RIGIDITY THEOREMS FOR PRIMITIVE FANO 3-FOLDS

FRÉDÉRIC CAMPANA AND THOMAS PETERNELL

INTRODUCTION

A fundamental problem in the classification theory of algebraic manifolds is how many different projective structures can exist on a given manifold X_0. The answer may vary from only few structures to the existence of moduli spaces.

In case X_0 is the projective space \mathbb{P}_n, it is known by Hirzebruch-Kodaira [HK] and Yau [Y] that any projective manifold homeomorphic to X_0 is again \mathbb{P}_n. For n even this requires the existence of a Kähler-Einstein metric on the potential candidate X homeomorphic to \mathbb{P}_n. But already for the quadric Q_n the analogous result is known only in case n is odd (Brieskorn [Br]). Even the surface case is unsettled: there might be a surface of general type which is homeomorphic to $\mathbb{P}_1 \times \mathbb{P}_1$. The projective structures on $\mathbb{P}_1 \times \mathbb{P}_1$ of Kodaira dimension $\neq 2$ are just the ruled surfaces $\mathbb{P}(\mathcal{O}_{\mathbb{P}_1} \oplus \mathcal{O}_{\mathbb{P}_1}(-n)), n \in \mathbb{N}$ even.

Unknown are also the possible projective structures on $\mathbb{P}(\mathcal{O}_{\mathbb{P}_1} \oplus \mathcal{O}_{\mathbb{P}_1}(-1))$ different from $\mathbb{P}(\mathcal{O}_{\mathbb{P}_1} \oplus \mathcal{O}_{\mathbb{P}_1}(-n)), n \in \mathbb{N}$ odd, which again are suspected not to exist.

The next interesting surfaces to look at would be Fano surfaces X_0 (i.e. $-K_{X_0}$ is ample), which are classically called del Pezzo surfaces. It is well known that Barlow's surface (which is of general type) is homeomorphic to \mathbb{P}_2 blown up in 8 points. But for instance it is unknown whether there is a surface of general type homeomorphic to \mathbb{P}_2 blown up in, say, 2 points.

The aim of this paper is the study of projective structures on certain Fano 3-folds X_0. As we already saw in the surface case, difficulties arise to exclude possible X with K_X ample, or K_X nef ($\langle K_X.C \rangle \geq 0$ for every curve C). In the 3-fold case this can be excluded if we know that $\chi(\mathcal{O}_X) > 0$ using a result
of Miyaoka. Of course, $\chi(O_{X_0}) = 1$, so we ask whether $\chi(O_X)$ is a topological invariant for projective 3-folds.

Clearly $\dim H^i(X, O_X)$ are topological invariants for $i = 1, 2$ if $b_2 \leq 2$ but whether $\dim H^3(X, O_X)$ is also invariant is a deep unsolved problem. We can force $H^3(X, O_X)$ to vanish by requiring $b_3(X_0) = 0$. So we deal only with Fano 3-folds with vanishing b_3. In case $b_2(X_0) = 1$ those X_0 are well understood and easy to deal with: X_0 is \mathbb{P}_3, Q_3, one 3-fold of index 2 and a family of index 1; any X homeomorphic to X_0 is again of the same type.

So we turn to the case $b_2 \geq 2$; we will restrict ourselves here only to $b_2 = 2$, Fano 3-folds with $b_2 \geq 2$ are classified by Mori-Mukai [MM 1,2], the most interesting case being $b_2 = 2$ or 3. Such a X_0 is called primitive if it is not the blow-up of another 3-fold along a smooth curve. In order not to overload the paper we will also restrict ourselves to primitive X_0; but certainly similar results can be proved also in the imprimitive case using the same methods.

Our result is now:

Theorem. Let X_0 be a primitive Fano 3-fold with $b_2 = 2, b_3 = 0$. Let X be a projective smooth 3-fold homeomorphic to X. Then either $X \simeq X_0$, or $X \simeq \mathbb{P}(E)$ with a rank 2-vector bundle E on \mathbb{P}_2 whose Chern classes (c_1, c_2) belong to the following set: $\{(0, 0), (-1, 1), (-1, 0), (0, -1), (0, 3)\}$ or $X = \mathbb{P}(O_{P_1}(a) \oplus O_{P_1}(b) \oplus O_{P_1}(c))$ with $a + b + c \equiv 0(3)$.

In fact, X_0 is by the Mori-Mukai classification of the form $\mathbb{P}(V)$ with V a 2-bundle on \mathbb{P}_2 of the form:

$$O \oplus O(-n) \text{ with } 0 \leq n \leq 2, \quad T_{\mathbb{P}_2}, \quad \text{or } V \text{ is given by an extension}:$$

$$0 \to O_{\mathbb{P}_2}(-2) \to O_{\mathbb{P}_2}^3 \to V \to 0.$$

Now E is just a bundle topologically isomorphic to V, i.e. with the same Chern classes.

Using analogous methods, we are able in § 7 to answer a question asked in [C2]: if Z_0 is a Moishezon non-projective twistor space, does there exist a projective threefold Z which is homeomorphic to Z_0? The answer is no, at least when b_2 is odd. Let us recall that such a Z_0 is the first known example of a manifold of class \mathcal{C} (i.e. : bimeromorphic to a compact Kähler one)
admitting arbitrarily small deformations which are not in the class \mathcal{C}. This exhibits another pathology of these Z_0. However, it would be interesting to have an example of a Moishezon manifold Z_0, diffeomorphic to some projective Z, but admitting arbitrarily small deformations which are not in \mathcal{C}.

The relationship with the other investigations of this paper is that Z_0 is nearly Fano in the sense that the Kodaira dimension of its anticanonical bundle is $3 = \dim_{\mathbb{C}}(Z_0)$.

1. Basic material on Fano 3-folds

Let X be a projective manifold with canonical bundle K_X. X is called Fano if $-K_X$ is ample. Fano manifolds are simply connected and satisfy

$$H^q(X, \mathcal{O}_X) = 0, q \geq 1$$

by Kodaira's vanishing theorem.

1.1. In case $b_2(X) = 1$ all Fano 3-folds are classified by Iskovskih, Shokurov and also Mukai [Is 1,2], [Mu]. Those with $b_3(X) = 0$ can be listed as follows:

(a) $X = \mathbb{P}^3$,
(b) $X = \mathbb{Q}_3$, the 3-dimensional smooth quadric,
(c) X is of index 2, i.e. $-K_X = 2L$ with $L \in \text{Pic}(X)$ the ample generator of $\text{Pic}(X) \cong \mathbb{Z}$, and $L^3 = 5$. X is unique by these properties and usually called V_5.
(d) X is of index one, i.e. $-K_X = L$; $L^3 = 22$. These build up a family and we write $X = A_{22}$.

1.2. Fano 3-folds X with $b_2 \geq 2$ are classified in [MM 1,2], we will only consider those with $b_2 = 2$. First recall that X is called primitive if it is not the blow-up of a 3-fold Y with $b_2 = 1$ along a smooth curve. It is obvious that this is equivalent to saying that X is not the blow up of any 3-fold along a smooth curve. The classification heavily depends on Mori's theory of extremal rays, cone theorem etc. We will make freely use of this and refer e.g. to [KMM]. X being Fano with $b_2 = 2$ we have exactly two extremal maps R_i on X giving rise to contractions

$$\varphi_i : X \to Y_i.$$
Then \(\text{Pic}(Y_i) \simeq \mathbb{Z} \), in fact \(Y_i \) are Fano with only terminal singularities with \(b_2 = 1 \), so fix ample generators \(L'_i \) on \(Y_i \) and put

\[L_i = \varphi_i^*(L'_i). \]

Lemma 1.3. \(\text{Pic}(X) = \mathbb{Z}.L_1 \oplus \mathbb{Z}.L_2. \)

Proof. [MM 1] \(\Box \)

1.4. We now give a table of all primitive (five) Fano 3-folds \(X \) with \(b_2(X) = 2, \ b_3(X) = 0 \) and their relevant numerical properties needed in this paper, according to [MM 1,2]. As to notations, let \(D_{2,1} \) denote a smooth divisor of bidegree \((2,1)\) in \(\mathbb{P}_2 \times \mathbb{P}_2 \) and let \(W_4 \) be the Veronese cone in \(\mathbb{P}_6 \).

