Quasi-convergence of the Ricci flow

Dan Knopf

We study a collection of Riemannian metrics which collapse under the Ricci flow, and show that the quasi-convergence equivalence class of an arbitrary metric in this collection contains a 1-parameter family of locally homogeneous metrics.

1. Introduction and statement of main theorem.

In [1], Hamilton and Isenberg studied the Ricci flow of a family of solv-geometry metrics on twisted torus bundles. This family contains no Einstein metrics, so the (normalized) Ricci flow cannot converge. Hamilton–Isenberg introduced the concept of quasi-convergence to describe its behavior, writing

"...the Ricci flow of all metrics in this family asymptotically approaches the flow of a sub-family of locally homogeneous metrics..."

The intent of this paper is to make that statement more precise. In so doing, we answer a question of Hamilton, who asked whether an arbitrary metric in this class would converge to a unique locally homogeneous limit or would exhibit a more nuanced behavior.

Definition 1.1. If g, h are evolving Riemannian metrics on a manifold M^n, we say g quasi-converges to h if for any $\varepsilon > 0$ there is a time t_ε such that

$$\sup_{M^n \times [t_\varepsilon, \infty)} |g - h|_h < \varepsilon.$$

Quasi-convergence is an equivalence relation. Indeed, the standard fact that $|U(V, V)| \leq |U|_h |V|^2_h$ for any symmetric 2-tensor U and vector field V implies that g quasi-converges to h if and only if for all $t \geq t_\varepsilon$,

$$(1 - \varepsilon) h(V, V) \leq g(V, V) \leq (1 + \varepsilon) h(V, V).$$

We now state our result, using notation defined in [1] and to be reviewed in §2 below.
Theorem 1.2. If \(g \) is any solv-Gowdy metric on a twisted torus bundle \(M^3_{\Lambda} \), there is a locally homogeneous metric \(h \) in its quasi-convergence equivalence class \([g]\). Moreover, if \(h \) corresponds to the data \((\alpha(\theta), \Omega, F)\), the locally homogeneous metrics in \([g]\) are exactly those with the data \((\ell + \alpha(\theta), \Omega, F)\), \(\ell \in \mathbb{R} \).

Remark 1.3. Similar quasi-convergence of the Ricci flow to a 1-parameter family was conjectured for a class of \(T^3 \) metrics studied in [2].

The paper is organized as follows. §2 describes the bundles \(T^2 \to M^3_{\Lambda} \to S^1 \) and the solv-Gowdy metrics under study. It turns out that at large times, an arbitrary solv-Gowdy metric \(g \) behaves much like locally homogeneous metrics. §3 quantifies this observation and explicitly constructs a family \(h_\varepsilon \) of locally homogeneous metrics existing for all \(t > 0 \) which approximate \(g \) for times \(t \geq t_\varepsilon \). In §4, we show that this family enjoys a certain compactness property which allows us to prove the existence part of the main theorem. The heuristic here is that \(g \) resembles a single locally homogeneous metric closely enough that the metrics \(h_\varepsilon \) are not too far apart at \(t = 0 \). §5 completes the main theorem by explaining the very special sort of non-uniqueness which can occur: distinct locally homogeneous metrics define distinct equivalence classes unless they differ only by a dilation of the base circle.

Acknowledgement. I wish to thank Richard Hamilton for his helpful and encouraging comments.

2. Review of solv-Gowdy geometries.

We begin by briefly recalling some notation and results of [1]. Readers familiar with that paper may skip this section.

To construct an arbitrary solv-Gowdy metric \(g \), take \(\Lambda \in SL(2, \mathbb{Z}) \) with eigenvalues \(\lambda_+ > 1 > \lambda_- \). In coordinates \(\theta, x, y \) on \(\mathbb{R}^3 \), chosen so that the \(x, y \) axes coincide with the eigenvectors of \(\Lambda \), define

\[
(2.1) \quad g = e^{2A} d\theta \otimes d\theta + e^{F+W} dx \otimes dx + e^{F-W} dy \otimes dy,
\]

where \(F \) is constant and \(A, W \) depend only on \(\theta \). Clearly, \(g \) descends to a metric on the product of the line and the torus \(T^2 \). Let \(\Lambda \) act on \(\mathbb{R} \times T^2 \) by \((\theta, x, y) \mapsto (\theta + 2\pi, \lambda_- x, \lambda_+ y)\). If

\[
(2.2) \quad A(\theta + 2\pi) = A(\theta)
\]
and

\(W(\theta + 2\pi) = W(\theta) + 2\log \lambda_+ \),

then \(\Lambda \) is an isometry, and \(g \) becomes a well defined metric on the mapping torus \(M^{3}_\Lambda \), regarded as a twisted \(T^2 \) bundle over \(S^1 \). Notice that \(A \) governs the length of the base circle, while \(F \) and \(W \) respectively describe the scale and skew of the fibers. We denote arc length by

\[
\tag{2.4}
s(\theta) = \int_0^\theta e^{A(u)} du
\]

and set

\[
\tag{2.5}
Z = \frac{\partial}{\partial s} W.
\]

Then we can write the Ricci tensor as

\[
\tag{2.6}
Rc = -\frac{1}{2} e^{2A} Z^2 d\theta \otimes d\theta - \frac{1}{2} e^{F+W} \frac{\partial Z}{\partial s} dx \otimes dx + \frac{1}{2} e^{F-W} \frac{\partial Z}{\partial s} dy \otimes dy.
\]

The locally homogeneous solv-Gowdy metrics are easily characterized.

