Positive Mass Theorem for Hypersurface in 5-Dimensional Lorentzian Manifolds

XIAO ZHANG

1. Introduction.

It is well-known that Positive Mass Theorem has a fundamental importance in Einstein's general relativity. The positive mass theorem for 5-dimensional Lorentzian manifolds is therefore interesting in the context of Kaluza-Klein theory which provides a 5-dimensional general relativity containing both Einstein's 4-dimensional theory of gravity and Maxwell's theory of electromagnetism. This idea of Kaluza-Klein was enthusiastically received by unified-field theorists and was extended to higher dimensions to include the strong and weak forces (i.e., 11-dimensional supergravity theories and 10-dimensional superstrings). We refer to review article [OW] for higher-dimensional unified theories from the general relativity side. Mathematically, the existence of Spinc structures on orientable 4-manifolds provides a unified treatment on gravity and electromagnetism. In this paper we adapt Witten's method and the analytic arguments of Parker and Taubes to such a Spinc structure. This yields a Positive Mass Theorem (Theorem 1.6 below) for hypersurfaces in 5-dimensional Lorentzian manifolds.

Let N be a 5-dimensional Lorentzian manifold with Lorentzian metric \tilde{g} of signature $(-1, 1, 1, 1, 1)$, which satisfies the Einstein equations

$$\tilde{R}_{\alpha\beta} - \frac{\tilde{R}}{2} \tilde{g}_{\alpha\beta} = T_{\alpha\beta},$$

where $\tilde{R}_{\alpha\beta}$, \tilde{R} are the Ricci and scalar curvatures of \tilde{g} respectively, $T_{\alpha\beta}$ is a symmetric tensor field which is interpreted physically as the energy-momentum tensor of matter.

Definition 1.1. A spacelike hypersurface M of N is called asymptotically flat of order τ if there is a compact set $K \subset M$ such that $M - K$ is the disjoint union of a finite number of subsets M_1, \cdots, M_k — called the "ends"
of M — each diffeomorphic to the complement of a contractible compact set in R^4. Under the diffeomorphism the metric of $M_l \subset M$ is of the form

$$g_{ij} = \delta_{ij} + a_{ij}$$

in the standard coordinates $\{x^i\}$ on R^4, where a_{ij} satisfies

$$a_{ij} = O(r^{-\tau}), \quad \partial_k a_{ij} = O(r^{-\tau-1}), \quad \partial_l \partial_k a_{ij} = O(r^{-\tau-2}).$$

Furthermore, the second fundamental form of M satisfies

$$h_{ij} = O(r^{-\tau-1}), \quad \partial_k h_{ij} = O(r^{-\tau-2}).$$

A $U(1)$ line bundle L over M is called asymptotically flat of order τ if there is a trivialization of L over the end and a $u(1)$-value 1-form A such that on end M_l, the connection on L can be written as

$$dA_j = \partial_j + A_j, i,$$

where A_j is real, and satisfies

$$A_j = O(r^{-\tau-1}), \quad \partial_k A_j = O(r^{-\tau-2}).$$

We will often identify the end $M_l \subset M$ with the corresponding set $M_l \subset R^4$.

The curvature $F_A = dA$ of such a connection on L may be interpreted physically as the electromagnetic field. For spacelike asymptotically flat hypersurface M and asymptotically flat line bundle L, we can define the total energy, the total linear momentum and the total electromagnetic momentum. They are defined in each asymptotic end M_l as limits over the sphere $S_{R,l}$ of radius R in $M_l \subset R^4$.

Definition 1.2. Total energy of end M_l is defined as

$$E_l = \lim_{R \to \infty} C_4^{-1} \int_{S_{R,l}} (\partial_j g_{ij} - \partial_i g_{ij}) d\Omega^i,$$

total linear momentum of end M_l is defined as

$$p_{lk} = \lim_{R \to \infty} C_4^{-1} \int_{S_{R,l}} 2(h_{ik} - \delta_{ik} h_{jj}) d\Omega^i,$$

total electromagnetic momentum of end M_l is defined as

$$q_{li} = \lim_{R \to \infty} C_4^{-1} \left(\int_{S_{R,l}} 2A_j d\Omega^i - \int_{S_{R,l}} 2A_i d\Omega^j \right),$$

where $C_4 = 12\omega_3$ and ω_3 is the volume of unit sphere S^3 with standard metric.
Definition 1.3. The current matrix of electromagnetic field on end M_i is defined by