The last column means the following: \((a, b)\) is the pair determined by the equation (observe (1.3) !) \(-K_X = aL_1 + bL_2.\)

<table>
<thead>
<tr>
<th>(X)</th>
<th>(Y_1)</th>
<th>(Y_2)</th>
<th>(-K^3_X)</th>
<th>(L^3_1)</th>
<th>(L^3_1L^2_2)</th>
<th>(L^3_1L^3_2)</th>
<th>((a, b))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbb{P}_1 \times \mathbb{P}_2)</td>
<td>(\mathbb{P}_1)</td>
<td>(\mathbb{P}_2)</td>
<td>54</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(\mathbb{P}(T_{\mathbb{P}_2}))</td>
<td>(\mathbb{P}_2)</td>
<td>(\mathbb{P}_2)</td>
<td>48</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(\mathbb{P} (O_{\mathbb{P}2} \oplus O{\mathbb{P}_2} (-1)))</td>
<td>(\mathbb{P}_2)</td>
<td>(\mathbb{P}_3)</td>
<td>56</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(\mathbb{P} (O_{\mathbb{P}2} \oplus O{\mathbb{P}_2} (-2)))</td>
<td>(\mathbb{P}_2)</td>
<td>(W_4)</td>
<td>62</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>(D_{2,1})</td>
<td>(\mathbb{P}_2)</td>
<td>(\mathbb{P}_2)</td>
<td>30</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

1.5. The structure of a Mori contraction \(\varphi : X \to Y \) of an extremal ray on a smooth 3-fold \(X \) is completely determined by [Mo] and given in the following list:

(a) \(\varphi \) is a modification. Then either \(\varphi \) is the blow-up of a smooth curve in the smooth 3-fold \(Y \). Or there is an unique irreducible divisor \(E \subset X \) contracted by \(\varphi \) to a point and either

(a1) \(E \simeq \mathbb{P}_2 \) with normal bundle \(N_E = \mathcal{O}(a), a = -1, -2 \)

(a2) \(E \simeq \mathbb{P}_1 \times \mathbb{P}_1 \) with \(N_E = \mathcal{O}(-1, -1) \)

(a3) \(E \) is a (singular) quadric cone with \(N_E = \mathcal{O}(-1) \).

(b) \(\dim Y = 2 \). Then \(\varphi \) is a \(\mathbb{P}_1 \)-bundle or a conic bundle.

(c) \(\dim Y = 1 \). Then \(\varphi \) is a \(\mathbb{P}_2 \) -bundle, a quadric bundle, or the general fibre \(F \) of \(\varphi \) is a del Pezzo surface with \(1 \leq K^2_F \leq 6 \).

(d) \(\dim Y = 0 \) and \(X \) is Fano with \(b_2 = 1 \).
1.6. We now describe the structures of φ_i in the table (1.4) according to (1.5); see again [MM 1,2].

In case $X = P_1 \times P_2$ this is obvious; for $X = P(T_{P_2})$ we have two P_1-bundle structures. $P(\mathcal{O} \oplus \mathcal{O}(-1))$ is a P_1-bundle over P_2 and the blow up of a point in P_3. $P(\mathcal{O} \oplus \mathcal{O}(-2))$ is a P_1-bundle over P_2 and also the blow-up of the unique singular (quadruple) point on W_4; the exceptional divisor D is P_2 with normal bundle $\mathcal{O}(-2)$. Finally $D_{2,1}$ is a P_1-bundle over $Y_1 = P_2$ via φ_1 and a conic bundle over $Y_2 = P_2$ via φ_2 (by our choice of (a, b)) with φ_i being the restriction of the projection pr_i to P_2.

The P_1-bundle structure is given as $P(F)$ with F a 2-bundle on P_2 defined by an extension

$$0 \to \mathcal{O}(-2) \to \mathcal{O}^3 \to F \to 0.$$

2. Topological invariants

Let X_0 be a smooth projective 3-fold with $b_1 = 0, b_2 \leq 2$ and assume X to be another smooth projective 3-fold homeomorphic to X_0. By Hodge decomposition:

$$H^q(X, \mathcal{O}_X) = H^q(X_0, \mathcal{O}_{X_0}) = 0$$

for $q = 1, 2$.

Although $b_3(X) = b_3(X_0)$, the Hodge decomposition of H^3 might a priori be quite different, so let us formulate:

PROBLEM 2.1. Is $h^3(X, \mathcal{O}_X)$ a topological invariant for projective 3-folds? (Equivalently, we could ask for $h^{2,1}$, and the same can be asked also in general for $h^{2,0}$).

Because of the unsolved problem (2.1) we will always assume $b_3(X_0) = 0$. Then clearly

$$H^3(X, \mathcal{O}_X) = H^3(X_0, \mathcal{O}_{X_0}) = 0,$$

and hence:

$$\chi(\mathcal{O}_X) = \chi(\mathcal{O}_{X_0}) = 1.$$

This vanishing has far-reaching consequences by the following result of Miyaoka [Mi], which is an immediate consequence of his inequality $c_1^2 \leq 3c_2$.

Theorem 2.2. Let X be a projective 3-fold with K_X nef. Then $\chi(O_X) \leq 0$.

Corollary 2.3. Let X_0 be a Fano 3-fold with $b_3 = 0$, X a projective 3-fold homeomorphic to X_0. Then K_X is not nef.

In particular, X carries an extremal ray by [Mo] and we can use Mori theory to examine the structure of X (if $b_2 \geq 2$). This will be done in §4. If we don’t assume $b_3 = 0$ in (2.3) then there is no apparent reason why K_X could not be ample for instance.

We now come to important methods to determine K_X going back to Hirzebruch-Kodaira [HK]. Here let us suppose X_0 to be a Fano 3-fold with $b_2 \leq 2$ for simplicity. In case $b_2 = 1$ we fix an ample generator L_0 on X_0. In case $b_2 = 2$ we let L_1, L_2 be as in (1.3). Then if $b_2 = 1$ we can write

$$c_1(X) = c_1(X_0) + 2sc_1(L), \quad s \in \mathbb{Z}$$

and for $b_2 = 2$:

$$c_1(X) = c_1(X_0) + 2(s_1c_1(L_1) + s_2c_1(L_2)).$$

Observe that the factor 2 comes from the invariance of the Stiefel-Whitney class $w_2(X)$ which is the residue class of $c_1(X)$ in $H^2(X, \mathbb{Z}_2)$. Then we have:

Proposition 2.4. Let \mathcal{G} be a holomorphic line bundle on X_0, $\tilde{\mathcal{G}}$ the corresponding one on X. Then

- (a) $\chi(X, \tilde{\mathcal{G}}) = \chi(X_0, \mathcal{G} \otimes L^s)$ if $b_2(X_0) = 1$
- (b) $\chi(X, \tilde{\mathcal{G}}) = \chi(X_0, \mathcal{G} \otimes L_1^{s_1} \otimes L_2^{s_2})$ if $b_2(X_0) = 2$.

The line bundle $\tilde{\mathcal{G}}$ corresponding to \mathcal{G} means the following: \mathcal{G} can be viewed as a topological line bundle on X and since $Pic(X) \simeq H^2(X, \mathbb{Z})$ by $H^q(X, O_X) = 0, q = 1, 2$, its carries a unique holomorphic structure, namely $\tilde{\mathcal{G}}$.

Proof. We prove only (a), (b) being completely the same. By Riemann-Roch (see e.g. [Hi])

$$\chi(X, \tilde{\mathcal{G}}) = \left[e^{\frac{1}{2}c_1(X) + c_1(\mathcal{G})} \sum_{i=0}^{\infty} \hat{A}_i(p_1, p_2, ...)\right]_3,$$
where \(p_i \) are the Pontrjagin classes of \(X \) and \(A_i \) certain universal functions. Since \(p_i(X) = p_i(X_0) \) (Novikov) and since \(c_1(X) = c_1(X_0) + 2sc_1(L) \) by assumption, we obtain:

\[
\chi(X, \mathcal{G}) = \left[e^{\frac{1}{2} c_1(X_0) + c_1(L^s) + c_1(\mathcal{G})} \cdot \sum A_i(p_1(X_0), p_2(X_0), ...) \right]_3
\]

\[
= \chi(X_0, \mathcal{G} \otimes L^s),
\]
again by Riemann-Roch. □

Remark 2.5. Of course the arguments above are independent of dimension 3 and of the Fano property of \(X_0 \). The only requirements we need are that \(c_1(X) - c_1(X_0) \) contains a holomorphic line bundle on \(X \), that \(\mathcal{G} \) has a holomorphic structure \(\mathcal{G} \) on \(X \), and that, moreover: \(\text{Pic}(X_0) = \mathbb{Z} \) or \(\mathbb{Z}^2 \). We finish this section by stating for later use the following well-known result:

Proposition 2.6. Let \(S \) be an algebraic surface with \(\pi_1(S) \) finite and \(b_2(S) = 1 \). Then \(S \simeq \mathbb{P}_2 \).

A proof can be found in [BPV, p. 135].

3. **Fano 3-folds with \(b_2 = 1 \)**

We are going to study 3-folds homeomorphic to Fano 3-folds with \(b_2 = 1 \). From (2.3) we immediately obtain:

Theorem 3.1. If \(X \) is a projective 3-fold homeomorphic to the Fano 3-fold \(X_0 \) with \(b_2 = 1, b_3 = 0 \), then \(X \) is again Fano and in fact \(X \simeq X_0 \) resp. is of type \(A_{22} \) if \(X_0 \) is of type \(A_{22} \).

