branes at the corresponding singularities. The point is, that in 
the toric construction one finds singularities for those values of Q for which 
the moduli space A^o(l;C) contains a point at which some Abelian gauge 
group remains unbroken. For these values, A^o(^;C) wiU contain points 
with unbroken U(N) symmetries. In particular, this corresponds to a point 
in M(N) with unbroken SU(N) gauge symmetry. This argument allows us 
to forge a link between the toric analysis of .Mo(l) C) using the trick of [102] 
and the classical moduli space of the field theory. The worldvolume theory 

27Geometrically one of the 51 directions in the fiber is absent along this branch because 
the cycle about which it measured the four-form period is absent. More directly, when the 
modulus C of the complex scalar vanishes its phase becomes irrelevant. 
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for branes at the singularities arising from the partial resolution determined 
by some particular value of Q will be the low-energy theory determined by 
the corresponding point in the moduli space of the theory we are treating 
here. 

The model we have described is indeed a conformal field theory. The 
one-loop /3-functions for the SU(N) couplings all vanish, and the cubic su- 
perpotential is a marginal deformation at weak coupling. We can confirm 
this result beyond weak coupling using the methods of [115] . The exis- 
tence of marginal operators can be tested non-perturbatively by studying 
the "scaling coefficients" determining the /^-functions for various couplings 
in terms of the anomalous dimensions [116, 117] . Making some assumptions 
on the genericity of the latter as functions of the couplings we can deduce the 
dimension of the critical subspace in coupling space from linear dependencies 
among the coefficients. 

Eq. (5.13) is the unique superpotential preserving the entire global sym- 
metry group. If we preserve the symmetry, the model has only two inde- 
pendent couplings—the gauge coupling and the superpotential coefficient. 
These are written in terms of the anomalous dimension of the chiral fields 
(when the symmetry is unbroken all the dimensions are of course equal) 

Ag    =    -QN-f 

Ah   =   87/2. (5.18) 

Clearly, 7 = 0 leads to a conformal theory. This imposes one condition on the 
two couplings leaving a line of fixed points enjoying the full global symmetry. 
We can parameterize these theories by r = ^ + ^P; the superpotential 
coupling will now be determined by the requirement of conformal invariance 
and are not an additional marginal coupling. 

We can look for additional marginal operators by relaxing the symme- 
try requirements. If we require only that U(1)R and charge conjugation 
(together with the exchange of Xfj with X^) be symmetries, we can pa- 
rameterize the most general gauge-invariant superpotential. This has eight 
possible terms (all of which appear in our W). These pair up into four 
pairs related by charge conjugation as above. Together with the four gauge 
couplings we thus have eight coefficients written as functions of the six in- 
dependent anomalous dimensions 

Agi = -2iV(7i2+7i3+7i4) 

Ag2 = -2iV(7i2 + 723 + 724) 

Ag3 = -2iV(7i3 + 723 + 734) 

Ag, = -2iV(7l4+724 + 734) (5.19) 

4/11    =    2^7l2 + 723+713) 
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Ah2 = 2(7l2+^24"1"^14) 

Ahs = 2^13+^14+^34) 

AhA     =     2(723+724+734) ' 

where 7^ is the anomalous dimension of Xfj and X^. The notation is such 
that 54 acts on the indices of both g and h. These are easily seen to satisfy 
four linear relations. Thus, the vanishing of all of (5.19) imposes only four 
conditions on the six anomalous dimensions. In terms of the eight origi- 
nal couplings we thus predict a four (complex) dimensional space of fixed 
points, of which a one-dimensional subspace preserves the full 54 symme- 
try, while at a symmetric point we have three truly marginal deformations 
permuted by S3. The 54 structure then guarantees that these are charged 
under the quantum Z2 x Z2 symmetry with charges H—, —h, and -—. We 
can parameterize the entire fixed space by the four gauge couplings r^, which 
are permuted by the action of S4. The symmetric subspace on which all of 
the couplings are equal is parameterized by T++ = ^r^, and we can form 
combinations with the weights listed above 

T+_  =  Ti + T2 — T3 — T4 

T-+     =  Ti - T2 + T3 - T4 (5.20) 

r— = n - T2 — T3 + T4 , 

where the subscripts indicate the charges with which these transform under 
our chosen generators for the quantum symmetry, represented in S4 by 

Si = (12)(34)        and       52 = (13)(24) . (5.21) 

For comparison with the AdS model we mention one more property of the 
model that is easily probed. Chiral primary operators are given by gauge- 
invariant polynomials in the chiral fields modulo descendants; the latter 
are expressed as the Jacobian ideal of W. For these operators the scaling 
dimension is determined by the i?-charge A = |JR, hence protected from 
quantum corrections (provided we use the correct i?-symmetry). Below we 
list some of these operators. For comparison to the AdS picture, we also 
give their transformation properties under the global symmetry group. We 
label the operators by their charges under the continuous global symmetry 
of (5.14) and under the quantum symmetry group. We restrict attention 
to scalars with conformal dimension A < 4, except for the baryonic states 
which are not part of the towers of operators constructed over the low-lying 
ones. 

1. The kinetic energy operators for the four gauge fields trF? are marginal 
(A = 4) operators as discussed above. They are permuted by 54 and 
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are all invariant under U(l)3. Since they are permuted by S4 we can 
form one invariant combination, and three others transforming in one- 
dimensional representations of the discrete symmetry. Explicitly, these 
are 

/++ 

/- =    ltr(F? - F2 - F£ + F2) 

/-+ =   \tr(F? - 1% + F$ - ]%) 

/+- =   jtr(F? + Fi - Fi - Fl) , 

(5.22) 

coupling to the combinations of r^ as in (5.20) .  These couplings are 
distinguished, as found above, as being exactly marginal. 

2. The meson operators £r(X^X^), with A = 2. There are six operators 
of this type. The operators of charge (2,0,0) under ^7(1)3 transform in 
a two-dimensional representation of 54. Forming linear combinations 
we find 

x++    =   tr(X14X4l + X23X32) (5.23) 

x—    =   triXuXa -X23X32). 

Similarly, we find the operators 2/++ and y j. with charge (0,2,0) and 
2L|_+ and z+- with charge (0,0,2). 

3. The operators tr(WaW
a)i with A = 3. These are permuted by S4, 

so we form linear combinations as in (5.22) above. These all have 
i?-charge 2 but their ?7(1)3 charges must follow from anomaly cancel- 
lation, and one finds easily 

w++ (1,1,1)        ^_+    (0,3,0) (5.24) 

w__ (3,0,0)        w+_    (0,0,3) . 

4. The operator d = ^(X^Y^Z/^), with dimension A = 3. Note that 
modulo descendants there is precisely one such operator. It is invariant 
under the quantum symmetry and carries charge (1,1,1). 

5. The operators tr^XjjX^X^X^), with A = 4. Modulo descendants, 
there is one operator of type ++ for each pair of superscripts. To form 
nontrivial representations of the discrete group we find that we must 
have I = J and thus we have 

qH (4,0,0), (0,4,0), (0,0,4), (2, 2,0), (2, 0,2), (0,2, 2) 

q+- (0,0,4) (5.25) 

q-+ (0,4,0) 

q— (4,0,0). 
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6. Finally, because the gauge group is 5f7(iY)4, we can construct baryon 
operators of the form 

Bii=^"*»^...bN(x!j)*.-.(X!j)
b«N  , (5.26) 

with / determined by ij. The £4 transformation properties, like those 
of the X1, are determined by the index structure. Thus, for each / 
we can form two baryons and two antibaryons. Since baryon number 
is broken in this theory the latter term requires clarification. It is 
appropriate in the sense that a baryon-antibaryon state can decay to 
mesonic states. Constructing linear combinations with definite charges 
under the quantum symmetry, we find in each sector a baryon and 
an antibaryon.  In the twisted sectors these have charges (A7", 0,0) , 
(0, Af,0)_+, and (0,0,iV)+_. In the untwisted sector we find all three 
charge configurations. 