$$\Omega_i = (\omega_{ij}),$$

where

$$\begin{align*}
\omega_{11} &= 2^{-1}(-q_{12}^2 - q_{13}^2 - q_{14}^2 + q_{13}^2 + q_{14}^2 + q_{13}^2 + q_{14}^2), \\
\omega_{22} &= 2^{-1}(-q_{12}^2 + q_{13}^2 + q_{14}^2 + q_{13}^2 - q_{14}^2 - q_{13}^2), \\
\omega_{33} &= 2^{-1}(q_{12}^2 - q_{13}^2 + q_{14}^2 - q_{13}^2 + q_{14}^2 - q_{13}^2), \\
\omega_{44} &= 2^{-1}(q_{12}^2 + q_{13}^2 - q_{14}^2 - q_{13}^2 - q_{14}^2 + q_{13}^2), \\
\omega_{12} &= \sum_{k \neq \{i,j\}} q_{i1k}q_{1kj}, \quad 1 \leq i, j \leq 4, \ i \neq j.
\end{align*}$$

When the asymptotic order $\tau > 1$, these quantities are finite, independent on the choice of asymptotic coordinates. Since $q_{ij} = -q_{ji}$, Ω_i is real symmetric. Moreover, Ω_i is traceless.

The following Positive Mass Conjecture was proved first by R. Schoen and S.T. Yau [SY1, SY2, SY3], then by E. Witten [W, PT].

Theorem 1.4 (Schoen-Yau, Witten). Let N be a 4-dimensional Lorentzian manifold with Lorentzian metric \bar{g} of signature $(-1,1,1,1)$, which satisfies the Einstein equations (1.1), $M \subset N$ be a spacelike asymptotically flat hypersurface of order $\tau > \frac{1}{2}$. If M satisfies the dominant energy condition

$$T_{00} \geq \sqrt{\sum_i T_{0i}^2}, \quad \text{and} \quad T_{00} \geq |T_{\alpha\beta}|,$$

then, for each end M_i, we have

$$E_i \geq \sqrt{\sum_i p_{li}^2}.$$

If $E_{l_0} = 0$ for some l_0, then M has only one end and N is flat over M.

One key point in Witten's argument is to prove that there is a positive definite Hermitian metric on $\text{Spin}(3,1)$ spinors. This fact was verified by T. Parker and C. Taubes [PT] in terms of representation theory of spin group $SL(2,C)$, and was extended to $\text{Spin}(4,1)$ spinors by the author in terms of representation theory of spin group $SU(1,1)$. Consequently, Positive Mass
Conjecture can be proved for spin spacelike hypersurface in 5-dimensional Lorentzian manifolds [Z1]. It should be true for all spin group Spin(n, 1), an issue we will address elsewhere.

Now since \(N \) is 5-dimensional and \(M \) is an orientable hypersurface in \(N \), \(M \) has a \(\text{Spin}^c \) structure. It means that there is a \(U(1) \) line bundle \(L \) on \(N \) such that \(S \otimes L^{1/2} \) is globally-defined over \(M \), where \(S \) is (locally) spinor bundle of \(N \), which is not globally-defined on \(N \) except that \(N \) is spin. Denote \(W = S \otimes L^{1/2} \). \(W \) is called the complex Witten-Dirac spinor bundle, and \(L \) is called \(\text{Spin}^c \) structure. Let \(A \) be a \(U(1) \) connection 1-form on \(L \), and denote \(F^M_A \) as the curvature of \(L \) restricted on \(M \). The corresponding connection on \(L^{1/2} \) is \(\tilde{d}_A = d + \frac{1}{2} A \). Let \(\nabla \) be the metric connection on \(S \). Then the globally-defined connection \(\nabla_A \) and the metric on \(W \) are defined as follows: write \(\phi = s_1 \otimes \sigma_1, \psi = s_2 \otimes \sigma_2 \) locally, where \(s_1, s_2 \in S, \sigma_1^2, \sigma_2^2 \in L \), then

\[
\nabla_A \phi = \nabla s_1 \otimes \sigma_1 + s_1 \otimes \tilde{d}_A \sigma_1,
\]

\[
\langle \phi, \psi \rangle_W = \langle s_1, s_2 \rangle_S \cdot \langle \sigma_1, \sigma_2 \rangle_L.
\]

Obviously, \(\nabla_A \) is compatible with the metric \(\langle , \rangle_W \). At each \(p \in M \), we fix an orthonormal frame \(\{e_\alpha| \alpha = 0, 1, 2, 3, 4 \} \) with \(e_0 \) normal to \(M \) and \(e_1, e_2, e_3, e_4 \) tangent to \(M \). (Here, and henceforth, repeated indices are summed with Latin indices running from 1 to 4 and Greek indices running from 0 to 4.) Denote \(\{e^\alpha| \alpha = 0, 1, 2, 3, 4 \} \) as its dual frame.