Proof. By (2.3) \(K_X \) is not nef. Since \(\text{Pic}(X) \simeq \mathbb{Z}, -K_X \) must be ample, so \(X \) is Fano. By the classification of Fano 3-folds it suffices now to prove \(c_1(X) = c_1(X_0) \). Writing \(c_1(X) = c_1(X_0) + 2sc_1(L) \) \((s \geq -\frac{1}{2} \text{ index } (X_0))\), \(L \) the ample generator, we obtain from (2.4):

\[
\chi(L^s) = \chi(O_X) = 1.
\]

Using Riemann-Roch for instance it is easy to solve this equation to obtain \(s = 0 \). □
Of course (3.1) is known by [HK] for \mathbb{P}_3, by [Br] for Q_3 and in the other cases by [LS]. We should mention that the use of (2.3) can be avoided by solving

$$\chi(L^s) = \chi(O_X) = 1$$

also for all $s < 0$. In fact $\chi(L^s) = -h^3(O_X)$ for $s < 0$, hence $\chi(L^s) \neq 1$.

This arguments works in all odd dimensions, on the other hand it is not known whether there is a projective n-fold X, n even, homeomorphic to a quadric Q_n, with K_X ample.

Remark 3.2. If we don't assume $b_3 = 0$ in (3.1) we cannot conclude $\chi(O_X) > 0$ and hence K_X could be ample. If K_X is known not to be ample or trivial, then clearly X is Fano and one can apply Iskovshih's classification to X. We exclude the case $K_X = O_X$ as follows. Assume $K_X = O_X$. By the invariance of w_2, X_0 is a Fano 3-fold of index 2 or 4. Since $X_0 \neq \mathbb{P}_3$, X_0 has in fact index 2. Hence in the equation

$$0 = c_1(X) = c_1(X_0) + 2sc_1(L)$$

we have $s = -1$.

Let $\tilde{L} \in \text{Pic}(X)$ be the ample generator. By (2.4) we have

$$\chi(X, \tilde{L}^t) = \chi(X_0, L^{t-1}),$$

in particular

$$\chi(X, \tilde{L}) = \chi(O_{X_0}) = 1.$$

By Riemann-Roch we get

$$\chi(X, \tilde{L}) = \frac{c_1(\tilde{L})^3}{6} + \frac{1}{12}c_1(\tilde{L}) \cdot c_2(X).$$

Miyaoka's inequality $c_3(X) \leq 3c_2(X)$ ([Mi]) yields $c_1(\tilde{L}) \cdot c_2(X) \geq 0$. We even must have strict inequality; if $c_1(\tilde{L}) \cdot c_2(X) = 0$ we would get (by $b_2(X) = b_4(X) = 1$) $c_2(X) = 0$, so X would be covered by a torus [Y], contradiction.

Thus it is possible, using (1) and (2), to compute the pair $(c_1(\tilde{L})^3, c_2(X))$, since by Iskovshih, $1 \leq c_2(\tilde{L})^3 = c_1(L)^3 \leq 4$ (observe $b_3(X_0) > 0$).
Identifying $H^2(X_0, \mathbb{Z})$ and $H^4(X_0, \mathbb{Z})$ with \mathbb{Z}, the intersection product is just multiplication, and we obtain: $(c_1(L)^3, c_2(X)) = (1, 10), (2, 8), (3, 6), (4, 4)$. Now consider the Pontrjagin class

$$p_1(X) = c_1^2(X) = c_2(X).$$

$p_1(X)$ is a topological invariant. We compute easily in the four cases: $p_1(X_0) = -8, -4, 0, 4$. On the other hand $p_1(X) = -c_2(X) = -10, -8, -6, -4$, contradiction.

We can try to determine the type of K_X by (2.4). In fact, (2.4) gives, if we write $c_1(X) = c_1(X_0) + 2sc_1(L)$ as in (2.4),

$$\chi(X, O_X) = \chi(X_0, L^s).$$

Since $\chi(X, O_X) = 1 - h^3(O_X)$ and $h^3(O_X) \leq \frac{b_3(X_0)}{2} = \frac{b_3(X_0)}{2}$, we obtain:

$$\chi(X_0, L^s) \geq 1 - \frac{b_3(X_0)}{2}.$$

Observe that we may assume $s < 0$, otherwise X is already Fano. Now we can go to the list of Fano 3-folds X_0 with $b_2 = 1, b_3 > 0$ (of index 1 or 2); b_3 being known, we can try to solve the above inequality using Riemann-Roch on X_0. Then we obtain setting $c_1(X) = \mu c_1(L) = (2s + \tau), \tau$ the index of X_0:

<table>
<thead>
<tr>
<th>index</th>
<th>L^3</th>
<th>$\frac{b_3}{2}$</th>
<th>s</th>
<th>μ</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>21</td>
<td>$-2 \geq s \geq -5$</td>
<td>$-2, -4, -6, -8$</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>10</td>
<td>$-2, -3$</td>
<td>$-2, -4$</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>5</td>
<td>-2</td>
<td>-2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>2</td>
<td>-2</td>
<td>-2</td>
</tr>
</tbody>
</table>

(3.3)

1	2	52	$-1 \geq s \geq -5$	$-1, -3, \ldots, -9$
1	4	30	$-1 \geq s \geq -3$	$-1, -3, -5$
1	6	20	$-1, -2$	$-1, -3$
1	8	14	$-1, -2$	$-1, -3$
1	$8 < L^3 \leq 18$	\cdots	-1	-1

In any case there are only finitely many possibilities for K_X; in a lot of cases only the “dual” possibility $c_1(X) = -c_1(X_0)$. At least we can conclude that all the X homeomorphic to a given Fano 3-fold X_0 with $b_2 = 1$ form a bounded family.
4. Structure of Mori contractions on topological primitive Fano 3-folds with $b_2 = 2, b_3 = 0$ and the main result

Let X_0 always denote a Fano 3-fold with $b_2 = 2, b_3 = 0$. We assume that X_0 is primitive, i.e. X_0 is not the blow-up of a (Fano) 3-fold along a smooth curve. Let X be a projective smooth 3-fold homeomorphic to X_0. By (2.3) we know that K_X is not nef, so there is a contraction $\varphi : X \to Y$ of an extremal ray on X.

We let $\varphi_i : X_0 \to Y_i$ be the two contractions on X_0 as on (1.2) and let L_i be as in (1.2):

$$L_i = \varphi_i^*(L'_i)$$

for ample generators L'_i on Y_i.

The list of all possible X_0 together with $\varphi_i : X_0 \to Y_i$ is given in (1.4) and (1.5). In order to determine K_X we will make the following ansatz as in Section. 2:

$$c_1(X) = c_1(X_0) + 2s_1c_1(L_1) + 2s_2c_1(L_2)$$

and we know that for any line bundle G on X_0, with corresponding bundle \tilde{G} on X (2.4 (b)):

$$\chi(X, G) = \chi(X_0, G \otimes L_1^{s_1} \otimes L_2^{s_2}),$$

(4.1.1) in particular

$$1 = \chi(X, O_X) = \chi(X_0, L_1^{s_1} \otimes L_2^{s_2});$$

(4.1.2) often we will abbreviate $L_1^a \otimes L_2^b$ by $O_{X_0}(a, b)$.

Proposition 4.2. Assume that φ contracts a divisor E to a point.

Then either $X \simeq X_0 = \mathbb{P}(O \oplus O(-1))$ or $X_0 = \mathbb{P}(O \oplus O(-2))$ and $E^3 = 4$.

Proof. According to (1.3) write:

$$E = a_1L_1 + a_2L_2, \quad a_i \in \mathbb{Z}.$$

So $E^3 = a_1^3L_1^3 + 3a_1^2a_2L_1^2L_2 + 3a_1a_2^2L_1L_2^2 + a_2^3L_2^3$. On the other hand: $E^3 = 1, 2$ or 4 by (1.5).
If $X_0 = \mathbf{P}_1 \times \mathbf{P}_2$, $\mathbf{P}(T_{\mathbf{P}_2})$ or $D_{2,1}$ in (1.4), we conclude:

$$3(a_1^2a_2L_1^2L_2 + a_1a_1^2L_1L_2^2) = 1, 2, 4$$

which is impossible.

Hence $X_0 = \mathbf{P}(\mathcal{O} \oplus \mathcal{O}(\alpha)), \alpha = -1, -2$ (1.4).

(a) First assume $\alpha = -1$. Then we obtain:

$$3a_1^2a_2 + 3a_1a_2^2 + a_2^3 = 1, 2 \text{ or } 4.$$
Trivial calculations show that $E^3 = 2$ or 4 are not possible, so $E^3 = 1$ and φ is the blow-up of a simple point. In particular Y is smooth with $Pic(Y) = \mathbb{Z}$,

$$K_X = \varphi^*(K_Y) + E,$$

and obviously Y is Fano. In order to determine it, we solve:

(4.1.2) \hspace{1cm} \chi(\mathcal{O}_{X_0}(s_1, s_2)) = 1;

it is an easy exercise to see e.g. via Riemann-Roch: $s_1 = s_2 = 0$. Hence $c_1(X) = c_1(X_0)$. So $K_X^3 = K_{X_0}^3 = -56$, hence $-56 = K_Y^3 + 8E^3$ yields $K_Y^3 = -64$ and by the classification we conclude $Y \simeq \mathbf{P}_3$; so $X \simeq X_0$.