Lemma 2.1. A solv-Gowdy metric \(g \) is locally homogeneous if and only if \(W \) depends linearly on arc length.

Proof. If \(g \) is locally homogeneous, then \(R = -\frac{1}{2} Z^2 \) is constant in space. Since \(Z \) is continuous, it follows that \(\partial^2 W/\partial s^2 = 0 \).

If \(Z \) is constant in space, let \(P_0 = (\theta_0, x_0, y_0) \), \(P_1 = (\theta_1, x_1, y_1) \) be points in \(M^{3}_\Lambda \). It will suffice to construct a diffeomorphism \(\Phi : U_0 \to U_1 \), where \(U_0, U_1 \) are neighborhoods of \(P_0, P_1 \) respectively, such that \(\Phi(P_0) = P_1 \) and \(\Phi^* g = g \). If \(\Phi \) is given in coordinates \((\theta, x, y) \) by

\[
\Phi(\theta, x, y) = (\tau(\theta, x, y), \xi(\theta, x, y), \eta(\theta, x, y)),
\]

the pullback condition \(\Phi^* g = g \) is equivalent to the system

\[
\tag{2.7a}
e^{2A(\theta)} = \left(\frac{\partial \tau}{\partial \theta} \right)^2 e^{2A(\tau)} + \left(\frac{\partial \xi}{\partial \theta} \right)^2 e^{F+W(\tau)} + \left(\frac{\partial \eta}{\partial \theta} \right)^2 e^{F-W(\tau)}
\]

\[
\tag{2.7b}
e^{F+W(\theta)} = \left(\frac{\partial \tau}{\partial x} \right)^2 e^{2A(\tau)} + \left(\frac{\partial \xi}{\partial x} \right)^2 e^{F+W(\tau)} + \left(\frac{\partial \eta}{\partial x} \right)^2 e^{F-W(\tau)}
\]

\[
\tag{2.7c}
e^{F-W(\theta)} = \left(\frac{\partial \tau}{\partial y} \right)^2 e^{2A(\tau)} + \left(\frac{\partial \xi}{\partial y} \right)^2 e^{F+W(\tau)} + \left(\frac{\partial \eta}{\partial y} \right)^2 e^{F-W(\tau)}.
\]
Note that $s(\theta)$ is invertible, because $\frac{\partial s}{\partial \theta} = e^{A(\theta)} > 0$, and define

$$
\tau(\theta, x, y) = s^{-1}(s(\theta) + s(\theta_1) - s(\theta_0))
$$

$$
\xi(\theta, x, y) = x_1 + e^{-\frac{A}{2}(s(\theta_1)-s(\theta_0))} (x - x_0)
$$

$$
\eta(\theta, x, y) = y_1 + e^{\frac{A}{2}(s(\theta_1)-s(\theta_0))} (y - y_0).
$$

Clearly, $\Phi : P_0 \mapsto P_1$. Equation (2.7a) is satisfied, because

$$
\frac{\partial \tau}{\partial \theta} = \frac{\partial \theta}{\partial s}(\tau) \cdot \frac{\partial s}{\partial \theta}(\theta) = e^{-A(\tau)+A(\theta)}.
$$

To see that (2.7b) is satisfied, let ω denote W regarded as a linear function of arc length, so that $W(\theta) = \omega(s(\theta))$. Then we can write

$$
\log \left(\left(\frac{\partial \xi}{\partial x} \right)^2 e^{W(\tau)} \right) = -Z \cdot (s(\theta_1) - s(\theta_0)) + \omega(s(\theta) + s(\theta_1) - s(\theta_0))
$$

$$
= \omega(s(\theta)) = W(\theta).
$$

Equation (2.7c) is verified in a similar fashion.

\textbf{Remark 2.2.} When studying a single locally homogeneous solv-Gowdy metric, one can always make A constant in space by a reparameterization of S^1; but it will not be convenient for us to do so.

If an arbitrary solv-Gowdy metric g evolves by the Ricci flow

(2.8) \[\frac{\partial}{\partial t} g = -2 \operatorname{Rc}, \]

we shall abuse notation and allow the quantities introduced above to depend also on time. We find that g remains a solv-Gowdy metric and that (2.8) is equivalent to the system

(2.9a) \[\frac{\partial}{\partial t} A = \frac{1}{2} Z^2 \]

(2.9b) \[\frac{\partial}{\partial t} W = \frac{\partial}{\partial s} Z \]

(2.9c) \[\frac{\partial}{\partial t} F = 0, \]

whose solution exists for all $t \geq 0$. It is most convenient to study Z and recover A and W by integration. Z evolves by

(2.10) \[\frac{\partial}{\partial t} Z = \frac{\partial^2}{\partial s^2} Z - \frac{1}{2} Z^3, \]
where the operator $\partial^2/\partial s^2$ plays the role of the Laplacian and evolves according to the commutator

$$\frac{\partial}{\partial t} \left[\frac{\partial}{\partial s}, \frac{\partial}{\partial s} \right] = -\frac{1}{2} Z^2 \frac{\partial}{\partial s}. \tag{2.11}$$

For all $t \geq 0$, we identify S^1 with the circle $x = 0, y = 0$ and denote its length by

$$L(t) \doteq \int_{S^1} ds = \int_0^{2\pi} e^{A(\theta,t)} d\theta. \tag{2.12}$$

Notice that (2.3) implies the important integral condition

$$\int_{S^1} Z ds = 2 \log \lambda_+, \tag{2.13}$$

which is preserved by the flow.