Definition 1.5. The above \(M \) satisfies the charged dominant energy condition if

\[
(1.10) \quad T_{00} \geq \sqrt{\sum_i T_{0i}^2} + \sqrt{\sum_{i,j} F_{AiJ}^2}, \text{ and } T_{00} \geq |T_{\alpha\beta}| + |F_{A\alpha\beta}|.
\]

Theorem 1.6. Let \(N \) be a 5-dimensional Lorentzian manifold with Lorentzian metric \(\tilde{g} \) of signature \((-1,1,1,1,1)\), which satisfies the Einstein equations (1.1), \(M \subset N \) be a spacelike asymptotically flat hypersurface of order \(\tau > 1 \). Let \(L \) be the \(\text{Spin}^c \) structure of complex Witten-Dirac spinor bundle of \(M \) with \(U(1) \) connection \(A \), which is also asymptotically flat of order \(\tau > 1 \). If \(M \) satisfies the charged dominant energy condition (1.10), then, for each end \(M_i \), we have

\[
E_i \geq \left\{ \begin{array}{ll}
\sqrt{|Q_l|^2 + 2|q_{12}q_{34} + q_{13}q_{42} + q_{14}q_{23}|} & \text{if } |P_l| = 0, \\
|P_l| + \sqrt{2^{-1}|Q_l|^2 + \tilde{P}_l^2} & \text{if } |P_l| \neq 0,
\end{array} \right.
\]
where \(|P_i| = \sqrt{\sum_i p_i^2}, \ |Q_i| = \sqrt{\sum_{i<j} q_{ij}^2} \) and \(\bar{P}_i = |P_i|^{-1}(p_{i1}, p_{i2}, p_{i3}, p_{i4})^t \) if \(|P_i| \neq 0 \). If \(E_{l_0} = 0 \) for some \(l_0 \), then \(M \) has only one end and \(N, L \) are flat over \(M \). Moreover, \(p_{lok} = 0, q_{loij} = 0 \).

We also prove an analogous theorem for 4-dimensional Lorentzian manifolds in the appendix. Namely,

Theorem 1.7. Let \(N \) be a 4-dimensional Lorentzian manifold with Lorentzian metric \(\tilde{g} \) of signature \((-1,1,1,1)\), which satisfies the Einstein equations \((1.1)\), \(M \subset N \) be a spacelike asymptotically flat hypersurface of order \(\tau > \frac{1}{2} \).

Let \(L \) be the \(\text{Spin}^c(3,1) \) structure of \(N \) with \(U(1) \) connection \(A \), which is also asymptotically flat of order \(\tau > \frac{1}{2} \) over \(M \). If \(M \) satisfies the charged dominant energy condition \((1.10)\), then, for each end \(M_1 \), we have

\[
E_i \geq \sqrt{|P_i|^2 + |Q_i|^2 + 2|p_{i1}q_{l23} + p_{i2}q_{l31} + p_{i3}q_{l12}|},
\]

where \(|P_i| = \sqrt{\sum_i p_i^2}, \ |Q_i| = \sqrt{\sum_{i<j} q_{ij}^2} \). If \(E_{l_0} = 0 \) for some \(l_0 \), then \(M \) has only one end and \(N, L \) are flat over \(M \). Moreover, \(p_{lok} = 0, q_{loij} = 0 \).

2. Spinors.

Let \(N \) be a 5-dimensional Lorentzian manifold, and \(M \) be a spacelike hypersurface in \(N \). Denote \(H \) as the field of quaternions. The hyper-unitary group \(HU(1,1) = \text{Spin}^0(4,1) \) is the double covering group of connected Lorentz group \(SO(4,1) \) (see [Ha], p272). A \(\text{Spin}^c \) structure on \(N \) is a globally defined \(\text{Spin}^0(1,1) \) bundle \(W \) over \(M \) locally of the form \(W = S \otimes L^\frac{1}{2} \).