5.3    The AdS compactification 

The dual AdS theory is found following [12] . We utilize the construction of 
[102] once more, constructing the theory as a quotient of the theory with 4iV 
branes. But in this case, we first use the original AdS/CFT duality to map 
this latter to a IIB compactification on AdS*, x 55. We then implement the 
quotient in this dual theory. It is clear that since we are taking the quotient 
by a subgroup of 50(6), this acts purely on the S'5, leaving the AdS space 
untouched. Thus the resulting theory is indeed of the form AdS*, x iJ5, 
predicting a conformal field theory on the branes. The horizon is in this 
case simply 

Hb = 3*1(1,2 x Z2) , (5.27) 

which is singular along three circles. As discussed in 5J, we expect to find 
three twisted sectors corresponding to these fixed loci. 

In section 4, the group of supersymmetric isometries of the quotient was 
computed to be t/(l)3 x 53. The [7(1) factors correspond to rotation by 
a phase of each of the three complex coordinates, while the 63 permutes 
these. Each of the generators of the continuous group acts as a rotation 
on one of the fixed circles; the discrete group permutes the three. These 
are gauge symmetries in the AdS compactification and will couple to the 
global symmetry currents in the boundary CFT. We can ask which of 
these are i?-symmetries. To answer this, note that our one supersymmetry 
generator, out of the four in the covering theory, is the invariant spinor in the 
decomposition of the 50(6) spinor representation under 577(3) 4 = 3 © 1. 
The i?-symmetries are then those transformations which act (by phases) on 
this representation. This immediately shows that the diagonal 77(1) and all 
odd permutations in 53 are .R-symmetries, and indeed predicts the correct 
action on the supercharges. 
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Thus the isometry group of Hb contains the i?-symmetry of the CFT 
as shown in general in section 3, as well as a part of its global symmetry, 
but not all of the latter. First of all, the baryonic symmetry is not realized 
as an isometry. As in our general discussion of quotient singularities, this 
corresponds to a gauge symmetry in the AdS theory carried by periods of 
the RR four-form about three-cycles in if5. These are constructed along 
the lines of the discussion for non-isolated singularities. The structure of 
if5 transverse to each of the three singular circles is C2/Z2, containing in 
its resolution a two-cycle Ej. These lead to nontrivial three-cycles in if5 

of the form Ci = S; x 5/. The periods of the RR four-form about these 
yield the gauge fields for a Z7(l)3 symmetry corresponding precisely to the 
baryon number symmetry in the worldvolume, as in our general discussion 
of quotients above. 

Second, there are still discrete group actions we have not accounted for 
by isometries. The first of these, as expected, is the quantum Z2 x Z2 action 
under which the untwisted sector states are uncharged, while the twisted 
sector states have charges ( ), (—h), and (H—).   It is gratifying to find 
that the extension of S's by this action is precisely 54, as discussed above. 
Having now found this, we now note that if we find three objects permuted by 
63 then their charges under the quantum symmetry must be the ones listed 
above, since this is the only situation that arises from 54 representations. 
The additional Z2 associated to charge conjugation is also not evident as 
an isometry. Charge conjugation is associated to orientation reversal for 
the open strings in the theory, and this symmetry is mapped under the 
correspondence to the action of the center of the SL(2,Z) duality group of 
IIB string theory. It thus commutes with all other actions. As shown in [30], 
this action must be accompanied by a nontrivial i?-transformation. Thus 
the AdS picture reproduces exactly the global symmetry group found in the 
CFT description. 

Having matched the global symmetries we move on to compare the mod- 
uli of the two theories (in the sense of exactly marginal couplings). The type 
IIB compactification always has a universal marginal coupling, the string 
coupling T^ = ^ + —, where x ls the RR scalar. In a compactification on 
AdSs x S5 this is the only modulus, and the gauge coupling is simply given 
by the scaling argument as r++ = T$, determined by the asymptotic value 
of the dilaton far from the branes. Extra moduli in this example must thus 
come from the twisted sectors, and indeed there are three of these. Each has 
the structure (transverse to the fixed circle) C2 /Z2 which will, according to 
our general discussion, produce precisely one marginal deformation, given 
by the periods of the two-form potentials about the one two-cycle in the 
resolution of this singularity. We label these moduli b±± according to their 
sectors; the global symmetry and the scaling argument then determine 
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T++    =   rs 

where in the second line the combination ++ does not appear. We note that 
the couplings b here should be interpreted as the deviation of the periods from 
their values at the Z2 x Z2 invariant orbifold point, i.e. 1/2. One interesting 
feature of this mapping is that the periods naturally parameterize a two- 
torus. This periodicity in principle predicts that the J\f = 1 theory that we 
are studying has an 5-duality! Extracting a precise form of this prediction 
would require knowledge of the function / above, however. In [14] this 
predicted type of duality was shown to agree with the known 5-duality of 
J\f=2 orbifold models. 

As a final check of the conjecture we compare the spectrum of conformal 
dimensions in the CFT to the mass spectrum in the AdS model. In this 
paper, we restrict attention to relevant and marginal scalars. A scalar field 
of conformal dimension A on the boundary couples [7] to a scalar field of 
mass m2 = A(A — 4). In the untwisted sector the matching spectra are no 
surprise, since fundamentally both follow by projection from the spectra in 
the covering theory, and the latter are known to agree. The twisted-sector 
fields can be studied using the methods of [23, 9]. The twisted sector fields 
propagate in six dimensions along AdS?, x S1. Precisely this situation was 
studied in [23]. (That this was done there in the context of M=2 models is 
irrelevant; in the twisted sector as formulated here no further projection is 
required and low-lying twisted states are sensitive only to the local proper- 
ties of the space.) The spectrum of chiral states is found by Kaluza-Klein 
reduction on S'1 of the fields in the well-known six-dimensional theory as- 
sociated to a C2 /Z2 singularity, modified by the presence of curvature and 
five-form flux. The resulting five-dimensional spectrum corresponds to Af=2 
supersymmetry in the four-dimensional CFT. The states are thus labeled 
by their charges under the SU(2) x U(l) i?-symmetry, where the SU(2) is 
the six-dimensional i?-symmetry and the 17(1) represents rotations of the 
fixed circle.   In our case, considering, say, the twisted sector associated to 
y = z = 0 (which we previously denoted the sector) we will find that 
since Y", Z are massive the light states will all be invariant under two of the 
[/(I)3 generators. Thus there is only one U(l) action in this sector, which 
will be a linear combination of J51 and J3. We identify 

jR = p3 + \jsi- (5-29) 

Thus the £7(1)3 charges of all the states in this sector will be of the form 
(|i?, 0,0). Note that all the twisted states predicted above indeed have 
charges of this form. 
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Gukov finds the following light scalars in the twisted sector. There are 
fields with m2 — —4 in the 3Q. Using (5.29) , we see that only one of these 
has the right i?-charge, and thus we find the field coupling to x There is 
also a triplet of m2 = —3 transforming as 82. Here again only one field has 
the correct i?-charge and couples to w of (5.24) . There is yet another set 
at m2 = 0, transforming as 84.   This too leads to a unique chiral primary 
coupling to q of (5.25) . All of these come from the multiplet of blowup 
modes.  Prom the two-form period multiplet, we find one marginal field, a 
singlet under the global symmetry.  We conjecture that this couples to the 
exactly marginal operator / , in accordance with our discussion of the 
moduli above. 