(b) Finally let $\alpha = -2$.

Then our equation reads:

$$3a_1^2a_2 + 6a_1a_2^2 + 4a_2^3 = 1, 2 \text{ or } 4.$$
The only solution for $E^3 = 1$ is $(a_1, a_2) = (-1, 1)$, $E^3 = 2$ being impossible. So it is sufficient to exclude $E^3 = 1$. (In this case Y is Fano with $b_2 = 1$, $b_3 = 0$, so $Y = \mathbf{P}_3, Q_3, V_5$ or A_{22}).

Using $L = \varphi^*(\mathcal{O}_Y(1))$ we have $L^2E = 0$, on the other hand writing $c_1(L) = \alpha_1c_1(L_1) + \alpha_2c_1(L_2)$:

$$L^2E = (\alpha_1L_1 + \alpha_2L_2)^2(-L_1 + L_2)$$

$$= (\alpha_1 + \alpha_2)^2 + 2(\alpha_1 - 2^2 - \alpha_2).$$

Both equations imply $\alpha_1 = \alpha_2 = 0$, a contradiction. \(\Box\)

Remark 4.3. If $X_0 = \mathbf{P}(\mathcal{O} \oplus \mathcal{O}(-2))$ in (4.2) then we will show in (4.8) that in this case $X \simeq X_0$, too.
Proposition 4.4. \(\varphi \) is never the blow-up of a smooth curve in a smooth 3-fold \(Y \).

Proof. Assume that \(\varphi \) is the blow-up of the smooth curve \(C \) in \(Y \). Since \(b_3(X) = 0 \), we conclude \(b_3(Y) = 0 \) and \(C \cong \mathbb{P}_1 \). \(Y \) being Fano with \(b_2 = 1 \), we have \(Y = \mathbb{P}_3, Q_3, V_5 \) or \(A_{22} \).

Let \(\mathcal{O}_Y(1) \) be the ample generator and \(L = \varphi^*(\mathcal{O}_Y(1)) \). Then \(L^3 = 1, 2, 5 \) or \(22 \), respectively. On the other hand, write again:

\[
c_1(L) = a_1c_1(L_1) + a_2c_1(L_2).
\]

Then we have the equation

\[
3a_1^2a_2L_1^2L_2 + 3a_1a_2^2L_1L_2^2 + a_2^3L_2^3 = 1, 2, 5 \text{ or } 22.
\]

From table (1.4) we conclude that necessarily \(X_0 = \mathbb{P}(\mathcal{O} \oplus \mathcal{O}(\alpha)) \) with \(\alpha = -1, -2 \), because otherwise the left hand side would be divisible by 3.

(a) \(\alpha = -1 \).

Then the only solutions are \((0, 1)\) (with \(L^3 = 1 \)) and \((-1, 2)\) (with \(L^3 = 2 \)).

If \((a_1, a_2) = (0, 1)\) then \(c_1(L) = c_1(L_2) \).

Let \(F, F_2 \) be a general non-trivial fiber of \(\varphi \) resp. \(\varphi_2 \).

Then \((-K_X.F) = 1, (-K_{X_0}.F_2) = 2 \). Since \(c_1(X) = c_1(X_0) = 0 \) (proof of (4.2)), it follows via \(c_1(L) = c_1(L_2) \) that \([F]\) is an even multiple of \([F_4]\) in \(H^4(X_0, \mathbb{Z}) \), i.e. \([F]\) is divisible by 2 in \(H^4(X_0, \mathbb{Z}) \) which is clearly false. So assume now \((a_1, a_2) = (-1, 2)\).

Write \(E = \alpha_1c_1(L_1) + \alpha_2c_1(L_2) \).

Then the equation \(L^2E = 0 \) yields \(\alpha_2 = 0 \), so \(E^3 = 0 \). On the other hand \(E^3 = -c_1(N_{C|Y}) \) which is absurd since \(Y = Q_3 \).

(b) \(\alpha = -2 \).

Now the only solution is \((a_1, a_2) = (-1, 1)\) with \(L^3 = 1 \), so \(Y \cong \mathbb{P}_3 \). With \(E = \alpha_1c_1(L_1) + \alpha_2c_2(L_2) \) we obtain as in (a):

\[
0 = L^2E = -3\alpha_2, \text{ hence } E^3 = 0
\]

and we conclude \(c_1(N_{C|Y}) = 0 \), contradiction. \(\square \)

From now on we may assume that \(\varphi \) is not a modification, hence \(\dim Y = 1 \) or \(2 \) and \(Y \) is smooth.

Proposition 4.5. Assume \(\dim Y = 2 \). Then \(Y \cong \mathbb{P}_2 \) and either:
(c1) φ is a \mathbb{P}_1-bundle, or

(c2) φ is a proper conic bundle over \mathbb{P}_2 and $X_0 = D_{2,1}$, a divisor of bidegree $(2,1)$ in $\mathbb{P}_2 \times \mathbb{P}_2$, moreover $c_1(X) = c_1(X_0)$ and $c_1(L) = c_1(L_2)$.

Proof. Since $\pi_1(Y) = 0$, X being simply connected, and since $b_2(Y) = 1$, we conclude $Y \simeq \mathbb{P}_2$ by (2.6). So X is a \mathbb{P}_1-bundle or a conic bundle over \mathbb{P}_2.

Let $L = \varphi^*(\mathcal{O}_{\mathbb{P}_2}(1))$ and write

\[c_1(L) = a_1c_1(L_1) + a_2c_1(L_2). \]

We are going to solve the equation

\[(*) \quad 0 = L^3 = 3a_1^2a_2L_1^2L_2 + 3a_1a_2^2L_1L_2^2 + a_2^3L_2^3.\]

But first we claim:

(a) if $a_2 = 0$ in case of $X_0 \neq \mathbb{P}_1 \times \mathbb{P}_2$, X is a \mathbb{P}_1-bundle over Y.

So assume for the proof : $a_2 = 0$. If $a_1 \neq \pm 1$, then L would be divisible by some line bundle L' which necessarily has to be of the form $\varphi^*(\mathcal{O}_{\mathbb{P}_2}(m))$, which is absurd. So $|a_1| = 1$.

Assume φ is not a \mathbb{P}_1-bundle. Then let F a component of a reducible fiber of φ. We have

\[(-K_X.F) = 1. \]

Now let F_1 be a fiber of φ. Then $c_1(L) = \pm c_1(L_1)$ yields $[F] = \pm [F_1]$ in $H^4(X_0, \mathbb{Z})$.

Hence $(-K_{X_0}.F_1) = \pm (K_{X_0}.F) \equiv 1(2)$ by the invariance of the Stiefel-Whitney class w_2. On the other hand, φ_1 is a \mathbb{P}_1-bundle if $X_0 \neq \mathbb{P}_1 \times \mathbb{P}_2$, so

\[(-K_{X_0}.F_1) = 2, \]

contradiction.

(b) Now let $X_0 = P(\mathcal{O} \oplus \mathcal{O}(+\alpha)), \alpha = -1, -2$. Then $(*)$ gives immediately $a_2 = 0$, so we are done by (a).

(c) If $X_0 = \mathbb{P}_1 \times \mathbb{P}_2$ then $(*)$ reads

\[3a_1a_2^2 = 0, \text{ so } a_1 = 0 \text{ or } a_2 = 0. \]

If $a_2 = 0$ we would have $L^2 = 0$ which is impossible. So we can apply (a).
(d) For $\mathbb{P}(T_{P_2})$, (*) gives:

$$3(a_1^2a_2 + a_1a_2^2) = 0$$

so $a_1 = 0$ or $a_2 = 0$ or $a_1 = -a_2$ and it is sufficient to exclude the latter possibility. But if $a_1 = -a_2$, then

$$L^2 = a_1^2(L_1 - L_2)^2.$$

Since $L^2 = F$, a fiber of φ, we obtain:

$$(-K_X \cdot F) = -2a_1^2$$

if we suppose $c_1(X) = c_1(X_0)$. Since $-(K_X \cdot F) > 0$, we have a contradiction. In order to verify: $c_1(X) = c_1(X_0)$, we write as usual:

$$c_1(X) = c_1(X_0) + 2s_1c_1(L_1) + 2s_2c_1(L_2)$$

and have (4.1.2) to solve the equation

$$\chi(\mathcal{O}_{X_0}(s_1, s_2)) = 1.$$

But $X_0 = \mathbb{P}(T_{P_2})$ can be viewed as divisor of bidegree $(1,1)$ in $\mathbb{P}_2 \times \mathbb{P}_2$, hence

$$\chi(\mathcal{O}_{X_0}(s_1, s_2)) = \chi(\mathcal{O}_{P_2 \times P_2}(s_1, s_2)) = \chi(\mathcal{O}_{P_2 \times P_2}(s_1 - 1, s_2 - 1)) = 1.$$

Now compute, using:

$$\chi(\mathcal{O}_{P_2}(t)) = \frac{(t + 1)(t + 2)}{2}$$

to get $s_1 = s_2 = 0$.