If an evolving solv-Gowdy metric is locally homogeneous at $t = 0$, it remains so under the Ricci flow. For such metrics, Z is the function of time alone

$$Z(t) = \frac{1}{\sqrt{t + 1/\zeta^2}}, \tag{2.14}$$

where $\zeta \doteq Z(0)$ is positive by (2.13). The sub-family of locally homogeneous solv-Gowdy metrics can thus be indexed by $(\alpha(\theta), \Omega, F)$, where

$$\alpha(\theta) \doteq A(\theta,0) \tag{2.15a}$$

$$\Omega \doteq W(0,0). \tag{2.15b}$$

We now summarize the estimates we shall use from [1]. Let g be a solution to the Ricci flow whose initial data $g(\cdot,0)$ is a C^2 solv-Gowdy metric. Hamilton–Isenberg organize the proof of their main theorem into four steps. In Step 1, they show there is $C > 0$ depending on $Z(\cdot,0)$ such that for all $t > 0$,

$$\left| Z(\cdot,t) \right| \leq \frac{1}{\sqrt{t + C}} < \frac{1}{\sqrt{t}}. \tag{2.16}$$

By Step 2, there is a time $T > 0$ and constants $m \doteq Z_{\min}(T), M \doteq Z_{\max}(T)$ depending on $L(0), Z(\cdot,0)$ and satisfying $0 < m \leq M < 1/\sqrt{T}$ such that for all $t \geq T$,

$$\frac{1}{\sqrt{t - T + 1/m^2}} \leq Z(\cdot,t) \leq \frac{1}{\sqrt{t - T + 1/M^2}}. \tag{2.17}$$
By Step 1 again, there are $C, C' > 0$ depending on $L(0), Z(\cdot, 0)$ such that for all $t \geq T + 1,$

\begin{equation}
C \sqrt{t - T} \leq L(t) \leq C' \sqrt{t - T}.
\end{equation}

By Step 4, there is $C > 0$ depending on $L(0), Z(\cdot, 0)$ such that for all $t \geq T,$

\begin{equation}
\left| \frac{\partial}{\partial s} Z(\cdot, t) \right| \leq \frac{C}{(1 + m^2(t - T))^2}.
\end{equation}

3. Construction of approximating metrics.

As a first step in proving the existence part (Theorem 4.1) of our main theorem, we find times t_ε and construct locally homogeneous metrics h_ε with the following properties: h_ε is in a sense the average of g at t_ε; h_ε remains ε-close to g for all times $t \geq t_\varepsilon$; and most importantly, h_ε exists for all $t \geq 0$.

Proposition 3.1. For any $\varepsilon > 0$, there is a time $t_\varepsilon > 0$ and a locally homogeneous solv-Gowdy metric h_ε evolving by the Ricci flow for $0 < t < \infty$ such that

$$\text{sup}_{\mathcal{M}_h^3 \times (t_\varepsilon, \infty)} |g - h_\varepsilon|_{h_\varepsilon} < \varepsilon.$$

Before proving this, we collect some technical observations.

Lemma 3.2. For any $\varepsilon > 0$, there is $t_\varepsilon > 0$ such that Z satisfies the pinching estimate

\begin{equation}
Z_{\max}(t) - Z_{\min}(t) \leq \frac{\varepsilon}{L(t)},
\end{equation}

and the decay estimate

\begin{equation}
\frac{1}{\sqrt{t - t_\varepsilon + 1/m_\varepsilon^2}} \leq Z(\cdot, t) \leq \frac{1}{\sqrt{t - t_\varepsilon + 1/M_\varepsilon^2}},
\end{equation}

for all $t \geq t_\varepsilon,$ where $m_\varepsilon, M_\varepsilon$ are defined by

\begin{equation}
0 < m_\varepsilon \triangleq Z_{\min}(t_\varepsilon) \leq Z_{\max}(t_\varepsilon) \triangleq M_\varepsilon < \infty
\end{equation}

and satisfy

\begin{equation}
m_\varepsilon \leq M_\varepsilon \leq m_\varepsilon + \varepsilon \quad \text{and} \quad M_\varepsilon^2 \leq (1 + \varepsilon)m_\varepsilon^2.
\end{equation}
Moreover, we can choose \(t_\varepsilon \) so that
\[
\int_{t_\varepsilon}^{\infty} \left| \frac{\partial Z}{\partial s} \right| \, dt \leq \varepsilon.
\]