Finally, we consider the spectrum of wrapped D3-branes in this model. 
As discussed in 5. jf, these will correspond to the twisted baryonic operators. 
The three-cycles about which we propose to wrap D3-branes will be the Ci 
mentioned above. The antibaryons will be obtained by wrapping —S* x Sj. 
In each sector, according to the discussion above, the charges are restricted to 
a one-dimensional subgroup of ?7(1)3 and the total charge can be determined 
from the mass as predicted by (5.3) above. The charges under the baryon 
number symmetry follow from the intersection between the two- and three- 
cycles in H5. This yields precise agreement with the computation in the 
CFT. 

6    New examples in four dimensions 

Our choice of the Z2 x Z2 quotient construction in the previous section was 
motivated by the fact that several interesting singularities can be found by 
considering partial resolutions of this particular quotient. This was pointed 
out recently in [103, 104], where the methods of [102] were used to show that 
the moduli space of deformations included conifold transitions. Note that 
[102] studies the case of a single brane (iV = 1). In this case, according to 
our discussion in section 5, the gauge symmetry will be completely broken. 
Nevertheless it is possible to study the moduli space as a fibration of torus 
bundles over moduli spaces of a family of auxiliary Abelian gauge theories 
(obtained by gauging the baryon number symmetries), parameterized by 
the space of FI terms. These auxiliary moduli spaces have descriptions as 
toric varieties [102]. This is a nontrivial result as it requires that the F- 
term equations be expressed in terms of toric data. We have seen that 
the fiber thus described is in fact a neighborhood of the singularity in the 
internal manifold. In a sense, the baryonic degrees of freedom ignored in 
this construction represent the moduli of the singularity, while the meson- 
like U(N) invariants parameterize the positions of the branes. Thus this 
description leads directly to a description of the horizon geometry. Also, the 
Kahler class of the moduli space is explicitly parameterized by the FI terms 
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introduced. This enables a direct determination of loci in the moduli space 
at which the low-energy theory is nontrivial, as well as the corresponding 
singularities in the partial resolutions of the orbifold. 

The way this works in practice is the following. By choosing values for 
the parameters Q of the previous section we select a point in the moduli 
space of the field theory. We can then study the low-energy theory about 
this vacuum. At generic points, the result as mentioned above is the J\f=4: 
theory of branes at smooth points. There will be special values of ( which 
lead to different low-energy limits. In the AdS picture we need to recall that 
low-energy physics on the worldvolume is related to small-distance physics 
in AdSs [5, 118]. Thus, the flow to the low-energy limit corresponds to 
shrinking the horizon manifold. We thus find that the special points in 
moduli space are precisely those for which a small neighborhood is non- 
spherical—those points corresponding to locating the branes at singularities 
of the partially-resolved space. The latter were described in section 4 (and 
appendix B) following [102] , and in this section we will use this tool to 
investigate the conjectures for these singularities. 

This makes possible a direct computation of the low-energy theory. The 
horizon manifolds were described in section 4. What checks can we perform 
on the conjectures for these examples? The first test is a comparison of the 
global symmetries of the field theory to the isometry groups found geomet- 
rically. As we have seen above, in general there will be other sources for 
global symmetries. The baryonic symmetries will correspond to the periods 
of the four-form. In orbifold models there will also be discrete quantum sym- 
metries. Finally, our derivation will lead to models in which the two-form 
periods are one-half their maximum value, thus preserving the Z2 center 
of 5L(2,Z) which will appear in the field theory as a charge-conjugation 
symmetry. 

As a second check we can try to compare the spectrum of chiral primary 
operators in the CFT to the spectrum of states in the AdS compactification. 
In general, the former is an easy exercise but the latter is difficult for the 
horizon manifolds in question. What we will find relatively easy to describe 
is the spectrum of wrapped D3-brane states corresponding to baryons. Re- 
quiring only an understanding of the topology of H5 and some assumptions 
on the form of the metric (and hence on the parameter spaces of minimal- 
volume representatives of certain homology cycles which we have already 
determined in section 4.3), this will in fact be a tractable problem and we 
will make this comparison for all the models we study. 

Finally, we can compare marginal operators in the field theory to moduli 
of the AdS model. Here we will find an extension of the pattern we ob- 
served in the quotient models. For small resolutions (blowups in which each 
singular point is replaced by a curve) there will be one marginal operator, 
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corresponding to the two-form periods, and the blowup parameter will ap- 
pear as an FI parameter (more precisely as the baryonic mode corresponding 
to this). For a large blowup (in which a point is replaced by a surface) we will 
find one marginal operator again, given by two-form periods, and associated 
to two FI terms subject to a reality condition like (5.4). 

We turn now to the four singularities discussed in section 4.3; for each 
example we compute the worldvolume theory at low energies and compare 
to the AdS predictions. 

6.1    The Z2 quotient singularity 

The toric analysis shows that setting, say, Ci + C2 = 0 corresponds to leaving 
one of the Z2 singularities unresolved. In the scaling limit we thus expect to 
find the N=2 theory associated to the quotient C2/Z2. 

The most symmetric vacuum in this level set of the moment map is 
represented by 

312     =     C^2 

Z43   =   (I72, (6-1) 

all others vanishing. The gauge symmetry is broken to SU{N) x SU(N). 
The fields in (6.1) are eaten by the Higgs mechanism, while (5.13) shows 
that 124 and Y31, say, get F-texm masses. The equations of motion follow 
from (5.13) 

C^Xu    =   C41/2*32. (6-2) 

Inserting these and integrating out the massive fields, we find that the 
light fields and their charges can be taken as28 

a*   =   Xu    (N,N)       X2 = Y1Z    (N,N)       fa = Z21    (N
2-l,l) 

XI     =    Yi2     (N,N) £2=^32     (N,N) <£2 = Z34     (1,N2-1), 

(6.3) 

and plugging (6.2) in we find the superpotential 

W = C1/2tr ((Ci/20i - Cl/2<p2)(xixi - X2X2))  , (6.4) 

28Note that N is the fundamental representation and N its complex conjugate; N2 — 1 
is the adjoint representation. 
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where £ = Ci + C4- Note that the trace of Z is given a mass by the su- 
persymmetric completion of the couplings which break the Abelian gauge 
symmetry. 

The theory is observed to be in fact precisely an J\f=2 theory with the 
gauge group above and two hypermultiplets in the (N, N) representation as 
expected. These cases have been studied in detail in [12, 14, 23]. 

As in the previous section, we find a Higgs branch of the moduli parame- 
terizing motion of the branes in the transverse directions, a Coulomb branch 
describing "fractional" branes constrained to move along the singular curve, 
and the expected mixed branches. 

The dual IIB compactification on AdS^ x (S
S
/7J2) has been studied in 

detail in, e.g., [12, 14, 18, 23]. These works have provided evidence for the 
conjecture in this context, essentially along the lines of our discussion of the 
Z2 x Z2 quotient. 

We can add here only that we expect baryons in this theory in accordance 
with our discussion in 5.1] the corresponding three-cycles arise as discussed 
there. 