(e) It remains to treat $X_0 = D_{2,1}$.

In this case (*) reads

$$3a_1^2a_2 + 6a_1a_2^2 = 0.$$

If $a_2 = 0$, then φ is a \mathbb{P}_1-bundle by (a) and we are done. So either $a_1 = 0$ or $a_1 = -2a_2$.

First we want to exclude the latter possibility. So assume $a_1 = -2a_2$. Using

$$c_1(X) = (1 + 2s_1)c_1(L_1) + (2 + 2s_2)c_1(L_2)$$

and

$$L^2.(-K_X) = F.(-K_X) = 2,$$
we obtain: $a_2^2 = 1$; moreover $s_1 = -2s_2 - 3$.

In order to determine (s_1, s_2), we use:

$$\chi(\mathcal{O}_{X_0}(s_1, s_2)) = 1.$$

In fact,

$$\chi(\mathcal{O}_{X_0}(s_1, s_2)) = \chi(\mathcal{O}_{P_2 \times P_2}(s_1, s_2)) - \chi(\mathcal{O}_{P_2 \times P_2}(s_1 - 2, s_2 - 1))$$

is an explicit polynomial, and via the relation between s_1 and s_2, we easily obtain:

$$s_1 = 0, s_2 = -3.$$

Now consider the equation (4.1.1)

$$\chi(X, L') = \chi(\mathcal{O}_{X_0}(-2t, t - 3)).$$

Clearly $\chi(X, L') = \frac{(t+1)(t+2)}{2}$. The right hand side is also easily computed (go again to $P_2 \times P_2$), and it turns out that both polynomials are different, contradiction.

So we are left with the case $a_1 = 0$. Then we want to show that φ is a conic bundle, that $c_1(X) = c_1(X_0)$ and $c_1(L) = c_1(L_2)$.

As before, by a divisibility argument we get $|a_2| = 1$, so $c_1(L) = \pm c_1(L_2)$ also it is easy to see that φ_2 cannot be a P_1-bundle, hence must be a proper conic bundle. We have

$$c_1(X) = (1 + s_1)L_1 + (2 + s_2)L_2.$$

Since (general) fiber of φ and φ_2 have the same cohomology class, we obtain by intersecting $-K_X$ with a general fiber easily: $s_1 = 0$.

So by (4.1.1)

$$\chi(X, L') = \chi(X_0, \mathcal{O}_{X_0}(0, t + s_2)), \quad (\text{resp. } \chi(X_0, \mathcal{O}_{X_0}(-t + s_2)),$$

hence

$$\frac{(t+1)(t+2)}{2} = \frac{(t + s_2 + 1)(t + s_2 + 2)}{2} \quad (\text{resp. } \frac{(-t + s_2 + 1)(-t + s_2 + 2)}{2})$$

which gives $s_2 = 0$.

This ends the proof of (4.5) \(\square\)
Remark 4.6. We will see in sect. 5 that in fact if \(X_0 = D_{1,2} \) and \(\varphi \) is a conic bundle then \(X \simeq X_0 \).

Proposition 4.7. Assume \(\dim Y = 1 \). Then \(Y \simeq \mathbb{P}_1 \), \(X \) is a \(\mathbb{P}_2 \)-bundle over \(\mathbb{P}_1 \) and \(X_0 \simeq \mathbb{P}_1 \times \mathbb{P}_2 \). \(X \) is of the form \(\mathbb{P}(E) \) with \(E = \mathcal{O}(a) \oplus \mathcal{O}(b) \oplus \mathcal{O}(c) \) with \(a + b + c \equiv 0(3) \).

Proof. Obviously \(Y \) is rational. Write again:

\[
c_1(L) = a_1c_1(L_1) + a_2c_1(L_2).
\]

Then from \(L_1L_2 = 0 \) and \(L_3 = 0 \) we obtain \(a_2 = 0 \) and hence

\[
X_0 = \mathbb{P}(\mathcal{O} \oplus \mathcal{O}(-1))
\]
and also easily: \(X \) is a \(\mathbb{P}_1 \)-bundle, or the two equations:

\[
\begin{align*}
2a_1L_1^2L_2 + a_2L_1L_2^2 &= 0 \\
3a_1^2L_1L_2 + 3a_1a_2L_1L_2^2 + a_2^2L_2^2 &= 0,
\end{align*}
\]

are satisfied.

Now using table (1.4) it is trivial to obtain a contradiction in all cases but \(a_2 = 0 \). If \(a_2 = 0 \) we proceed as above. So \(X = \mathbb{P}(E) \to \mathbb{P}_1 \), and the 3-bundle \(E \) has obviously the form as stated above. \(\square \)

We are coming now back to a special situation to be still treated (see (4.3)).

Proposition 4.8. Assume that \(\varphi \) contracts a divisor \(E \simeq \mathbb{P}_2 \) with \(E^3 = 4 \) to a point and assume \(X_0 = \mathbb{P}(\mathcal{O} \oplus \mathcal{O}(-2)) \). Then \(X \simeq X_0 \).

Proof. Write

\[
c_1(\mathcal{O}_X(E)) = \alpha_1c_1(L_1) + \alpha_2c_1(L_2).
\]

Then solve the equation

\[
4 = E^3 = \alpha_2(3\alpha_1^2 + 6\alpha_1\alpha_2 + 4\alpha_2^2)
\]
the solutions are \((\alpha_1,\alpha_2) = (0,1),(-1,4)\) and \((-2,1)\). Now put \(c_1(L) = \alpha_1c_1(L_1) + \alpha_2c_1(L_2) \) in to \(L^2.E = 0 \). Then this rules already \((\alpha_1,\alpha_2) = (0,1)\) resp. \((-1,4)\).

So \((\alpha_1,\alpha_2) = (-2,1)\). This gives by \(L^2.E = 0 \) : \((a_1,a_2) = (0,a_2)\), hence by divisibility as usual : \(a_2 = 1 \). Moreover we see that lines in \(E \) and lines in
the exceptional divisor of φ_2 have the same cohomology class. This implies by intersecting
\[c_1(X) = (1 + s_1)c_1(L_1) + (2 + s_2)c_1(L_2) \]
with such a line:
\[s_1 = 0, \text{ resp. } s_1 = 1 \text{ if } c_2 = -1. \]
The case $s_1 = -1, a_2 = -1$ is excluded as follows. From $1 = \chi(O_X) = \chi(O_{X_0}(-1, s_2))$ we first see $s_2 > 0$. By Serre duality we obtain $\chi(X_0, L_2^{-s_2-2}) = -1$. Computing on the Veronese cone $Y_2 = W_4$ we easily derive a contradiction. Now by (4.1.2):
\[1 = \chi(X, O_X) = \chi(X_0, O_{X_0}(0, s_2)) \]
and consequently $s_2 = 0$. So $c_1(X) = c_1(X_0)$. Let $L' \in \text{Pic}(Y)$ with $\varphi^*(L') = L$.

We want to compute Fujita's Δ-invariant:
\[\Delta(L') = 3 + L'^3 - h^\circ(L'). \]
First note: $L'^3 = L^3 = L_2^3 = 4$.

In order to compute $h^\circ(L') = h^\circ(L)$ we notice that because of $c_1(X) = c_1(X_0)$ and because of the invariance of $p_1(X) = c_1^2 - 2c_2$, we have $c_2(X) = c_2(X_0)$, too, and hence by Riemann-Roch:
\[\chi(L) = \chi(L_2). \]
This $\chi(L') = \chi(L) = 7$.

Now Y is 2-Gorenstein (see [Mo]), $\rho(Y) = 1$ and L' is the ample generator of $\text{Pic}(Y) \simeq \mathbb{Z}$. Moreover we compute easily:
\[-K_Y = \frac{3}{2}L'. \]
Hence we get
\[H^q(Y, L') = 0 \]
by the vanishing theorem of Kawamata-Viehweg (see e.g. [KMM]), since $L' - K_Y$ is ample. Consequently $h^\circ(L') = 7$ and $\Delta(L') = 0$. By [Fj], the linear system $|L'|$ is base point free and in fact defines an embedding:
\[Y \hookrightarrow \mathbb{P}_6. \]
Now the unique singular point $y_0 \in Y$ is a quadruple point by [Mo], hence if $l \subset P_5$ is a line through y_0, then either $l \cap Y = \{y_0\}$, or $l \subset Y$.

This Y is the cone over the Veronese $P_2 \hookrightarrow P_5$ with vertex y_0. But this is also exactly the description of $Y_2 = W_4$, then $X \simeq X_0$. \hfill \square

Taking the results of sect. 5 for granted (see remark 4.6) we can rephrase the results of the section as follows.