For any \(X \in \text{End}(W) \), denote \(X^* \) the adjoint of \(X \) under \(HU(1,1) \times \mathbb{Z}_2 U(1) \) Hermitian structure. Denote

\[
\mathcal{R} = \{ X \in \text{End}(W), X = X^*, \text{Trace}(X) = 0 \}.
\]

There is an invariant metric on \(\mathcal{R} \) defined for \(X, Y \in \mathcal{R} \) by,

\[
\langle X, Y \rangle = -\frac{1}{2} \text{Re(Trace}(XY))).
\]

Moreover, for any \(X \in T^*N \) with coordinate \((x_0, x_1, x_2, x_3, x_4) \), we have a canonical identification of \(X \) to an element in \(\mathcal{R} \), i.e.,

\[
X \mapsto \left(\begin{array}{cc}
 x_0 & x \\
 -x & -x_0
 \end{array} \right),
\]

\[(2.1)\]
where \(x = x_1 + x_2I + x_3J + x_4K \). As in [Z1] one can prove that this defines an isometry \(T^*N \equiv \mathbb{R} \).

The spinor bundle \(W \) has a \(HU(1,1) \times \mathbb{Z}_2 U(1) \) invariant Hermitian metric defined by

\[
(\phi, \psi) = \bar{\xi}_1 \cdot \eta_1 - \bar{\xi}_2 \cdot \eta_2
\]

for \(\phi = (\xi_1, \xi_2)^t \in W, \psi = (\eta_1, \eta_2)^t \in W \). This metric is not positive definite.

The Clifford multiplication is the map \(T^*N \otimes W \rightarrow W \) that sends \(X \otimes \phi \) to \(X\phi \), where \(X\phi \) means that spinor \(\phi \) is multiplied by the corresponding matrix (2.1) of covector \(X \). Obviously, \(XY + YX = -2g(X,Y) \cdot Id \). The choice of a timelike covector \(e^0 \) gives another Hermitian metric on \(W \) by

\[
(\phi, \psi) = (e^0 \phi, \psi) = \bar{\xi}_1 \cdot \eta_1 + \bar{\xi}_2 \cdot \eta_2
\]

for \(\phi = (\xi_1, \xi_2)^t \in W, \psi = (\eta_1, \eta_2)^t \in W \). This new metric is positive definite and \(Sp(1) \times Sp(1) \times \mathbb{Z}_2 U(1) \) invariant. Furthermore, for any \(X \in T^*_p M \), spinors \(\phi, \psi \in W \), we have

\[
(2.2)
(X\phi, \psi) = (\phi, X\psi), \quad (x\phi, \psi) = - (\phi, x\psi), \quad (e^0 \phi, \psi) = (\phi, e^0 \psi).
\]

The proofs of above facts are similar to those in [Z1]. By (2.1), we get a canonical representation of the coframe

\[
(2.3)
e^0 \mapsto \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad e^1 \mapsto \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix},
\]

\[
e^2 \mapsto \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}, \quad e^3 \mapsto \begin{pmatrix} 0 & J \\ J & 0 \end{pmatrix}, \quad e^4 \mapsto \begin{pmatrix} 0 & K \\ K & 0 \end{pmatrix}.
\]

Now we derive the Pauli representation. We identify \(H \cong C^2 \) as follows:

For any \(x_H = x_1 + x_2I + x_3J + x_4K = (x_1 + x_2I) + J(x_3 - x_4I) \in H \), we identify it to \(x_C = (x_1 + x_2I, x_3 - x_4I)^t \in C^2 \). Since \(I \cdot x_H = I(x_1 + x_2I) + J(-I)(x_3 - x_4I), \ J \cdot x_H = J(x_1 + x_2I) - (x_3 - x_4I), \) and \(K \cdot x_H = J(-I)(x_1 + x_2I) - I(x_3 - x_4I) \). We can obtain the following canonical Pauli representation

\[
(2.4)
I \mapsto \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \quad J \mapsto \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \quad K \mapsto \begin{pmatrix} 0 & -i \\ -i & 0 \end{pmatrix}.
\]

For any \(x_H, y_H \in H \), we have \(\Re(\bar{x}_H y_H) = \Re(\bar{x}_C y_C) \). This fact implies that, for any \(\phi, \psi \in W, \Re(\phi, \psi)_H = \Re(\phi, \psi)_C \), where \((\ , \)_H \) is quaternions
Positive mass theorem for hypersurface in 5 Lorentzian manifolds

Hermitian metric on W and \langle , \rangle_C is the corresponding complex Hermitian metric on W while W is viewed as a complex rank-4 bundle.