Proof. Let \(T, m, M \) be as in (2.17) and let \(C \) be the constant in (2.19). Let \(t_* = \max \{ T + C/ (m^4 \epsilon), T + 1 \} \) and suppose \(t \geq t_* \). Then (2.19) implies
\[
\int_{t_*}^{\infty} \left| \frac{\partial Z}{\partial s} \right| \, dt \leq \int_{0}^{\infty} \frac{C}{m^4 (t + t_* - T)^2} \, dt = \frac{C}{m^4 (t_* - T)} \leq \varepsilon,
\]
and (2.18) implies there is \(C' > 0 \) such that
\[
L(t) \leq C' \sqrt{t - T}.
\]
Hence for such times
\[
Z_{\text{max}}(t) - Z_{\text{min}}(t) \leq \int_{S^1} \left| \frac{\partial Z}{\partial s} \right| \, ds \leq CC' \frac{\sqrt{t - T}}{(1 + m^2 (t - T))^2}.
\]
Choose \(t_\varepsilon \geq t_* \) large enough that (3.1) holds for \(t \geq t_\varepsilon \), and that (3.4) holds for \(m_\varepsilon, M_\varepsilon \) defined by (3.3). This is possible, because
\[
\left(\frac{Z_{\text{max}}(t)}{Z_{\text{min}}(t)} \right)^2 \leq \frac{t - T + 1/m^2}{t - T + 1/M^2} \leq 1 + \frac{1}{m^2 (t - T)}.
\]
Then since \(\frac{\partial}{\partial t} Z = \frac{\partial^2}{\partial s^2} Z - \frac{1}{2} Z^3 \), we observe that
\[
\frac{d}{dt} Z_{\text{min}} \geq -\frac{1}{2} Z_{\text{min}}^3 \quad \text{and} \quad \frac{d}{dt} Z_{\text{max}} \leq -\frac{1}{2} Z_{\text{max}}^3.
\]
A routine use of the maximum principle (proved in [3]) now establishes (3.2) for all \(t \geq t_\varepsilon \). \(\square \)

Remark 3.3. The proof shows that for \(t \geq T + 1 \),
\[
Z_{\text{max}} - Z_{\text{min}} = O (t - T)^{-3/2},
\]
a result which also follows directly from (2.17).
Lemma 3.4. Let $\varepsilon > 0$ be given and let $t_\varepsilon, m_\varepsilon, M_\varepsilon$ be as in Lemma 3.2. Then there is a locally homogeneous solv-Gowdy metric

$$h_\varepsilon = e^{2A_\varepsilon} d\theta \otimes d\theta + e^{F_\varepsilon + W_\varepsilon} dx \otimes dx + e^{F_\varepsilon - W_\varepsilon} dy \otimes dy$$

evolving by the Ricci flow for $0 < t < \infty$ so that for $t \geq t_\varepsilon$,

$$\frac{1}{\sqrt{t - t_\varepsilon + 1/m_\varepsilon^2}} \leq Z_\varepsilon(t) \leq \frac{1}{\sqrt{t - t_\varepsilon + 1/M_\varepsilon^2}},$$

where $Z_\varepsilon = \frac{\partial W_\varepsilon}{\partial \theta} = e^{-A_\varepsilon} \frac{\partial W_\varepsilon}{\partial \theta}$. Moreover, h_ε is constructed so that for all $\theta \in S^1$, $A_\varepsilon(\theta, t_\varepsilon) = A(\theta, t_\varepsilon)$ and $|W(\theta, t_\varepsilon) - W(\theta, t_\varepsilon)| \leq \varepsilon$.

Proof. Define

$$(3.5) \quad Z_\varepsilon(t) \doteq \frac{1}{\sqrt{t + (1/\zeta_\varepsilon^2) - t_\varepsilon}},$$

where

$$(3.6) \quad \zeta_\varepsilon \doteq \int_{S^1} Z ds / \int_{S^1} ds,$$

with the RHS evaluated at t_ε. Observe that Z_ε is well defined for all $t \geq 0$, because $|Z(t)| < 1/\sqrt{t}$ by (2.16), whence

$$1/\zeta_\varepsilon^2 - t_\varepsilon \geq 1/Z_{\text{max}}^2(t_\varepsilon) - t_\varepsilon > 0.$$

Now recall that locally homogeneous solv-Gowdy metrics form a 3-parameter family and define

$$(3.7a) \quad \alpha_\varepsilon(\theta) \doteq A(\theta, t_\varepsilon) - \frac{1}{2} \int_{0}^{t_\varepsilon} Z_\varepsilon^2 dt$$

$$(3.7b) \quad \Omega_\varepsilon \doteq W(0, t_\varepsilon)$$

$$(3.7c) \quad F_\varepsilon \doteq F.$$

Notice that h_ε is well defined; indeed, the identities

$$2 \log \lambda_+ = \int_{S^1} Z ds = \zeta_\varepsilon \int_{S^1} ds = \int_{S^1} \zeta_\varepsilon e^{A_\varepsilon} d\theta = \int_{S^1} Z_\varepsilon ds_\varepsilon$$

show that the integral condition (2.13) is satisfied at t_ε, hence for all time.
The first assertion of the lemma is verified by the elementary observation
\[m_\varepsilon = Z_{\min}(t_\varepsilon) \leq \zeta_\varepsilon \leq Z_{\max}(t_\varepsilon) = M_\varepsilon, \]
which follows from (3.6). The second assertion is trivial; to prove the third, simply notice that
\[|W(\theta, t_\varepsilon) - W_\varepsilon(\theta, t_\varepsilon)| \leq \int_{S^1} |Z - \zeta_\varepsilon| \, ds \leq (Z_{\max} - Z_{\min})(t_\varepsilon) \cdot L(t_\varepsilon) \leq \varepsilon. \]

Proof of Proposition 3.1. Without loss of generality, assume \(0 < \varepsilon \leq 1/6 \).