Theorem 4.9. Let X_0 be a primitive Fano 3-fold with $b_2 = 2$, $b_3 = 0$. Let X be a projective 3-fold homeomorphic to X_0. Then either $X \simeq X_0$ or $X = P(\mathcal{O}(a)\oplus\mathcal{O}(b)\oplus\mathcal{O}(c))$ with $a+b+c \equiv 0(3)$. $X \simeq P(E)$ with E a rank 2-bundle on P_2 given in the following table (we normalise E such that $c_1(E) = -1$ or 0).

In fact, every X_0 has the form $P(V)$ (unique up to $P(T_{P_2})$) over P_2 and $c_i(E) = c_i(V)$ (i.e. E and V are topologically the same).

<table>
<thead>
<tr>
<th>X_0</th>
<th>$c_1(E)$</th>
<th>$c_2(E)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_1 \times P_2$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$P(T_{P_2})$</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$P(\mathcal{O} \oplus \mathcal{O}(-1))$</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>$P(\mathcal{O} \oplus \mathcal{O}(-2))$</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>$D_{2,1}$</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

(4.9)

Proof. We consider our extremal contraction $\varphi : X \rightarrow Y$.

(1) If φ is a modification, then by (4.2), (4.4) and (4.8) : $X \simeq X_0$.

(2) If $\dim Y = 2$, then by (4.5) : $Y \simeq P_2$ and either X is a P_1-bundle over P_2 or $X_0 \simeq D_{2,1}$ and X is a conic bundle. In the latter case, $X \simeq X_0$ by (5.1).

So assume $X \simeq P(E) \rightarrow P_2$.

Now write $X_0 = P(V)$ with $V = \mathcal{O}_{P_2} \oplus \mathcal{O}_{P_2}(-n)$, $n = 0, 1, 2$ or $V = T_{P_2}$ or $c_1(V) = 0$, $c_2(V) = 3$ (in case $X_0 = D_{2,1}$).

Then $p_1(P(E)) = p_1(P(V))$.

Since $\varphi(p_1(P(E))) = (c_1^2(E) - 4c_2(E))$ for the projection $\varphi : X \rightarrow Y$ and since we know $\varphi_* = \varphi_{i*}$ for $i = 1$ or 2, we conclude

$$c_1^2(E) - 4c_2(E) = c_1^2(V) - 4c_2(V).$$
Since E is normalized and V is explicitly known we obtain our table.

(3) If $\dim Y = 1$, then apply (4.7). □

Remark 4.10. Of course if $X = \mathbf{P}(E)$ as in the table, then $X \simeq X_0$ topologically, since two rank 2-bundle on \mathbf{P}_2 with the same Chern classes are topologically equivalent (see [OSS]).

Some words to the existence of E with $c_i(E)$ as given on the table. There are always a lot of instable 2-bundles E which can be constructed by the Serre correspondence (see [OSS]). But a semi-stable E (different from the original bundle) exists only in $X_0 = D_{2,1}$; they are described by a moduli space of dimension 9.

5. THE PROPER CONIC BUNDLE CASE

After 4.5 and 4.6, the last remaining case is the following:

Proposition 5.1. Let X be a threefold homeomorphic to $X_0 = D_{2,1}$ (see 1.4 for notations).

Assume $\varphi : X \to \mathbf{P}_2$ is a proper conic bundle, that $c_1(X) = c_1(X_0) = L_1 + 2L_2$, and $L_2 = \varphi^*(O_{\mathbf{P}_2}(1))$, the identifications being obtained from the equalities: $\text{Pic}(X) = H^2(X, \mathbf{Z}) = H^2(X_0, \mathbf{Z}) = \text{Pic}(X_0)$.

Then X is analytically isomorphic to X_0.

The proof of (5.1) will be prepared by several lemmata. We denote by l a general line in \mathbf{P}_2 meeting the discriminant locus Δ of the conic bundle transversally. Then $S = S_1 = \Phi^{-1}(l)$ is a smooth surface.

Lemma 5.2. S is the blow-up of a ruled surface $\mathbf{P}(O_{\mathbf{P}_1} \oplus O_{\mathbf{P}_1}(k))$ in three points.

Proof. Clearly S is the blow-up of a ruled surface $\mathbf{P}(O \oplus O(k))$ in say d points (with $d = \deg \Delta$). Now $K_S^2 = (K_X + L_2)^2.L_2 = (L_1 + L_2)^2.L_2 = 5$ (c.f. 1.4).

Hence $d = 3$. □

Lemma 5.3.

(1) $-K_S = L_1 + L_2$
(2) $\chi(S, L_1) = 3$
(3) $H^2(S, L_1) = 0, h^0(S, L_1) \geq 3$
(4) $L_1 | S$ is generated by global sections.
(5) $h^0(S, L_1) = 3$, $H^0(S, L - L_2) = 0$ and $\nu : H^0(S, L_1) \to H^0(F, L_1)$ is an isomorphism, (F a fiber of the conic bundle).

Proof. (1) follows from $K_X = -L_1 - 2L_2$ by adjunction.
(2) is clear by Riemann-Roch.
(3) $H^2(S, L_1) = H^0(S, -2L_1 - L_2) = 0$, since $L_1 | F = \mathcal{O}(2)$, where F is a general fiber of $\Phi | S$. So by (2) : $h^0(S, L_1) \geq 3$.
(4) Here we use the results and notations of Sect. 7. By (7.2) the instability of the conic bundle X fulfills $n(X) \leq \deg \Delta - 2$, hence $n(X) \leq 1$. Thus $n(X) = 1$. Consequently S is F_0 or F_1 blown up in 3 points. In other words, S is \mathbb{P}_2 blown up in 4 points. No 3 of them can be collinear, otherwise we would have a section C with $C^2 = -2$. So S is a del Pezzo surface and it follows easily that $L_1 | S = -K_S - L_2$ is nef. The global generatedness can be deduced either directly or by computing Fujita's Δ-genus: $\Delta(S, L_1) \leq 0$ and by applying Fujita’s fundamental results. Note that always $\Delta \geq 0$, hence $\Delta(S, L_1) = 0$, which gives already the first claim of (5).
(5) Use the exact sequence
$$0 \to H^0(S, L_1 - L_2) \to H^0(S, L_1) \to H^0(F, L_1)$$
with F a general fiber of Φ. Then (4) together with $L_1 | F = \mathcal{O}(2)$ gives the claim. \(\Box\)

Lemma 5.4.

(1) $H^2(S, L_1 + \mu L_2) = 0$ for all $\mu \in \mathbb{Z}$.
(2) $H^1(S, L_1 + \mu L_2) = 0$ for all $\mu \geq -1$.
(3) $H^1(X, L_1 + \mu L_2) = 0$ for all $\mu \geq -2$.

Proof. (1) $H^2(S, L_1 + \mu L_2) = H^0(S, -2L_1 - (\mu + 1)L_2) = 0$ for all μ, since $L_1 | F$ is positive for a general fiber F of Φ.
(2) Now let $\mu \geq -1$. From the exact sequence
$$0 \to (L_1 + \mu L_2)|S \to (L_1 + (\mu + 1)L_2)|S \to L_1 | F \to 0$$
we see that it is sufficient to show surjectivity of $H^0(S, L_1) \to H^0(L_1 | F)$. But this was already proved in 5.3 (5).
(3) Now use the exact sequence on X

$$0 \to L_1 + \mu L_2 \to L_1 + (\mu + 1)L_2 \to (L_1 + (\mu + 1)L_2)|_S \to 0.$$

By (1) and (2) we get for $\mu \geq -2$

$$H^1(X, L_1 + \mu L_2) \cong H^1(X, L_1 + (\mu + 1)L_2).$$

Since $H^1(X, L_1 + \mu L_2) \cong H^1(P_2, \Phi_* L_1) \otimes O_{P_2}(\mu) = 0$ for $\mu \gg 0$, we conclude.

Proof of Proposition 5.1. By Riemann-Roch and our assumptions: $\chi(X, L_1) = \chi(X_0, L_1) = 3$, so from 5.4 (3) we obtain $h^0(X, L_1) \geq 3$. Since $h^0(S, L_1 - L_2) = 0$, we conclude:

$$H^0(X, L_1 - L_2) = 0,$$

hence the restriction $H^0(X, L_1) \to H^0(S, L_1)$ is injective. Since $h^0(S, L_1) = 3$, we conclude $h^0(X, L_1) = 3$, so r is an isomorphism. But this implies that L_1 is nef: assume that there is a curve $C \subset X$ with $(L_1, C) < 0$. Then for generic $l \subset P_2 : C \cap S_l = \emptyset$, since otherwise we would find $s \in H^0(X, L_1)$ such that $s|C \neq 0$ (use 5.3 (4) and the fact that r is an isomorphism). Thus $\Phi(C) \cap l = \emptyset$ which is absurd. Now L_1 being nef, $-K_X = L_1 + 2L_2$ is ample as sum of two nef line bundles generating $Pic(X)$. So X is Fano and consequently $X \cong X_0$ by Iskovskikh’s classification. □

6. Moishezon twistor spaces are not topologically projective

For X a compact complex manifold, let $w_2(X) \in H^2(X, \mathbb{Z}/2\mathbb{Z})$ be its second Stiefel-Whitney class, whose vanishing means that K_X is divisible by two in $Pic(X)$.