6.2    The conifold 

As discussed in [103, 104] there is a different codimension-one locus in the 
space of FI parameters at which we obtain a conifold singularity. This oc- 
curs at, say, £1 = 0. To find the worldvolume theory, we take C25C3 ^ 0> 
maintaining £1 = 0. The most symmetric vacuum solution in this level set 
is represented by the expectation values 

Y«A    -    f1/2 r24     —     ^2 

^34    -   Cj72! (6-5) 

all others zero. This breaks the gauge group down to SU(N) x SU(N). The 
Higgs mechanism eats the components of the multiplets with nonzero vevs. 
Inserting these expectation values into the superpotential leads to masses 
for some of the other fields, which are then integrated out by imposing their 
equations of motion. This leaves the light fields and their representation 
content as 

Xi   = =   Xu    (N,N) Y1 = Y3l    (N,N) 
x2   -- =   Zn    (N,N) Y2 = Z21    (N,N), (6.6) 

where Z21 represents the remaining massless degree of freedom after this 
field mixes with Y13. Imposing the equations of motion for the massive fields 
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we are left with the superpotential 

W = lc1/2tr (e^^XiYkXjYi)  , (6.7) 

with £ = £2 + Cs- Note that for iV = 1 we obtain precisely the charges and 
fields of (4.24) . This will not be true in general, since the singularity is in 
general obtained at the origin of a moduli space determined by the gauge 
symmetry as well as the superpotential. It is a coincidence in this case that 
for N = 1 (6.7) in fact vanishes. 

This description agrees precisely with the one found independently in 
[30] by different methods. Our approach yields an explicit derivation of this 
field theory, including the superpotential proposed in [30]. 

The model has a global symmetry group U(2) x £7(2), under which the 
fields transform as 

(N,N,2,1)©(N,N,1,2). (6.8) 

The diagonal U(l) in this is in fact anomalous, but this can be combined 
with the naive U(1)R symmetry to yield a non-anomalous C7(l)^, under 
which all the lowest components of chiral superfields have charge 1/2. The 
other £7(1) generator generates a non-i? baryonic symmetry, under which X 
and Y have opposite charges ±1. There is an additional discrete Z2 x Z2 
symmetry. We can take the generators to act as follows. One exchanges the 
two factors of the gauge group and acts on the chiral fields by exchanging X 
and y, and the other acts in the same way on the chiral multiplets but acts 
on the vector multiplets by charge conjugation. (Their product thus acts by 
exchanging the factors in the gauge group and charge conjugation, leaving 
the lowest components of the chiral multiplets untouched). Note that the 
first of these is in fact an i?-symmetry, since the superpotential changes sign. 
The global symmetry group is thus 

G = U{2)2 x (Z2 x Z2) • (6.9) 

Comparing this to (4.25) we see that as expected the baryonic symmetry as 
well as the discrete symmetry related to charge conjugation are not realized 
as isometries. The former corresponds to the four-form periods about the 
generator of Hz and the latter to the center of SX(2,Z) as in our general 
discussion. 

The classical moduli space of vacua can be found here as above. The 
invariants are given by traces of the following four generators 

ay - XiYj , (6.10) 

which inside traces all commute (using the equations of motion following 
from (6.7) ) and are subject to the relation 

^12^21 = aiia22 • I6-11) 
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To these we must add the baryonic invariants 

Bs    ~   YfY*-8, (6.12) 

where both gauge indices are antisymmetrized, so that the flavor indices are 
symmetrized. These transform in the spin-iV/2 representation of the two 
517(2) global symmetry groups. They satisfy relations of the form 

BsBt-ahafrag-* (6.13) 

for s <t. 

As in the quotient singularity of section five, the meson-like invariant 
traces (6.10) parameterize the space of Sjy invariants in N solutions of (6.11) 
. Comparing to the third line of Table 4, we see that this is precisely the 
Nth symmetric product of the conifold singularity, as expected. Including the 
baryonic invariants (6.12) will, it is expected, lead to a classical moduli space 
fibered over the space of moduli of the singularity, with the fibers describing 
the locations of N branes in the resolved space. The gauge symmetry is 
generically broken to [/(l)^-1. There are no "fractional" branches in this 
model. We do not expect such branches since the singularity is isolated. 

We can identify the baryons in the spectrum of the CFT with particles 
in the AdS compactification. As discussed above, these correspond to D3- 
branes wrapped about three-cycles in Hb. The discussion of 4-3 shows that 
this is topologically just S2 x 53, so there is a natural identification of the 
three-cycle. In fact, there are two distinct ways to write H5 as such a 
product, corresponding to the two CP1 components of the base of the 51 

fibration. These correspond to B and B of (6.12) . The space of three-cycles 
in either class is simply 52, as discussed in section 4.3. The wavefunctions 
on this space will be sections of a line bundle of degree iV as determined by 
the five-form flux through H5 [107] . Under the U(1)B X 517(2) x 5*7(2) 
isometry group, this will lead to spins (0,N/2)N and (iV/2,0)_jv in exact 
agreement with the predictions from the CFT. 

The gauge theory with no superpotential is known to flow in the infrared 
to an interacting conformal fixed point (the nonabelian Coulomb phase). 
To analyze the situation in the presence of the superpotential we can use 
once more the methods of [115] . If we preserve the full global symmetry 
mentioned above, then the scaling coefficients for the two SU(N) gauge 
couplings are identical; likewise, the anomalous dimensions for all the fields 
are the same. The superpotential is the unique one preserving the symmetry. 
The scaling coefficients are thus 

Ag    =    -2iV(l + 27) 

Ah   =   I + 27. (6.14) 
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Since they are proportional, we expect a (complex) line of fixed points. Note 
that in this case 7 = 0 is not a solution. The fixed points are all interacting 
and the line of fixed points does not extend out to weak coupling. Thus 
we have one modulus even under the Z2. We can once more relax the 
symmetry requirement, demanding only that SU(2) x SU(2) be unbroken. 
We then have two independent anomalous dimensions, and still only one 
superpotential coupling h. The scaling factors are now 

Agi    =    -2iV(l+7X+7y) 

A92    =    _2JV(1 + 7X+7Y) (6.15) 

An    =    1 + 7x + 1Y • 

Since in this case we have one condition on three couplings, there is an 
additional, Z2-odd, marginal operator. This is naturally identified with the 
difference of the two gauge couplings. More precisely, as discussed in [30] 
, for this theory we should form dimensionless combinations of h and the 
dynamical scales (complexified by 9 angles as usual), Az- = hAi. The even 
and odd couplings are then naturally 

Ai = Ai±A2 . (6.16) 

Coordinates on the critical surface should correspond to moduli of the 
background. One of these, the string coupling and axion, is clearly invariant 
under the parity symmetry implementing Z2, so maps to the even operator. 
In the case at hand, the derivation from the quotient singularity of the 
previous subsection allows us to verify this directly. If we set (2 = (3, and if 
further in the quotient model we set all gauge couplings equal TJ = r = T5, 
then the model we obtain will be at the Z2 invariant point. Then (6.14) shows 
that in fact the dimensionless coupling defined above satisfies the one-loop 
matching condition A = A/C2 = e27TlTs. The odd coupling should correspond 
to the periods of S/vs and BRR about the vanishing two-cycle. This changes 
sign under the Z2 (acting on our invariants as a —> —a, it clearly induces the 
flop). 