Obviously, $W = W^+ \oplus W^-$ over M, where $W^\pm = \{ \phi \in W : \ast \phi = \pm \phi \}$ ($\ast = -e^1 e^2 e^3 e^4$). The 'half spinor bundles' W^\pm are orthogonal w.r.t. metrics \langle , \rangle and \langle , \rangle. Moreover, since $e^0 \ast = \ast e^0$, e^0 preserves W^\pm. Now the space of 2-forms of M splits as the self-dual part Λ^+ and the anti-self-dual part Λ^-, $\Lambda^\pm = \text{span}\{e^I_\pm, e^J_\pm, e^K_\pm\}$, where

\begin{align*}
e^I_\pm &= e^1 \wedge e^2 \pm e^3 \wedge e^4, \\
e^J_\pm &= e^1 \wedge e^3 \pm e^4 \wedge e^2, \\
e^K_\pm &= e^1 \wedge e^4 \pm e^2 \wedge e^3.
\end{align*}

Define the Clifford multiplication of 2-form on W by: $(e^i \wedge e^j) = e^i e^j \ (i \neq j)$.

A straightforward computation shows $\Lambda^\pm W^\mp = 0$. Furthermore,

\begin{align*}(2.5) \quad e^I_+ &= -e^I_+ \quad e^I_- &= -e^I_- \\
(2.6) \quad e^J_+ &= -e^J_+ \\
(2.7) \quad e^J_- &= -e^J_- \\
(2.8) \quad e^K_+ &= -e^K_+ \\
(2.9) \quad e^I_+ e^J_+ &= 2e^K_+ \\
(2.10) \quad e^I_- e^J_- &= 2e^K_-
\end{align*}

3. Hypersurface Spin^c Dirac operator.

Let N be a 5-dimensional Lorentzian manifold, and M be a spacelike hypersurface in N. Fix a point $p \in M$ and an orthonormal basis $\{e_\alpha\}$ of T_pN with e_0 normal and e_1, e_2, e_3, e_4 tangent to M. Extend e_1, e_2, e_3, e_4 to an orthonormal frame in a neighbourhood of p in M such that $(\nabla_i e_j)_p = 0$. Extend this to a local orthonormal frame $\{e_\alpha\}$ for N with $(\nabla_0 e_j)_p = 0$. Let $\{e^\alpha\}$ be the dual frame. Then $(\nabla_i e^j)_p = -h_{ij} e^0, \ (\nabla_i e^0)_p = -h_{ij} e^j$, where $h_{ij} = \langle \nabla_i e_0, e_j \rangle, \ 1 \leq i, j \leq 4$, are the components of the second fundamental form at p. The metric connection ∇ and ∇, together with a $U(1)$ connection A on L, induce two connections on W. These induced connections on W, which we denote by ∇_A, ∇_A respectively, are related by

\begin{align*}(3.1) \quad &\nabla_A = \nabla_A + \frac{1}{2} h_{ij} e^0 e^j.
\end{align*}
By definition, $\tilde{\nabla}_A$ is compatible with the metric (\cdot, \cdot), i.e.,
\[d\left((\phi, \psi) \ast e_i\right) = \left(\left(\tilde{\nabla}_A e_i, \phi \ast e_i\right) + \left(\phi, \tilde{\nabla}_A e_i\right)\right) \ast 1.\]

Using (2.2) and (3.1), we can prove that ∇_A is also compatible with the metrics (\cdot, \cdot) and (\cdot, \cdot), i.e.,
\[d\left((\phi, \psi) \ast e_i\right) = \left(\left(\nabla_A e_i, \phi \ast e_i\right) + \left(\phi, \nabla_A e_i\right)\right) \ast 1.\]

In a local orthonormal coframe $\{e^i\}$ of M, Spinc Dirac operator D_A and the hypersurface Spinc Dirac operator \tilde{D}_A are defined by
\[D_A = e^i \nabla_{A_i}, \quad \tilde{D}_A = e^i \tilde{\nabla}_{A_i},\]
respectively. Obviously, D_A is self-adjoint with respect to the metric $\langle \cdot, \cdot \rangle$. We also have the following standard Weitzenböck formula:
\[D_A^2 = \nabla^* \nabla_A + \frac{R}{4} + \frac{1}{2} F_A^M,\]
where R is the scalar curvature of M, and F_A^M is the restriction on M of the curvature of L. From (3.1), we have
\[\tilde{D}_A = D_A + \frac{H}{2} e^0,\]
where $H = \sum h_{ii}$ is the mean curvature of M. Moreover,
\[d\left(\langle e^i \phi, \psi \rangle \ast e^i\right) = \left(\langle D_A e_i, \phi \ast e_i\rangle - \langle \phi, D_A e_i\rangle\right) \ast 1 = \left(\langle \tilde{D}_A e_i, \phi \ast e_i\rangle - \langle \phi, \tilde{D}_A e_i\rangle\right) \ast 1.\]