Theorem 6.1. Let X be a projective threefold. Then: $b_1(X) = b_3(X) = w_2(X) = 0$ iff X is one of the following:

i) Fano with $b_2 = 1$, of index $r = 2$ or 4 (in this last case, $X = P_3$),

ii) a P_1-bundle $P(V)$ over a surface S with $b_1(S) = 0$, with V a 2-bundle over S such that $(\det V + K_S)$ is divisible by 2 in $Pic(S)$.

iii) obtained from the above manifolds by blowing-up finitely many points.
Remarks. 1. It is obvious that the conditions $b_1 = b_3 = w_2 = 0$ are necessary to belong to the above classes.

2. If one only assumes that X has at most terminal singularities, and that $b_1 = b_3 = 0$, it is still true that X is uniruled.

Proof. We have: $h^{1,0} = h^{3,0} = 0$, hence: $\chi(O_X) = 1 + h^{2,0} \geq 1$. Thus: K_X is not nef (2.2). Let $\varphi : X \to Y$ be the contraction of an extremal ray in X. By Mori’s list and because $K_X = 2L, L \in Pic(X)$, we see that if φ is a modification, it has to be the contraction of a smooth divisor E of X, E isomorphic to P_2, with normal bundle $E|_E \cong O_E(1)$ (because in all other cases, a curve $C \subset E$ exists such that: $-K_X.C = 1$, contradicting $w_2 = 0$). Thus: Y is smooth and satisfies the same conditions: $b_1 = b_3 = w_2 = 0$ as X. We can thus assume that $\dim(Y) \leq 2$.

Assume first that $Y = S$ is a surface; then Y is smooth, and φ can’t be a conic bundle, otherwise a curve C exists, which is contained in a fiber of φ such that $(-K_X.C) = 1$, again contradicting $w_2 = 0$. Hence φ is a P_1-bundle, and $b_1(S) = b_1(X) = 0$. Moreover, $K_X = O_{P(V)}(-2) + \varphi^*(detV + K_S)$, if $X = P(V)$ for V a rank 2 bundle over S, so we are in case (ii). Assume now that $Y = C$ is a curve. Let F be a smooth fiber of φ; then F is a minimal Del Pezzo surface, otherwise, an expectional curve of the first kind C_0 on F would satisfy: $1 = (-K_F.C_0) = (-K_X.C_0)$, contradicting: $w_2 = 0$. Thus F is either P_2 or $P_1 \times P_1$. The case $F = P_2$ is again excluded, since: $-K_X|_F = -K_F = O_F(3)$ in this case. The case $F = P_1 \times P_1$ is also excluded by the proposition below.

The last possible case is: $\dim Y = 0$, so X is Fano with $b_2(X) = 1$, and $r = 2, 4$ since $w_2 = 0$. □

Proposition 6.2. There is no quadric bundle $\varphi : X \to C \cong P_1(C)$ with $2 = b_2(X); b_3(X) = w_2(X) = 0$.

Proof. If φ were smooth, we would have $b_2(X) = 3$. The set Δ of singular fibers of φ, which are isomorphic to the quadric cone in P_3 after [Mo] is thus nonempty.
Since:
\[\chi(X) = \chi(C) \cdot \chi(F) + \sum_{c \in \Delta} (\chi(X_c) - \chi(F)) \]
where \(\chi \) is the topological Euler-Poincaré characteristic, \(F = P_1 \times P_1 \), and \(X_c := \varphi^{-1}(c) \), we get from
\[\chi(X_c) = 3, \chi(F) = 4, \chi(X) = 6, \]
that \(\delta \) consists of exactly two points. □

On the other hand, we can embed \(X \) in a \(P_3 \)-bundle \(P := P(E^*) \), where \(E^* \) is a 4-bundle on \(C \) normalised in such a way that \(X \subset |2L| \), with \(L = O_P(1) \).

Let \(c_1 \in \mathbb{Z} \) be the degree of \(E \). We have a quadrilinear symmetric map
\[\Psi : S^2(E) \to S^2(\text{det}E) \]
which sends any quadratic form \(B \) on \(E \) to its discriminant. \(X \) is the zero locus of some \(s \in H^0(P, 2L) \), and let \(\sigma := \Psi \circ s \in H^0(C, S^2(\text{det}E)) = H^0(C, \mathcal{L}) \), where \(\mathcal{L} \) has degree \(2c_1 \). Then we conclude \(c_1 = 1 \) since \(\{ \sigma = 0 \} = \Delta \). We now compute:
\[K_X = (K_p + 2L)|_X = (-4L + \varphi^*(c_1 - 2))|_X, \]
and so \(w_2(X) \neq 0 \) since \(c_1 \) is odd. (Here: \(\text{Pic}(C) \) is identified with \(Z \) in the usual way).

Corollary 6.3. Let \(M^4 \) be a compact connected anti-self dual Riemannian fourfold, and let \(\tau : Z \to M^4 \) be its twistor space ([AHS]).

Assume that \(Z \) is Moishezon, but not projective. Then there is no projective threefold \(Z_0 \) which is homeomorphic to \(Z \) if \(n \geq 3 \) is even, with \(n = b_2(Z) - 1 \).

Probably this remains true if \(n \) is odd, too. This answers a question (3.15) asked in [C2].

Remarks. Recall that \(\tau : Z \to M^4 \) is a differentiable (non holomorphic) submersion whose fibers are holomorphic rational curves on \(Z \) with normal bundle \(O(1) \oplus O(1) \), and that \(w_2(Z) = 0 \). Recall that if \(Z \) is Moishezon, it is “almost Fano”, i.e. the Kodaira dimension of \(K_Z^{-1} \) is 3. ([P],[V]).

It is shown in [C] that \(M^4 \) is homeomorphic to either \(S^4 \) or the connected sum \(\# nP_2(C) \) of \(n \) copies of \(P_2(C) \) if \(Z \) is Moishezon. It is shown in [H] that if \(Z \) is projective, it is either \(P_3(C) \) or \(P(Tp_2(C)) \), with \(M^4 \) respectively \(S^4 \) or \(P_2(C) \) with metrics conformal to the usual ones. Examples with arbitrary \(n \) are known to exist ([P2] : \(n = 2 \); [K] : \(n = 3 \); [L] all \(n \)). It is shown
in [C2], [L2] that small generic deformations of Kurke-Lebrun’s examples are not in the class C, thus showing that Kodaira-Spencer stability theorem is not true in the class of compact manifolds bimeromorphic to Kähler ones. The above corollary thus exhibits another difference between these Z and projective manifolds.

Proof. Let $M = M^4$, thus M is topologically $nP_2(C)$, with $n \geq 2$. We describe $H^2(X, \mathbb{Z})$ together with its bilinear intersection form. Let $(\alpha_1, ..., \alpha_n)$ be an orthogonal basis of $H^2(M, \mathbb{Z})$ (ie : $\alpha_i \alpha_j = 0$ if $i \neq j$, $\alpha_i^2 = 1$). We identify α_i and $\tau^* \alpha_i$. Let $\bar{c} = \frac{1}{2}c_1(Z)$. A \mathbb{Z}-basis of $H^2(Z, \mathbb{Z})$ is then : $(c, \alpha_1, ..., \alpha_n)$ where : $c = \frac{1}{2}(\bar{c} + \alpha_1 + ... + \alpha_n)$, which is integral (see [P3]).

The intersection form is defined by :

\[
\begin{align*}
\bar{c}^3 &= 2(4 - n); \bar{c}^2 \cdot \alpha_i = 0; \bar{c} \cdot \alpha_i^2 = -2 & \text{for all } i, \\
c^3 &= 1 - n; c^2 \cdot \alpha_i = -1; c \cdot \alpha_i^2 = -1 & \text{for all } i.
\end{align*}
\]

We now assume that Z_0 is a projective threefold homeomorphic to Z.

Lemma 6.4. Z_0 is not blow-up in a point of any smooth projective threefold Z_1.

Proof. Otherwise there would exist E and $L \neq 0$ in $Pic(Z_0)$ such that : $E^3 = 1, E^2L = E.L^2 = 0$ (just take the class E of the exceptional divisor of the blow-up, and the class L of the lifting of any ample line bundle on Z_1).

However, a direct computation shows that the equations :

\[(\epsilon c + \epsilon_1 \alpha_1 + ... + \epsilon_n \alpha_n)^3 = 1 = \epsilon[\epsilon^2(1 - n) - 3(\sum \epsilon_i^2 + \epsilon(\sum \epsilon_i))]\]

have no integer solutions $(\epsilon, \epsilon_i), (\lambda, \lambda_i)$ if $n \geq 3$. □

Lemma 6.5. Z_0 is not a P_1-bundle over any algebraic surface S.