The type IIB compactification has as always one modulus, invariant un- 
der all the symmetries, the string coupling T5. Above, we showed that the 
worldvolume coupling A+ is determined by the asymptotic value of the dila- 
ton in the ambient space. The scaling argument relates this to the string 
coupling in the dual IIB model. As is clear in the description as a topo- 
logical product space, if5 has one nontrivial two-cycle. The interpretation 
of the odd coupling, based upon previous experience, is that it reflects the 
two-form periods about this 52. This is the same cycle we identified in the 
previous discussion (on the six-manifold) and as explained there is indeed 
Z2-odd. Thus we are led to identify 

A+    =   e2*iTs 

A-    =   /(&) , (6.17) 
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for some function /. As before, the periodicity of b predicts S'-dualities of 
the conformal field theory; in this case these are the more interesting because 
we have an interacting fixed point. On the other hand, we do not know the 
precise form of /. 

There is a particularly interesting point in the space of deformations of 
this theory, namely the point at which the two-form periods both vanish. 
At this point the conformal field theory describing the closed-string sector 
is singular. The singularity is signalled by the fact that the tension of the 
wrapped D3-brane strings vanishes. We thus expect a singularity in the 
worldvolume theory. This point presumably corresponds to the limit in 
which the gauge couplings are infinite; the Z2 symmetry will be restored at 
this point. 

6.3    The suspended pinch point singularity 

The toric analysis of section 4 shows that in codimension two in the pa- 
rameter space, where the Z2 locus intersects the conifold locus, we find a 
suspended pinch point singularity. We can locate this at £1 = £2 = 0. To 
find the worldvolume theory in this case we choose £3 ^> 0. The maximally 
symmetric ground state is then represented by 

ZZA = Cs72 , (6-18) 

breaking the gauge symmetry down to SU(N) x SU(N) x SU(N). Proceed- 
ing as above we find that the light fields and their representations are 

X   =   Xu    (N.l.N)        ^ = 124    (1,N,N)        Z = Z12    (N,N,1) 

X    =    Y31    (N,1,N)        Y = X32    (1,N,N)        Z = Z21    (N,N,1) 

(6.19) 

and 
^=^43     (1,1,N2-1). 

Integrating the massive fields out by imposing their equations of motion we 
find the superpotential 

W = trU(YY -XX) + (3
1/2(ZZXX -ZZYY))  . (6.20) 

Comparing with the discussion in section four we see that in this case setting 
N = 1 will not lead directly to an identical description. Indeed, (6.20) does 
not vanish in this case. 

The model has a U(l)5 global symmetry group preserving the superpo- 
tential up to an overall phase. Of this, one 17(1) is anomalous and combines 
as usual with the naive U(1)R to yield the non-anomalous U(iyR under 
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which the bifundamental fields have unit charge and (j) charge 2. Of the non- 
R symmetries, a U{1)2 subgroup are baryonic. There are additional discrete 
symmetries of the model. One of these exchanges the first two factors of the 
gauge group, simultaneously exchanging X with Y (and X with Y") and Z 
with Z. This is an i?-symmetry because the superpotential changes sign and 
the previous footnotes apply. The other symmetry acts as complex conju- 
gation on the vector multiplets and on the components of (j) while replacing 
X1 with X1. This preserves the superpotential. The total global symmetry 
group is thus 

U{lf x (Z2 x Z2) . (6.21) 

Comparing to (4.35) we see that as expected, the baryonic U(l)2 and 
charge conjugation are not realized as isometries. The latter is the center 
of the duality group. The former should correspond to periods of the RR 
four-form about three-cycles in iJ5. Because the horizon in this case is 
not smooth we will need to resort to our heuristic description of the cycles, 
justified by its success in describing non-isolated quotients. The construction 
of section 4 suggests, along these lines, that there are two kinds of three- 
cycles on iif5. The first, which we denote A, arising from the fiber structure 
as in the case of the conifold, is topologically 53. The second, arising as in 
the non-isolated quotient case, is C = S x Sl where the 51 is the singular 
circle #0 = 2/0 = 0 and S is the two-sphere resolving the C2/Z2 singularity in 
the transverse space to the circle. This description suggests that one of the 
Z2 generators in (6.21) be interpreted as the quantum symmetry associated 
to this singularity. This is the first generator mentioned above; the baryon 
current associated to C cycle should be reversed by this, identifying this as 
Ji — J2, where Ji couples to the [/(I) in the ith factor of the gauge group. 
We complete our basis with the even current J3. The basis of three-cycles 
will be discussed below. 

The moduli space of vacua is found once more by constructing the holo- 
morphic invariants in the fields. Once more we find several branches. The 
invariants are traces of products of 

a   =   XX = YY        c = XYZ 

b   =    ZZ        d = YXZ 

and 
0, (6.22) 

where the second equality in the first line uses (6.20) . Using the rest of(6.20) 
we see that under traces these all commute. They satisfy the relation 

a2b = cd . (6.23) 

To these we must add baryonic invariants, in this case we have one baryon 
for each bifundamental chiral multiplet, satisfying the relations 

BxBx    -   By By - a^ 
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BzBz   -   bN . (6.24) 

The traces of products of (6.22) parameterize a symmetric product of iV 
copies of the space determined by (6.23) . Comparing to the second line of 
Table 4, we see that this is precisely the suspended pinch point. Thus these 
moduli describe the motion of N branes in the vicinity of the singularity. 
At generic points in the space, (f) is massive. The gauge symmetry is broken 
down to U(l)N~l, and all massless matter is neutral, leading to the expected 
accidental J\f=A SUSY. Incorporating the baryonic fields we expect to find 
as above that the moduli of the singularity itself, as well as the positions of 
the branes on the resolved geometry, comprise the moduli space. 

There is another branch of the moduli space along which </> is nonvanish- 
ing. Then (6.20) implies that of the invariants above only b can be nonzero, 

while X and Y are massive. This branch thus has the form (CN/Sjsr) and 
describes the splitting of branes into pairs of fractional branes constrained to 
move along the z axis, where there is a vanishing cycle. The gauge symmetry 
is generically t/(l)2iV_1 and there is no charged massless matter. Along this 
branch, only Bz and B^ are massless. Along this branch the moment map 
satisfies (3 = 0. As usual there are mixed branches in which some of the 
branes have split and </> has smaller rank. 

We can identify the baryons in the CFT with particles in the AdS com- 
pactification representing D3-branes wrapping three-cycles in the horizon. 
The discussion above allows us to identify these. The fact that Bz and B^ 
remain massless for vacua corresponding to generic Ci provided £3 = 0 shows 
they are related to the three-cycle C from our discussion above. They are 
thus interpreted as D3-branes wrapped about ±C. Note that these two are 
indeed exchanged by the quantum symmetry, as one would expect. The cy- 
cle A, as in the conifold case, has two natural representatives. Recall from 
section 4 that the horizon H5 is a U{1) bundle over WCP1,2 x WCP1'2. Over 
a point in the first factor in the base we find a three-cycle we can denote 
A. Over a point in the second factor we find a cycle which one can show 
is homologically A = —A. We keep these two distinct since they trans- 
form differently under the global symmetry group (again in analogy with 
the conifold). The quantum symmetry acts on the homology as C -» — C 
and A —» A — C, and the charges under the baryonic symmetries show that 
the baryonic states correspond to D3-branes wrapping three-cycles as follows 

Bx^A By -> A - C Bz-^C 
Bx-*A By^A   +   C B^-C. (6.25) 

To look for candidate truly marginal operators we once more appeal to 
the methods of [115] . The most general gauge-invariant superpotential pre- 
serving the full global symmetry has two couplings multiplying the two kinds 
of terms in (6.20) . The anomalous dimensions of X and Y are constrained to 
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be the same, while Z can have a different dimension. The scaling coefficients 
are 

Agit2    =   -2N{l + 7x,Y + lz)       ^A=7O/2 + 7X,Y 

A93    =   -2iV(7o + 27X,y)       Ah = l + 1z+ 7x,y ,        (6.26) 

where 70 is the dimension of (/>. These satisfy two linear relations, so we pre- 
dict two marginal couplings neutral under all of (6.21) . Relaxing the symme- 
try conditions and considering also terms breaking the quantum symmetry 
mentioned above, the four terms in W now have independent couplings, and 
the scaling coefficients are 

Agi = -2iV(l+7z+7x) 

Ag2 = -2iV(l + 7Z+7y) 

Ag3 = -2iV(7o+7x+7y) 

(6.27) 

^Ai = 7O/2 + 7Y 

A\2 = 7o/2+ 7x 

Ahl = 1 + 7z + 7x 

Ah2 = I+JZ + IY - 

The seven functions satisfy three linear relations so that we predict one 
additional, Z2-odd, marginal coupling. 