Let \(t \geq t_\varepsilon \) and observe that
\[
|(A - A_\varepsilon)(\theta, t)| = \frac{1}{2} \left| \int_{t_\varepsilon}^{t} \left(Z^2 - Z_\varepsilon^2 \right)(\theta, \tau) \, d\tau \right| \\
\leq \frac{1}{2} \int_{t_\varepsilon}^{t} \left(\frac{1}{\tau - t_\varepsilon + 1/M_\varepsilon^2} - \frac{1}{\tau - t_\varepsilon + 1/m_\varepsilon^2} \right) \, d\tau \\
= \log \sqrt{\frac{1 + M_\varepsilon^2 (t - t_\varepsilon)}{1 + m_\varepsilon^2 (t - t_\varepsilon)}}.
\]

Then since \(|e^u - 1| \leq e^U - 1\) when \(|u| \leq U\), we have
\[
\left| e^{2A} - e^{2A_\varepsilon}(\theta, t) \right| = e^{2A_\varepsilon} \left| e^{2(A - A_\varepsilon)} - 1 \right| \leq e^{2A_\varepsilon} \frac{M_\varepsilon^2 - m_\varepsilon^2}{m_\varepsilon^2}
\]
and hence
\[
\left((h_\varepsilon)^{\theta\theta} \right)^2 (g^{\theta\theta} - (h_\varepsilon)^{\theta\theta})^2 \leq \varepsilon^2.
\]

Because \(W_\varepsilon \) is constant in time, we have
\[
|(W - W_\varepsilon)(\theta, t)| \leq |W(\theta, t) - W(\theta, t_\varepsilon)| + |W(\theta, t_\varepsilon) - W_\varepsilon(\theta, t_\varepsilon)| \\
\leq \left| \int_{t_\varepsilon}^{t} \frac{\partial Z}{\partial s} \, d\tau \right| + \varepsilon \\
\leq 2\varepsilon,
\]
whence substituting \(\delta = 2\varepsilon \leq 1/3 \) in the crude estimate \(e^\delta \leq 1 + \delta + \frac{\delta^2}{2} \) (which holds for \(0 \leq \delta \leq 1 \)) gives
\[
\left| e^{(F + W) - e^{F_\varepsilon + W_\varepsilon}}(\theta, t) \right| = e^{F_\varepsilon + W_\varepsilon} \left| e^{(W - W_\varepsilon)} - 1 \right| \leq 3\varepsilon e^{F_\varepsilon + W_\varepsilon}.
\]
and thus
\[(h_\varepsilon)^{xx} (g_{xx} - (h_\varepsilon)_{xx})^2 \leq 9\varepsilon^2.\]

The estimate for \[((h_\varepsilon)^{yy} (g_{yy} - (h_\varepsilon)_{yy})^2\text{ is entirely analogous. We have shown that}
\[|g - h_\varepsilon|^2 = (h_\varepsilon)^{ac} (h_\varepsilon)^{bd} (g_{ab} - (h_\varepsilon)_{ab}) (g_{cd} - (h_\varepsilon)_{cd}) \leq 19\varepsilon^2\]
for \(t \geq t_\varepsilon\), which is clearly equivalent to the desired result. \(\Box\)

4. Existence.

We have seen that for any \(\varepsilon > 0\), there is a natural choice \(h_\varepsilon\) of locally homogeneous metric approximating \(g\) for times \(t \geq t_\varepsilon\). In view of our non-uniqueness result (Theorem 5.1), it is remarkable that these choices are close enough to one another that we can prove the existence of a locally homogeneous metric in \([g]\).

Theorem 4.1. There is a locally homogeneous solv-Gowdy metric \(h_\infty\) evolving by the Ricci flow for \(0 \leq t < \infty\) such that for any \(\varepsilon > 0\) there is a time \(t_\varepsilon > 0\) with
\[\sup_{\mathcal{M}_A^j \times [t_\varepsilon, \infty)} |g - h_\infty|_{h_\infty} < \varepsilon.\]

Again, we first obtain some preliminary results.

Lemma 4.2. Let \(\{\varepsilon_j\}\) be a sequence with \(\varepsilon_j \searrow 0\). For each \(j\), let \(h_j\) denote the metric \(h_{\varepsilon_j}\) given by Proposition 3.1. Then there is a subsequence \(j_k\) and a locally homogeneous metric \(h_\infty\) with data \((\alpha_\infty (\theta), \Omega_\infty, F_\infty)\) such that
\[\alpha_{j_k} (\theta), \Omega_{j_k}, F_{j_k} \rightarrow (\alpha_\infty (\theta), \Omega_\infty, F_\infty)\]
uniformly in \(\theta\). (Here, and throughout the proof, a subscript such as \(j\) denotes quantities corresponding to the metric \(h_j \equiv h_{\varepsilon_j}\).)