and
\[d\left(\langle \phi, \tilde{\nabla}_{A_i} \psi \rangle \ast e^i\right) = \left(\langle \tilde{\nabla}_{A_i} e_i, \phi \ast e_i\rangle - \langle \phi, (-\tilde{\nabla}_{A_i} + h_{ij} e^0 e^i) e^i \rangle \tilde{\nabla}_{A_i} e_i\rangle\right) \ast 1.\]

It follows that the adjoints under the metric (\cdot, \cdot) are $D_A^* = D_A$, $\tilde{D}_A^* = \tilde{D}_A$, $\tilde{\nabla}_{A_i}^* = -\tilde{\nabla}_{A_i} + h_{ij} e^0 e^j$. With the information, we can easily derive (as in [Z1]) the following two Weitzenböck formulas,

\[
\tilde{D}_A^2 = \nabla^* \nabla_A + \frac{1}{4} (R + H^2) - \frac{1}{2} \nabla_i H e^0 e^i + \frac{1}{2} F_A^M
\]

\[
= \tilde{\nabla}_A^* \tilde{\nabla}_A + \frac{1}{2} (T_{00} + T_{0i} e^0 e^i + F_A^M).
\]
The integral form of Weitzenböck formula (3.3) is
\[
(3.4) \quad \int_M \left| \nabla_A \phi \right|^2 + \left< \phi, \tilde{R} \phi \right> - \left| \tilde{D}_A \phi \right|^2 = \frac{1}{2} \int_{\partial M} \left< \phi, [\epsilon^i, \epsilon^j] \nabla_A j \phi \right> \ast e^i,
\]
where $\tilde{R} = \frac{1}{2} (T_{00} + T_{0t} e^0 e^t + F^M_A)$, and $[\epsilon^i, \epsilon^j] = e^i e^j - e^j e^i$.

Now recall that M and L are asymptotically flat of order $\tau > 1$ with asymptotic coordinates $\{dx^i\}$ on the end. Orthonormalizing $\{dx^i\}$ yields an orthonormal coframe
\[
e^i = dx^i + \frac{1}{2} a_{ik} dx^k + O(r^{-\tau-1}).
\]
Denote e^0 as dx^0. Then, on each end,
\[
\nabla_A j = \partial_j - \frac{1}{4} \Gamma^k_{jl} dx^k dx^l + \frac{1}{2} A_j i + O(r^{-2\tau-1}),
\]
\[
\tilde{D}_A = dx^j \partial_j - \frac{1}{4} \Gamma^k_{jl} dx^j dx^k dx^l + \frac{H}{2} dx^0 + \frac{1}{2} dx^j A_j i + O(r^{-2\tau-1}),
\]
where $\Gamma^k_{jl} = \frac{1}{2} (\partial_j g_{kl} + \partial_l g_{kj} - \partial_k g_{jl}) = O(r^{-\tau-1})$. Therefore \tilde{D}_A gives the maps for the weighted Hölder spaces
\[
C^{2,\alpha}(W) \times C^{1,\alpha}_{-\tau-1}(W) \times C^{0,\alpha}_{-\tau-2}(W)
\]
defined by connection ∇_A on W. Here we are using the weighted spaces defined in the papers of Bartnik [B] and Lee-Parker [LP]. For constant spinor ϕ_0, $\partial_i \phi_0 = 0$, we have $\tilde{D}_A \phi_0 \in C^{1,\alpha}_{-\tau-1}(W)$, and $\tilde{D}_A^2 \phi_0 \in C^{0,\alpha}_{-\tau-2}(W)$.

The following lemma can be easily proved in the spirit of [PT].

Lemma 3.1. Suppose M, L are asymptotically flat of order $\tau > 1$ and ϕ, $\{\phi_i\} \in W$ are C^1 spinors which satisfy $\nabla_A \phi = 0$, $\nabla_A \phi_i = 0$ for each i,

(i) If $\lim_{x \to \infty} \phi(x) = 0$, where the limit is taken along M in one asymptotic end, then $\phi = 0$.