Interpreting these along the lines of the previous subsection, the one-loop 
/3-function for #3 vanishes, so we can take this as one of the even couplings. 
The /3-functions for the other two factors do not vanish and as usual the 
couplings are transmuted into dynamical scales Ai^. Together with the 
superpotential couplings we can form the dimensionless quantities Az- = hiAi. 
These are permuted by Z2, so lead to one even and one odd coupling. As 
above, we can directly identify the even coupling by recalling the derivation 
from the quotient model. One-loop matching yields (working at the Z2 
invariant point) 

53 = A/C = e2*iTs , (6.28) 

so that all three couplings gi are equal to the string coupling. The other 
two couplings will arise from two-form periods. The odd coupling is clearly 
associated to the two-cycle resolving the Z2 singularity; the even coupling 
can be associated to either of the two factors in the base. 

6.4    The complex cone over FQ 

We can apply the methods here to study one more singularity.    This is 
described as a Z2 quotient of the conifold singularity, the action on the 
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coordinates of (6.11) being (a, 6, c, d) -» (—a, — b) — c, — d). We can realize 
this model with our techniques because it can be described as a Z2 quotient 
of the conifold as mentioned earlier. We thus apply once more the methods 
of [102] for dealing with quotients. To study N branes at this point we need 
to study 2iV branes at the conifold, a theory we have discussed above. We 
take the Z2 action on the fields of (6.6) to be X —» —X. Note that on the 
invariants of (6.10) this acts by reversing all signs, preserving (6.11) and 
fixing only the origin. 

The gauge fields surviving the projection correspond to the subgroup 
SU(N)A. The surviving matter multiplets and their charges are 

Xil2    (N.l.l.N)       Yi22    (1,N,1,N), 

Xi21    (1,N,N,1)        Yi22    (1,N,1,N), (6.29) 

and the superpotential takes the form 

W = He^e^X^Y^Xj^Ym) . (6.30) 

This leaves unbroken a 17(2) x 17(2) x [7(1) x £7(1) global symmetry. The 
J7(2)2 acts as in (6.8). The diagonal U(l) subgroup of this is anomalous, and 
as usual combines with the naive i?-symmetry to form the non-anomalous 
U(1)'R under which all lowest components of the chiral fields have charge 
1/2. The remaining C/(l)3 are the baryon number symmetries. Note that 
in this chiral theory we find that in fact two of these are in fact broken 
by gauge anomalies, so that only one baryon number symmetry survives. 
In addition, there is a discrete Z4 symmetry which permutes the factors 
in the gauge group according to the cycle (1423) and permutes the four 
types of chiral multiplets cyclically so that the trace in (6.30) is unchanged. 
Including action on the vector multiplets by charge conjugation, together 
with a permutation, say (12) so that the representation content is preserved, 
and an action on the matter multiplets by the permutation determined by 
the representations (in the case at hand this is X12 <-> Y22 and X21 <->> Yn) 
extends this to an entire D4 group. Two of the elements of order two are 
associated to charge conjugation. The third, the square of the order four 
element, is in fact the quantum symmetry associated to the Z2 quotient we 
used to construct the model from the conifold. Note that two of the order 
four elements (the ones involving charge conjugation) do not preserve the 
superpotential and must be accompanied by appropriate U(1)R rotations. 
The correct global symmetry group is thus 

17(2) x [7(2) x DA . (6.31) 

Comparing to (4.29) we find the expected differences. The non-anomalous 
baryon number symmetry corresponds to the gauge symmetry carried by the 
period of the RR four-form about the unique (non-torsion) three-cycle on the 
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horizon. The Z2 isometry found in section 4 squares in fact to the quantum 
symmetry, generating the Z4 discrete symmetry. The additional Z2 action 
associated to charge conjugation corresponds to the center of SX(2,Z). 

The classical moduli space of vacua for this theory is parameterized by 
the invariant traces. In this case the generators are in fact quartic expres- 
sions, of the form 

Cijkl — ^12^22^21^11 • (6.32) 

The equations of motion following from (6.30) show that these satisfy 

CijklC-mnrs     —     ^ijrs^mnkl i (D.oOj 

so that they can be written as quadratic expressions cijki — aijUkl with 
the aij satisfying (6.11) . This corresponds to our representation of the 
transverse space as a Z2 quotient of the conifold. To these we must add the 
baryonic invariants 

Bsi2    ~   Xif2X212~5        B8ii ~ Yil^n"8 

BS2i     ~     Xi2iX22i~S BS22 ~ 5/l22^222~5- (6.34) 

These transform in two copies of (N + 1, !)# ® (1? N + 1)_JV under the con- 
tinuous global symmetry (we label the representation by SU(2)2 x U{1)B 

content; all these state have 17(1)^ charge N/2). Their transformation prop- 
erties under the discrete group follow from those of the chiral multiplets 
(6.29) . They satisfy relations of which a representative is 

Bsi2Br22Bt2lBuii ~ ClinCni2crn22Cl222C2222   > (6.35) 

valid when s > r > t > u and s — r < r — t. 

As in the previous cases, the meson-like degrees of freedom (6.32) pa- 
rameterize the iVth symmetric product of the singularity in question. Incor- 
porating the baryons, we expect to find the moduli of the singularity as well. 
At generic points on this branch the gauge symmetry is U(l)N~l; the A/'=4 
supersymmetry is restored, as expected. 

However, there is a subtlety in this case that was absent in the previous 
ones. There are additional branches in the moduli space which are purely 
baryonic, hence absent from the description we have given. To see these, note 
that the symmetries of c^/ show that (6.35) depends on the U{2) indices 
only through the combinations s + t and u + r. In fact, (6.35) together with 
(6.33) are generically sufficient to yield 

Bsu = BS2i       and       JB511 = BS22 . (6.36) 

If we now consider regions of moduli space in which all the Y variables vanish, 
however, we find that Cijki = Bu — B22 — 0, and the remaining baryons are 
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subject to no such restriction. Thus, in this region, new baryonic degrees of 
freedom are light and can parameterize new branches of the moduli space. 
To understand the low-energy physics along these branches we return to the 
description in terms of the charged fields, and assign expectation values to 
X112 and XL2I. We then see that the gauge group is broken to SU(N) x 
SU(N), and the light matter surviving the Higgs mechanism is precisely 
that of an Af=2 theory with this gauge group and two hypermultiplets in 
the (N,N) representation; inserting the expectation values into (6.30) leaves 
the expected cubic superpotential. The baryonic moduli in the full theory 
map out the Coulomb branch of the low-energy theory. The Higgs branch of 
the latter is a subspace of the large branch discussed above. The couplings 
in the J\f=2 model are determined by the remaining baryonic moduli. There 
is of course a similar story when the X variables vanish. Since the new 
branches are baryonic we cannot form mixed branches. 