Proof. The argument is constructed from four claims, as follows: Claim 4.3 bounds \(\partial_\theta A_j (\cdot, t_j)\), hence \(\partial_\theta A_j (\cdot, t_j)\) by construction, hence \(\partial_\theta A_j (\cdot, 0)\) by (4.1) and the local homogeneity of \(h_j\). Combining this with Claim 4.4 proves \(\{A_j (\cdot, 0)\}\) is bounded and equicontinuous. Since Claim 4.5 bounds
Quasi-convergence of the Ricci flow

\[\frac{\partial}{\partial s_j} W_j (\cdot, 0), \] this lets us bound \[\frac{\partial}{\partial \theta} W_j (\cdot, 0). \] Combining this with Claim 4.6 then proves \(\{W_j (\cdot, 0)\} \) is bounded and equicontinuous. Because \(F_j \equiv F \) by construction, this lets us extract a subsequence of the \(h_j \) whose initial data converge uniformly to the data of a locally homogeneous metric \(h_\infty \) existing for all \(t \geq 0 \).

Notice that if \(j < k \), we may (and shall) assume \(t_j \leq t_k \).

Claim 4.3. There is \(C < \infty \) such that

\[
\sup_{M_\theta^3 \times [T, \infty)} \left| \frac{\partial A}{\partial \theta} \right| < C.
\]

Compute

\[
\frac{\partial}{\partial t} \left(\frac{\partial A}{\partial \theta} \right) = \frac{\partial}{\partial \theta} \left(\frac{1}{2} Z^2 \right) = e^A Z \frac{\partial Z}{\partial s}.
\]

Since by (2.17),

\[
\frac{\partial}{\partial t} A \leq \frac{1}{2} \cdot \frac{1}{t - T + 1/M^2}
\]

for \(t \geq T \), there is \(C' > 0 \) such that

\[
A (\cdot, t) \leq \log C' + \log \sqrt{t - T + 1/M^2}
\]

for \(t \geq T \). Then by (2.19), we have

\[
\left| \frac{\partial}{\partial t} \left(\frac{\partial A}{\partial \theta} \right) \right| \leq C' \sqrt{t - T + 1/M^2} \frac{1}{\sqrt{t - T + 1/M^2}} \cdot \frac{C''}{(1 + m^2 (t - T))^2}
\]

for all \(t \geq T \). Since there is \(B > 0 \) depending only on the initial data such that \(-B \leq \partial A/\partial \theta \leq B \) at \(t = T \), the claim follows.

Claim 4.4. The sequence \(\{\alpha_j (\theta)\} \) is bounded for each \(\theta \in S^1 \).

Let \(\theta \in S^1 \) be arbitrary. For \(j < k \), consider

\[
\alpha_j (\theta) - \alpha_k (\theta) = A (\theta, t_j) - \frac{1}{2} \int_0^{t_j} Z_j^2 \, dt - A (\theta, t_k) + \frac{1}{2} \int_0^{t_k} Z_k^2 \, dt
\]

\[
= \frac{1}{2} \int_{t_j}^{t_k} (Z_k^2 - Z_j^2) \, dt + \frac{1}{2} \int_0^{t_j} (Z_k^2 - Z_j^2) \, dt.
\]
Since \(1/\zeta_k^2 - t_k \geq 1/M_j^2 - t_j\), we obtain a familiar estimate for the first integral:

\[
\frac{1}{2} \left| \int_{t_j}^{t_k} (Z_k^2 - Z_j^2) \, dt \right| \leq \log \sqrt{\frac{1 + M_j^2 (t_k - t_j)}{1 + m_j^2 (t_k - t_j)}} \leq \log \sqrt{1 + \varepsilon_j}.
\]

Write the second integral as

\[
\frac{1}{2} \int_0^{t_j} (Z_k^2 - Z_j^2) \, dt = \log \sqrt{\frac{1/\zeta_j^2 - t_j}{1/\zeta_k^2 - t_k}} + \log \sqrt{\frac{t_j + (1/\zeta_k^2 - t_k)}{1/\zeta_j^2}}
\]

where

\[
P_{jk} \triangleq (1 - \zeta_j^2 t_j) \left(1 + \frac{t_j}{1/\zeta_k^2 - t_k}\right) > 0.
\]

Since

\[
\frac{1/M^2 - T}{t_j + 1/M^2 - T} \leq 1 - \zeta_j^2 t_j \leq \frac{1/m^2 - T}{t_j + 1/m^2 - T}
\]

and

\[
\frac{t_j + 1/m^2 - T}{1/m^2 - T} \leq 1 + \frac{t_j}{1/\zeta_k^2 - t_k} \leq \frac{t_j + 1/M^2 - T}{1/M^2 - T},
\]

we conclude that

\[
\frac{1/M^2 - T}{1/m^2 - T} \leq P_{jk} \leq \frac{1/m^2 - T}{1/M^2 - T}.
\]

Claim 4.5. There are \(0 < Z_* \leq Z^* < \infty\) such that \(Z_j(0) \in [Z_*, Z^*]\) for all \(j\).