(ii) If $\{\phi_i\}$ are linearly independent in some end, then they are linearly independent everywhere on M.

Proof. By the assumption, we have $\nabla_A i \phi = -\frac{1}{2} h_{ij} e^0 e^j \phi$. Then
\[
\left| d|\phi|^2 \right| = 2 \left| \Re \left< \nabla_A \phi, \phi \right> \right| \leq C |h| |\phi|^2.
\]
Therefore the lemma can be proved in the same way as Lemma 4.1, [Z1]. □
Lemma 3.2. If M, L are asymptotically flat of order $\tau > 1$ and the charged dominant energy condition (1.10) holds on M, then the map
\[\tilde{D}_A^2 : C^2_{-\tau}(W) \to C^0_{-\tau-2}(W) \]
is an isomorphism.

Proof. First note that the lower order term in (3.2)
\[\left(\frac{1}{4}(R + H^2) - \frac{1}{2}\nabla_i H e^0 e^i + \frac{1}{2}F_A^M \right) \]
lies in $C^0_{-\tau-2}(W)$. Consequently, Theorem 9.2(d) of [LP] shows that \tilde{D}_A^2 is an isomorphism provided it is injective. To show injectivity, suppose that $\phi \in C^2_{-\tau}(W)$ satisfies $\tilde{D}_A^2 \phi = \tilde{\nabla}_A^* \tilde{\nabla}_A \phi + R \phi = 0$. Integrating over the region $M_r \subset M$ inside radius r in asymptotic coordinates, we have
\[\int_{M_r} |\tilde{\nabla}_A \phi|^2 + \langle R \phi, \phi \rangle = \int_{\partial M_r} \langle \phi, \tilde{\nabla}_A \phi \rangle * e^i. \]
But
\[\langle \phi, \tilde{\nabla}_A \phi \rangle = \left(\phi, \left(\nabla_{Ai} \phi + \frac{1}{2}h_{ij} e^0 e^j . \phi \right) \right) = O(r^{-2\tau-1}), \]
and $\text{Vol}(\partial M_r) = O(r^3)$ by (1.2), (1.3). Hence the right hand side of the above integral vanishes in the limit as $r \to \infty$. Therefore $\tilde{\nabla}_A \phi = 0$ on M. Hence $\phi = 0$ by Lemma 3.1 (i), and the proof of the lemma is complete. \(\square\)

Theorem 3.3. If M, L are asymptotically flat of order $\tau > 1$ and the charged dominant energy condition (1.10) holds on M, then for any constant spinor ϕ_0 on ends, the following boundary value problem has a unique solution $\phi \in C^2_{-\tau}(W)$,
\[\begin{cases} \tilde{D}_A \phi & = \ 0, \\ \lim_{r \to \infty} \phi & = \ \phi_0. \end{cases} \]

Proof. Since $\tilde{D}_A^2 \phi_0 \in C^0_{-\tau-2}(W)$, Lemma 3.2 show that there is unique $\phi_1 \in C^2_{-\tau}(W)$ such that $\tilde{D}_A^2 \phi_1 = -\tilde{D}_A^2 \phi_0$. Then $\phi = \phi_1 + \phi_0$ satisfies $\tilde{D}_A^2 \phi = 0$. Let $\psi = \tilde{D}_A \phi \in C^1_{-\tau-1}(W)$, then
\[\int_{M_r} |\tilde{\nabla}_A \psi|^2 + \langle R \psi, \psi \rangle = \int_{\partial M_r} \langle \psi, \tilde{\nabla}_A \psi \rangle * e^i = \int_{\partial M_r} O(r^{-2\tau-3}) \to 0 \]
as $r \to \infty$. Therefore $\tilde{\nabla}_A \psi = 0$ on M. Hence $\psi = 0$ by Lemma 3.1 (i) and ϕ is the unique solution of (3.5). \(\square\)

In this section, we will prove Positive Mass Theorem.

Proof of Theorem 1.6. Fix a constant spinor \(\phi_0 \neq 0 \) on \(M_l \) and \(\phi_0 = 0 \) on the other ends. Let \(\phi = \phi_0 + \phi_1 \) be the solution of (3.5) with \(\phi_1 \in C^2_{-\tau}(W) \).