This description of new branches is consistent with the geometry de- 
scribed in section 4. Recall that for each of the partial resolutions of this 
singularity there is a curve of Z2 quotient singularities. In this situation we 
would expect "fractional" branches in which wrapped D5-branes are confined 
to the singular curve, in agreement with the description we have given. 

We now turn to the counting of marginal operators in the theory. This 
is simplified in this case by the fact that (6.30) is the unique superpotential 
preserving the continuous global symmetry. Thus we have 

Agi = -2^(1 + 7x2+711) 

Ag2 = -2^(1 + 721+722) 

Ag3 = -2^(1 + 721+711) (6.37) 

AgA - -2^(1+7x2+722) 

Ah   =   1+2(712+722+721+711)- 

These are easily seen to obey two linear relations, leading to a two-dimensional 
space of fixed points. As usual, one of these, preserving the full discrete sym- 
metry, corresponds to the string coupling, while the other, transforming by a 
sign under all order four elements of the discrete group, should be associated 
to two-form periods. The marginal operators in the AdS description will be 
the IIB string coupling as well as the two-form periods. The relevant coho- 
mology group in this case is iJQR(i?5) = Z so we indeed expect precisely 
one such coupling. 

We can also compare the baryon spectrum to the homology cycles on 
Hb and the natural parameter spaces for their representatives. As discussed 
in section 4, the relevant homology group Hs(H5) is Z 0 Z2. The natural 
representative cycles are two families of three-spheres, such that their sum is 
the torsion element. The parameter space for each of these is a two-sphere. 



68 NON-SPHERICAL HORIZONS, I 

This is in agreement with the discussion above. In the "large" branch of the 
moduli space, there are indeed two flavors of baryons, since B12 ~ B21 and 
Bn ~ U22. These have opposite charge under the baryonic 17(1) symmetry, 
so that a state with two baryons, one from each family, is neutral. They 
also transform in the spin-7V/2 representation of (distinct) SU(2) global 
symmetry groups, corresponding to the quantization of collective coordinates 
on the two-spheres. 

7    Discussion 

Extending the AdS/CFT correspondence to describe branes at singularities 
is, as we have stressed, required for a complete description of the duality. 
Since configurations with branes at singularities occur at a finite distance in 
moduli space, the modifications to the extreme low-energy theory at these 
points should be captured by an appropriate modification of the AdS com- 
pactification. We have argued that the modification in question is to replace 
the spherical horizon with a (non-spherical) horizon manifold determined by 
the local geometry at the singular point. We expect this statement to hold 
quite generally for the types of singularities encountered at finite distance. 
In this paper, we have offered some evidence to support this extension of 
the conjecture. In complete generality, we find that the i?-symmetry group 
of the CFT is realized in the dual model by isometries of the horizon. This 
correspondence is predicted by the conjectures and the fact that it obtains 
is very encouraging. Further evidence is found by considering individual 
models in detail. 

We have presented such detailed studies of a small set of examples in 
the D3-brane case. (It will be interesting to extend this work to the case 
of M5-branes [11] as well as to the more challenging case of M2-branes.) 
Our approach to these D3-brane models allows us to derive the worldvolume 
Lagrangian (including interactions) from an explicit construction. In each 
case we have studied, comparisons with the predictions of the dual AdS 
model give additional evidence for the extended conjecture. The agreement 
in the baryon spectrum, in particular, is noteworthy. These states are chiral 
primaries, but their conformal weight grows at large N like iV; most tests of 
the conjectures thus far were restricted to operators whose weight remains 
finite in this limit. As in [107, 32] we interpret this agreement as evidence 
that finite N effects are captured as stringy corrections to the SUGRA theory 
on AdS. Our discussion of these states has necessitated a careful study of the 
fate of Abelian factors in the gauge group. Extending our observations on 
orbifold models, we have formulated a conjecture according to which these 
behave in one of two ways, depending upon the nature of the blowup to which 
they correspond ("small" or "big"). An explicit computation supporting 
this, giving evidence from additional examples, is expected to clarify this 
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issue soon. Another feature of our approach is that we directly find relations 
between the various models by embedding them all in the original orbifold 
theory. Thus, we can describe deformations of one into the other quite 
explicitly. 

Our discussion of these examples, while encouraging, has not been com- 
plete. Most dramatically, we have not discussed the most interesting singularities- 
the points in the moduli space at which the two-form periods vanish. At these 
points, the conformal field theory describing the closed-string perturbation 
theory is singular, and we expect new light degrees of freedom, described 
by wrapped branes, to propagate in the brane worldvolume. It is not clear 
if these will decouple from the low-energy theory on the worldvolume but 
this appears unlikely. A more explicit description of these theories than the 
one we have obtained—as the infinite-coupling limit of one of our gauge 
theories—would presumably lead to an understanding of this issue. 

Related to this is the question of the quantum corrections to the classical 
moduli spaces we have constructed. These are important near the interacting 
conformal theories and understanding the corrections in the dual AdS model 
would be useful. More speculatively, it should be possible to make more 
explicit statements about the UV/IR connection that has played such an 
important role in our construction. In particular, some properties of RG 
flow should find corresponding properties in the radial dependence of the 
background fields in the associated SUGRA solutions. 
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Appendix A. Sasaki and G2 structures 

We collect here the definitions of the various geometric structures which 
occur on horizon manifolds, taken from [49, 50, 44]. All of these are implied 
by existence of certain numbers of Killing spinors, as we explained in section 
2. 
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A metric contact structure on a Riemannian manifold H2n~1 (with met- 
ric (, )) consists of a vector field X, a one-form 77, and a (1,1) tensor field (f> 
such that 
(i) rj A (dr])71-1 ^ 0 
(ii) 7i(X) = 1, <I>(X) = 0 (iii) (j)2 = -1 + 77 ® X 
(iv) ((/)(F), ^(W)> = (F, W) - r,(V)ri(W) 
(v) ^(F, W) = 2(V, </>(W)) where ^(V, W) = ^(77(W))-Wr(77(F))-77([F, W]). 

A Sasaki structure is a metric contact structure such that 
(vi) X is a Killing vector field, or equivalently, VyX = —</)(V) 
(vii) (Vv^)(W0 = (V, W)X - ri(W)V. 
A Kahler structure on the cone C(H) determines a Sasaki structure on H 
as follows. Let J be the parallel complex structure on C(H) determined by 
the Kahler structure. Then 

X = J(dr),    V(V) = (X,V),    4> = VX (A.l) 

defines the Sasaki structure, where dr is the radial vector field. 

A 3-Sasaki structure29 consists of a triple of Sasaki structures (<^, Xz-, rji) 
such that 
(i) Xi, X2, X3 are orthonormal 
(ii) [Xi, X2} = 2X3, [X2, X3] = 2X1 ,[X3,X1] = 2X2 

(iii) 0302 = -01 + % ® X3,     0203 = 01 + Vs ® -^2, 
0103 = -02 + 773 ® -X"i,     0301 = 02 + Vl ® -^3, 
0201 = -03 + 771® -^2,      ^1^2 = 03 + m ® -Xl- 

A hyper-Kahler structure on the cone C(if) determines a 3-Sasaki structure 
on H as follows. Let /, J, if be parallel complex structures on C(H) such 
that IJ = — JI = K. Then the three Sasaki structures are given by 

Xi =/($.),    X2 = J(dr),    X3 = -K(dr) (A.2) 

with r]i and 0; determined from Xj as in (A.l). 