Note how

\[
1/Z_j^2(0) = 1/\zeta_j^2 - t_j \geq 1/Z_{\text{max}}^2(t_j) - t_j \geq 1/M^2 - T > 0
\]

by (2.16) and (2.17), and similarly

\[
1/Z_j^2(0) = 1/\zeta_j^2 - t_j \leq 1/Z_{\text{min}}^2(t_j) - t_j \leq 1/m^2 - T < \infty.
\]

Claim 4.6. There are \(\Omega_* \leq \Omega^*\) such that \(\Omega_j \in [\Omega_*, \Omega^*]\) for all \(j\).
Suppose \(j < k \). Then since \(\Omega_j \triangleq W(0, t_j) \), we have
\[
|\Omega_k - \Omega_j| = |W(0, t_k) - W(0, t_j)| \leq \int_{t_j}^{t_k} \left| \frac{\partial W}{\partial t} \right| dt = \int_{t_j}^{t_k} \left| \frac{\partial s}{\partial s} \right| dt \leq \varepsilon_j.
\]

Lemma 4.7. If \(h_\infty \) is a locally homogeneous metric with data
\[
(\alpha_\infty(\theta), \Omega_\infty, F')
\]
and \(\{h_j\} \) is a sequence of locally homogeneous metrics with data
\[
(\alpha_j(\theta), \Omega_j, F)
\]
converging to \((\alpha_\infty(\theta), \Omega_\infty, F') \) uniformly in \(\theta \), then for any \(\varepsilon > 0 \) there is \(J_\varepsilon \) such that for each \(j \geq J_\varepsilon \)
\[
\sup_{M^3_\lambda \times [0, \infty)} |h_j - h_\infty|_{h_\infty} < \varepsilon.
\]

Proof. The integral condition
\[
\int_{S^1} Z_\infty(0) e^{\alpha_\infty(\theta)} d\theta = 2 \log \lambda_+ = \int_{S^1} Z_j(0) e^{\alpha_j(\theta)} d\theta
\]
shows that \(Z_j(0) \to Z_\infty(0) \). For \(\delta > 0 \) to be determined, choose \(J_\varepsilon \) large enough that
\[
\sup_{\theta \in S^1} |\alpha_\infty(\theta) - \alpha_j(\theta)| \leq \delta \quad \text{and} \quad \left| \frac{Z_\infty^2(0)}{Z_j^2(0)} - 1 \right| \leq \delta
\]
for all \(j \geq J_\varepsilon \), and consider
\[
(A_\infty - A_j)(\theta, t) = (\alpha_\infty - \alpha_j)(\theta) + \frac{1}{2} \int_0^t (Z_\infty^2 - Z_j^2) dt.
\]
For any \(\lambda, \mu > 0 \) we have the now-familiar inequality
\[
\log \left(1 - \frac{\mu - \lambda}{\lambda} \right) \leq \int_0^t \left(\frac{1}{t + \lambda} - \frac{1}{t + \mu} \right) dt \leq \log \left(1 + \frac{\mu - \lambda}{\lambda} \right).
\]
Since
\[
\frac{1}{2} \int_0^t (Z_\infty^2 - Z_j^2) dt = \frac{1}{2} \int_0^t \left(\frac{1}{t + 1/Z_\infty^2(0)} - \frac{1}{t + 1/Z_j^2(0)} \right) dt
\]
and
\[
\frac{1/Z_j^2(0) - 1/Z_\infty^2(0)}{1/Z_\infty^2(0)} \leq \delta,
\]
we get our first estimate:
\[
|(A_\infty - A_j)(\theta, t)| \leq \delta + \log \sqrt{1 + \delta}.
\]
Next observe that when \(0 < \delta \leq \log 2\) we have \(e^\delta \leq 1 + 2\delta\) and thus obtain our second estimate:
\[
|(W_\infty - W_j)(\theta, t)| = |W_\infty(\theta, 0) - W_j(\theta, 0)|
\]
\[
= \left| \int_0^\theta Z_\infty(0) \cdot e^{\alpha_\infty(u)} du - \int_0^\theta Z_j(0) \cdot e^{\alpha_j(u)} du \right|
\]
\[
\leq \int_0^\theta Z_\infty(0) \cdot e^{\alpha_\infty(u)} \left| 1 - e^{\alpha_j(u) - \alpha_\infty(u)} \right| du
\]
\[
+ \int_0^\theta Z_j(0) \cdot e^{\alpha_j(u)} \left| \frac{Z_\infty(0)}{Z_j(0)} - 1 \right| du
\]
\[
\leq 3\delta (2 \log \lambda_+).
\]
As in the proof of Theorem 3.1, it follows that we can make \(|h_\infty - h_j|_{h_\infty}\) as small as desired by choosing \(\delta = \delta(\varepsilon)\) appropriately.

Proof of Theorem 4.1. Note that \(|g - h_\infty|_{h_\infty}\) will be small if both \(|g - h_j|_{h_j}\) and \(|h_j - h_\infty|_{h_\infty}\) are. So take the subsequence of metrics \(h_{jk}\) and times \(t_{jk}\) given by Lemma 4.2 and pass to a further subsequence according to Lemma 4.7.