Proof. Let $\varphi_0 : Z_0 \rightarrow S$ be any such P_1-bundle structure. Then $(\varphi_0)^*(H^2(S, \mathbb{Z}))$ generates a sublattice of rank n in $H^2(Z_0, \mathbb{Z})$ (which has rank $(n + 1)$), and consisting of classes L such that : $L^3 = 0$. Now, if

\[L = \lambda c_1 + \lambda_1 \alpha_1 + ... + \lambda_n \alpha_n,\]
one has:

\[L^3 = \lambda[\lambda^2(1-n) - 3(\sum \lambda_i^2 + \lambda\lambda_i)] = \lambda Q(\lambda, \lambda_i), \]

where \(Q \) is a definite negative quadratic form on \(\mathbb{R}^{n+1} \). Thus \(\varphi_0^* (H^2(S, \mathbb{Z})) = \tau^* H^2(M^4, \mathbb{Z}) \). But this shows that the intersection form on \(S \) would be definite of rank \(n \geq 2 \), which is impossible if \(n \) is even by Hodge index theorem (which forces \(h^{1,1}(S) = 1 \)). □

(6.4) and (6.5) imply now together with theorem (6.1) that \(Z_0 \) has \(b_2 = 1 \), contradiction.

7. A BOUND FOR THE DEGREE OF INSTABILITY OF A CONIC BUNDLE

Definition and Construction 7.1 (1) Let \(S \) be a smooth rational surface with a surjective holomorphic map \(\phi : S \to \mathbb{P}_1 \). Let \(C \subset S \) be a section of \(\phi \). \(C \) is said to be minimal if its selfintersection number \(C^2 \) is minimal with respect to all sections of \(\phi \). We call

\[n(\phi) = -C^2, \]

where \(C \) is minimal, the degree of \(\phi \). Loosely speaking, when it is clear which map \(\phi \) is meant, we put \(n(S) = n(\phi) \).

(2) Let \(\Phi : X \to \mathbb{P}_2 \) be a proper conic bundle, i.e. the discriminant locus \(\Delta \subset \mathbb{P}_2 \) is not empty. Let \(d \) be the degree of \(\Delta \) which number we also call the degree of the conic bundle \(\Phi \). Let \(G = \mathbb{P}_2 \) be the variety of lines in \(\mathbb{P}_2 \). Let \(G^* \) be the Zariski open set in \(G \) consisting of those lines which meet \(\Delta \) in \(d \) distinct points tranversely. Then for \(l \in G^* \), the surface \(S_l = \Phi^{-1}(l) \) is a smooth surface and in fact a Hirzebruch surface \(F_k = \mathbb{P} (\mathcal{O} \oplus \mathcal{O}(-e)) \) blown up in \(d \) points. We denote by \(n(l) = n(\Phi|S_l) \) its degree of instability. Finally let \(n(X) = n(\Phi) \) be the minimum of all \(n(l), l \in G^* \). We call \(n(X) \), or better \(n(\Phi) \), the degree of instability of the conic bundle \(X \).

Our main result in this section is

Theorem 7.2. Assume that the conic bundle \(\Phi : X \to \mathbb{P}_2 \) is standard (i.e. \(Pic(X) = \mathbb{Z}K_X + \Phi^*(Pic(\mathbb{P}_2)) \)) and assume moreover that the degree of \(\Phi \) is \(d \). Then

\[n(X) \leq d - 2, \]
in particular \(n(X) \) is finite.

First let us show the following

Proposition 7.3. Let \(\pi : S_0 \to P_1 \) be a ruled surface, i.e. a \(P_1 \)-bundle over \(P_1 \). Let \(\sigma : S \to S_0 \) be the blow-up of \(b \geq 3 \) distinct points on \(S_0 \). Let \(n \) be the degree of instability of \(S \to P_1 \). Assume that \(n \geq b - 1 \). Then there exists a unique minimal section of \(S \).

Proof. Write \(S_0 = P(O(\mathcal{O}(-\nu))) \) with \(\nu \geq 0 \). Then \(\nu \) is the degree of instability of \(S_0 \). Let \(C_0 \) be a minimal section of \(S_0 \); so \(C_0^2 = -\nu \). If \(\nu > 0 \), then \(C_0 \) is unique.

Assume first \(\nu \geq 2 \). Then we claim that the strict transform \(\overline{C}_0 \) of \(C_0 \) in \(S \) is the unique minimal section of \(S \). In fact, take a section \(C \) of \(S_0 \) such that the strict transform \(\overline{C} \) is minimal and assume of course that \(C \neq C_0 \), if also \(C_0 \) is minimal. Since

\[
C^2 \geq \nu
\]

by the elementary theory of ruled surfaces, we have for the strict transform

\[
\overline{C} = -n \geq \nu - b,
\]

hence \(n \leq b - \nu \leq n + 1 - \nu \) by our assumption. This contradicts \(\nu \geq 2 \) and settles the proposition in this case.

In case \(\nu \geq 1 \) we see by the same construction, that we must have

\[
C^2 = 1, \overline{C}^2 = \nu - b = 1 - b,
\]

i.e. all \(b \) points have to be on \(C \), if \(C \neq C_0 \). Observe that here we must have \(C \cap C_0 = \emptyset \), hence none of the points to be blown up is on \(C_0 \). Now let \(\overline{C}' \) be another minimal section. Then by the same reasoning as for \(C \) all points to be blown up are on \(C' \), too. But this contradicts \(C.C' = C^2 = 1 \).

It remains to settle the case \(\nu = 0 \). But this is an obvious exercise. \(\Box \)

Coming back to our conic bundle \(\Phi : X \to P_2 \) and to the proof of (7.2), we assume that \(n(X) \geq d - 1 \). Then by (7.3) there exists for every \(l \in G^* \) a unique minimal section \(C_l \) of \(\Phi_l : S_l \to l \) (observe \(d \geq 3 \)). We want to show that the curves \(C_l \) form an algebraic family.
Proposition 7.4. There exists a unique component T of the Chow scheme of curves in X and a bimeromorphic map $\Phi_* : T \to G$ together with Zariski open sets $T^* \subset T$, $G^{**} \subset G^*$ such that for all $t \in T^*$:

$$\{t\} = C_l \text{ with } l = \Phi_*(t),$$

where $\{t\}$ denotes the curve parametrised by t.

Before giving the proof of (7.4) let us first show how (7.2) is proved by means of (7.4). Assume as before that $n(X) \geq d - 1$. Fix $a \in \mathbb{P}_2 \setminus \Delta$ and let

$$P_a = \{l \in G| a \in l\}$$

be the pencil of lines through a. Let D be the Zariski closure of $\bigcup C_l$, where l runs over $P_a \cap G^*$.

By (7.4) D is a prime divisor in X such that $\Phi|D : D \to \mathbb{P}_2$ is bimeromorphic. But this divisor is not a linear combination of K_X and $\Phi^*(\mathcal{O}(1))$: intersect with a general fiber of Φ to obtain the contradiction. Hence Φ is not a standard conic bundle, contradicting our assumption.

It remains to give the

Proof of 7.4. (1) First we compute $(-K_X.C_l)$ for $l \in G^*$. We have an exact sequence, namely the normal bundle sequence for the embeddings $C_l \subset S_l \subset X$:

$$0 \to \mathcal{O}(-n(l)) \to N_{C_l|X} \to \mathcal{O}(1) \to 0.$$

Here $N = N_{C_l|X}$ is the normal bundle of C_l in X. We conclude $c_1(N) = 1 - n(l)$, hence

$$(-K_X.C_l) = 3 - n(l) \quad (\ast).$$

(2) Thus the curves C_l form a bounded family and therefore there exists a component T of the Chow scheme containing all C_l for l in some nonempty Zariski open subset U of G^*. We have

$$\dim T \leq h^0(N) \leq 2,$$

thus $\dim T = 2$.

(3) For $t \in T$ generic, we let

$$\Phi_*(t) = \Phi(C),$$
where C is the section determined by t. Clearly Φ_* extends to a meromorphic map $T \to G$.

By construction there exists a Zariski open set $G^{**} \subset G^+$ such that $C_l \subset \Phi^{-1}_*(l)$ for $l \in G^{**}$. We have even $C_l = \Phi^{-1}_*(l)$; otherwise we would have some $t \in T$ such that the curve B_t corresponding to t is contained in S_l. But $B_t^2 = -n(l)$ by (\ast), and because of the fact that $(-K_X.B_t)$ does not depend on t. Hence Φ_* is bimeromorphic. □

Note that $C_l^2 = -n(X)$ for all $l \in G^{**}$.

REFERENCES

RIGIDITY THEOREMS FOR PRIMITIVE FANO 3-FOLDS

Dép. de mathématiques, Université de Nancy I, France
Math. Institut, Universität Bayreuth, Germany

Received January 25, 1993