To describe nearly-parallel G2-structures, we must first recall that the 
action of 50(7) on A3(1R7)* has two open orbits, the definite three-forms 
and the indefinite three-forms [46]; the stabilizer of any definite three-form 
is (conjugate to) the compact group G2 whereas the stabilizer of an indefinite 
three-form is the non-compact form of G2. A three-form on a seven-manifold 
is called definite if it is definite in each tangent space. 

A nearly-parallel G2-manifold^0 is a seven-manifold with a definite three- 
form 0 such that V0 = *0. The Riemannian metric is automatically Ein- 
stein. There is a one-to-one correspondence between nearly-parallel O2- 
structures on H and Spin(7)-structures on C(H). 

29These structures have recently made an appearance in the study of rigid M — 2 
super confer mal hypermultiplets [119]. 

30We thank K. Galicki for a discussion on terminology, and for pointing us to his expos- 
itory paper with C. P. Boyer (hep-th/9810250) which contains an extensive bibliography 
on this subject. 
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Appendix B. D-term equations and Moduli Spaces 

The standard construction of the moduli space for the Z2 x Z2 quotient 
proceeds by constructing all the holomorphic SU(N)4: invariants in the chiral 
fields, modulo the F-term relations. In addition to (5.15) we then have the 
baryons Bij ~ X^, subject to relations of the form (suppressing numerical 
factors) 

S14B41    =    xl BuBzi = Ui B12B21 = z1 

B2ZB32    =   ^2 B24B42 = 2/2 ■s34#43 = ^2   • (B-1) 

Together with (5.15) these give coordinates on the full moduli space. 

The D-term equations for this case are 

^14^4 + Y13Y^ + ZnZli - xlXa - Y^Y31 - Z^i = Ci 

^23^3 + Y24Yl + Z2lZl1 - Xl2Xi2 - ^42^42 " Z^Z^ = C2 

XZ2Xl2 + YZ1Y^ + ^34^4 - ^3X23 - 14^13 - ^3^43 = Cs  (B.2) 

X4iX41 + 142*42 + ^43^43 " X14Xi4 — Y24Y2± — Z^Z^ = (4 , 

where the Q are free to vary subject to J2i 0 = 0- As in section 5, it is useful 
to study the various "slices" of this moduli space in which the (Vs are held 
constant. 

To make contact with the description of this space in terms of toric 
geometry, and in particular to correctly identify the points in moduli space 
corresponding to interesting singular geometries, we review from [102, 103, 
104] another description of this space in the case iV = I.31 In that case, the 
F-flatness conditions arising from (5.13) themselves describe a toric variety, 
as they are all of the form "one monomial equals another monomial." Some 
combinatorial manipulations ([103, 104], following the method of [112]) show 
that we can describe this toric variety as a quotient of C9 with (homogeneous) 
coordinates pi, ..., pg by ?7(1)3, acting with charge matrix:32 

/ Pi       P2       P3      P4     P5     P6     P7     P8     P9 \ 
0      -1-11 
-10-10 

V-i   -loo 

0 0 1 0 0 
1 0 0 1 0 
0 1 0 0 1/ 

(B.3) 

The invariant coordinates are: 

Xu = P1PSP9     X23 = P1P5P9     X32 = P1P6PS     X41 = P1P5P6 

Yu = P2P4P9       ^24 = P2P7P9      I3I = P2P6P7      I42 = P2P4P6 • (B.4) 

Zn = P3Pm      Z21 = P3P5P7      Z^ = P3P7P8      ^43 = P3P4P5 

31 This description does not appear to directly generalize past N — 1. 
32We have used different bases than either [103] or [104], in order to clarify certain points 

below. 
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These satisfy all of the F-term equations, viz., 

-Xl4*42 = P1P2P4P6PSP9  = ^13-^32, ^14^43 = PlPsPlPsPsPd = ^12-^23, 

^23^31 = P1P2P5P6P7P9 = ^24-^41, -^23^34 = PlPsPbPlPsPd  = ^21^14, 

^32^24 = P1P2P6P7PSP9  = ^31-^14, ^32^21 = PlP3P5P6P7PS =  ^34-^41, 

XaYiz = PIP2P4P5PQP9 = ^42-^23, ^41^12 = PlPsPlPsPsPS  = ^43-^32 • 

^13^34 = P2P3P4P7P8P9 =  ^12^24, 

^24^43 =P2P3PmP7P9  = ^21^13, 

^31 ^12 = P2P3PmP7P8  = £34*42, 

^42^21 = P2P3P4P5P6P7 = Z43Y31. 
(B.5) 

The D-term equations from our theory are associated to a Z7(l)4 action 
on the fields X^-, Y^-, Z^-, and this can be lifted to a second £7(1)4 action on 
the fields pa, with charge matrix: 

/ Pi       P2       P3       Pi       PS       P6      P7     P8     P9\ 
1 0 0 1 -1 -1 0 0 0 
0 1 0 -1 1 -1 0 0 0 
0 0 1 -1 -1 1 0 0 0 

l-l -1 -1 1 1 1 0 0 0/ 

(B.6) 

(Of course, the diagonal U(l) acts trivially as expected.) To verify that 
we have lifted the charge assignments correctly, we calculate the induced 
charges on the invariant coordinates, from (B.4) and (B.6): 

/ Xu    X23    X32    X41    Yis    Y24    ^31    5^42    Zu    Z21    Zz4    Z43 \ 
-10       0 

1       0       0 
0        1      -1 

V -1       0        0        1        0-10       1       0       0-11/ 
(B.7) 

These are exactly the expected charge assignments for our theory. 

The four C/(l)'s in (B.6) have associated FI terms with coefficients (1, 
C2, C3) C4- If we collect the charges from all seven U(iys into a single matrix, 
and include the FI coefficients as an extra column, we obtain 

1 0 0 -1 1 0 -1 0 1 
0 1 -1 0 0 1 0 -1 —; 
0 -1 1 0 -1 0 1 0 0 
-1 0 0 1 0 -1 0 1 0 

f1 0 0 1 -1 -1 0 0 0 CA 
0 1 0 -1 1 -1 0 0 0 C2 
0 0 1 -1 -1 1 0 0 0 C3 

-1 -1 -1 1 1 1 0 0 0 C4 
0 -1 -1 1 0 0 1 0 0 0 

-1 0 -1 0 1 0 0 1 0 0 
v-1 -1 0 0 0 1 0 0 1 0 / 

(B.8) 
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Doing a few row operations, this becomes: 

/I 0 0 1 -1 -1 0 0 0 C1 \ 
0 1 0 -1 1 -1 0 0 0 C2 
0 0 1 -1 -1 1 0 0 0 C3 
0 0 0 0 0 0 0 0 0 ECi 
0 0 0 -1 0 0 1 0 0 C2 + C3 
0 0 0 0 -1 0 0 1 0 C1+C3 

\0    0    0     0       0     -1    0    0    1    C1 + C2/ 

(B.9) 

(Notice that as expected we must have YlO — 0-) In ai1 appropriate region 
of ( space, we can use the last three rows of (B.9) to eliminate py, ps: P9, 
and we are left with precisely the toric description of a Z2 x Z2 quotient 
singularity given in section 4.2, with the D-terms precisely identified. (The 
notational coincidence of using Q for the -D-terms (B.2) is now seen to be a 
precise correspondence with the moment map of section 4.2.) 
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