\(\square\)

5. Uniqueness.

Distinct locally homogeneous solv-Gowdy metrics belong to the same equivalence class if and only if they differ merely by a dilation of arc length. In that case, we shall see that they approach one another at the rate \(C/t\), where the constant depends on the initial difference in length of the base circle.

Theorem 5.1. Let \(h\) and \(h_*\) be locally homogeneous metrics corresponding to the data \((\alpha(\theta), \Omega, F)\) and \((\alpha_*(\theta), \Omega_*, F_*)\) respectively. If for some
constant ℓ we have $\alpha_* \equiv \alpha + \ell$ and $\Omega_* = \Omega$ and $F_* = F$, then h and h_* quasi-converge with

$$|h_* - h|_h = O\left(\frac{1}{t}\right).$$

In all other cases, there are $\delta > 0$ and $\theta \in S^1$ such that

$$|h_* - h|_h (\theta, t) \geq \delta$$

for all $t > 0$, so h and h_* do not quasi-converge.

Proof. We consider three cases.

Case 5.2. $\alpha_* \equiv \alpha + \ell$, $\Omega_* = \Omega$, $F_* = F$.

Writing

$$Z(t) = \frac{1}{\sqrt{t + 1/\zeta^2}}$$

and

$$Z_* (t) = \frac{1}{\sqrt{t + 1/\zeta_*^2}},$$

we observe that $\ell = \log (\zeta / \zeta_*)$, since by the integral condition (2.13) we have

$$\left(\frac{\zeta}{\zeta_*}\right) = \int_{S^1} e^{\alpha_*(\theta)} d\theta = \int_{S^1} e^{\alpha(\theta)} d\theta = e^\ell. \tag{5.1}$$

It follows that the function

$$\omega (\theta) \equiv \int_0^\theta \left(\zeta_* e^{\alpha_*(u)} - \zeta e^{\alpha(u)}\right) du \tag{5.2}$$

is identically zero. So for all $\theta \in S^1$ and $t \geq 0$ we have

$$(W_* - W) (\theta, t) = (W_* - W) (\theta, 0) = \Omega_* - \Omega + \omega (\theta) = 0.$$

Now notice that

$$(A_* - A) (\theta, t) = (\alpha_* - \alpha) (\theta) + \frac{1}{2} \int_0^t \left(Z_*^2 (\tau) - Z_*^2 (\tau)\right) d\tau = \ell + \phi (t),$$

where

$$\phi (t) \equiv \frac{1}{2} \log \frac{1 + \zeta_*^2 t}{1 + \zeta_*^2 t} \tag{5.3}.$$
It is clear by (5.1) that $A^* - A \to 0$ uniformly in θ as $t \to \infty$. In fact, this identifies the critical rate at which distinct locally homogeneous metrics h, h^* approach each other, because

$$(e^{2A^*} - e^{2A}) (\theta, t) = e^{2A(\theta,t)} \left(e^{2(\ell + \phi(t))} - 1 \right)$$

and hence

$$|h_* - h|_h = \left| h^{\theta\theta} (h_* - h)_{\theta\theta} \right| = \left| e^{2(\ell + \phi(t))} - 1 \right| = \frac{1/\zeta^2 - 1/\zeta^2}{t + 1/\zeta^2}.$$

Case 5.3. $\alpha_* \equiv \alpha + \ell, \Omega_* = \Omega, F_* \neq F$.

Notice that $W_* - W \equiv 0$ and $A_* - A \to 0$ as above. Without loss of generality, suppose $F_* - F = \delta > 0$. Then for all $\theta \in S^1$ and $t \geq 0$ we have

$$e^{F_* + W_*} - e^{F + W} = e^{F + W} \left(e^{F_* - F - 1} \right) > \delta e^{F + W}$$

and hence

$$|h_* - h|_h \geq |h^{xx} (h_* - h)_{xx}| > \delta > 0.$$

Case 5.4. Either $\alpha_* \neq \alpha + \ell$ or $\Omega_* \neq \Omega$.

Observe that we can always find θ with

$$(W_* - W) (\theta, 0) = \Omega_* - \Omega + \omega (\theta) \neq 0,$$

since ω cannot be identically zero if $\alpha_* \neq \alpha + \ell$. Without loss of generality, assume $(W_* - W) (\theta, 0) = \delta > 0$. Then if $F_* \geq F$, we have

$$e^{F_* + W_* (\theta, t)} - e^{F+W (\theta, t)} = e^{F+W (\theta, t)} \left(e^{F_* - F - 1} \right) \geq e^{F+W (\theta, t)} \left(e^{\delta} - 1 \right)$$

for all $t \geq 0$ and hence

$$|h_* - h|_h (\theta, t) \geq |h^{xx} (h_* - h)_{xx}| (\theta, t) > \delta > 0.$$

On the other hand, if $F \geq F_*$ we obtain

$$e^{F_* - W_* (\theta, t)} - e^{F-W (\theta, t)} = e^{F-W (\theta, t)} \left(e^{F_* - F - 1} \right) \leq e^{F-W (\theta, t)} \left(e^{-\delta} - 1 \right)$$

for all $t \geq 0$ and thus

$$|h_* - h|_h (\theta, t) \geq |h^{yy} (h_* - h)_{yy}| (\theta, t) > \frac{\delta}{1 + \delta} > 0.$$

\square
References.