As in [Z1] we have

\[
\int_M \left| \vec{\nabla} A \phi \right|^2 + \left\langle \phi, \vec{R} \phi \right\rangle = \frac{1}{2} \int_{\partial M_{\infty}} \left\langle \phi_0, [dx^i, dx^j] \vec{\nabla} J \phi_0 \right\rangle * dx^i + \frac{1}{4} \int_{\partial M_{\infty}} \left\langle \phi_0, [dx^i, dx^j] J_i \phi_0 \right\rangle * dx^i
\]

or

\[
\int_M \left| \vec{\nabla} A \phi \right|^2 + \left\langle \phi, \vec{R} \phi \right\rangle = \frac{C_4}{4} \sum_i \left(\left\langle \phi_0, E_l \phi_0 \right\rangle + \left\langle \phi_0, p_k dx^0 dx^k \phi_0 \right\rangle + \sum_{i<j} \left\langle \phi_0, dx^i dx^j q_{ij} \phi_0 \right\rangle \right).
\]

We next simplify these terms algebraically. For this we temporarily drop the subscript on \(\phi_0 \), writing \(\phi_0 = (\phi^+, \phi^-) \in W^+ \oplus W^- \). Similarly, we drop the subscript \(l \) from \(E_l, P_l, Q_l, \Omega_l, p_{li} \) and \(q_{lij} \). When \(|P| \neq 0 \), we choose \(\phi^- \) so that \(p_k dx^0 dx^k \phi^+ = -|P| \phi^- \). Then

\[
\left\langle \phi_0, p_k dx^0 dx^k \phi_0 \right\rangle = \left\langle \phi^+, p_k dx^0 dx^k \phi^- \right\rangle + \left\langle \phi^-, p_k dx^0 dx^k \phi^+ \right\rangle
\]

or

\[
\int_M \left| \vec{\nabla} A \phi \right|^2 + \left\langle \phi, \vec{R} \phi \right\rangle = \frac{C_4}{4} \sum_i \left(\left\langle \phi_0, E_l \phi_0 \right\rangle + \left\langle \phi_0, p_k dx^0 dx^k \phi_0 \right\rangle + \sum_{i<j} \left\langle \phi_0, dx^i dx^j q_{ij} \phi_0 \right\rangle \right).
\]

Denote the self-dual part of total electromagnetic momentum of end \(M_l \) by

\[
q_1^+ = 2^{-1}(q_{12} + q_{34}), \quad q_2^+ = 2^{-1}(q_{13} + q_{42}), \quad q_3^+ = 2^{-1}(q_{14} + q_{23}),
\]

and anti-self-dual part of total electromagnetic momentum of end \(M_l \) by

\[
q_1^- = 2^{-1}(q_{12} - q_{34}), \quad q_2^- = 2^{-1}(q_{13} - q_{42}), \quad q_3^- = 2^{-1}(q_{14} - q_{23}).
\]

Let \(q^+ = e^+_l q_1^+ + e^+_2 q_2^+ + e^+_3 q_3^+ \), \(q^- = e^-_l q_1^- + e^-_2 q_2^- + e^-_3 q_3^- \), then

\[
\sum_{i<j} \left\langle \phi_0, dx^i dx^j q_{ij} \phi_0 \right\rangle = \left\langle \phi^+, q^+ i \phi^+ \right\rangle + \left\langle \phi^-, q^- i \phi^- \right\rangle
\]

or

\[
\int_M \left| \vec{\nabla} A \phi \right|^2 + \left\langle \phi, \vec{R} \phi \right\rangle = \left\langle \phi^+, (q^+ - |P|^{-2} p_k p_j dx^k q^- dx^j) i \phi^+ \right\rangle.
\]
Using (2.6), (2.7), (2.8), (2.9) and (2.10), we obtain

\[
p_k p_j dx^k e^I_{-} dx^j = \left(- p_k p_1 dx^k dx^1 - p_k p_2 dx^k dx^2 + p_k p_3 dx^k dx^3 + p_k p_4 dx^k dx^4 \right) e^I_{+}
\]

\[
= \left(p_1^2 + p_2^2 - p_3^2 - p_4^2 + 2p_1 p_3 dx^1 dx^3 - 2p_4 p_2 dx^4 dx^2 + 2p_1 p_2 dx^1 dx^4 + 2p_2 p_3 dx^2 dx^3 \right) e^I_{+}
\]

\[
= \left[p_1^2 + p_2^2 - p_3^2 - p_4^2 + (p_1 p_3 - p_4 p_2) e^I_{+} + (p_1 p_4 + p_2 p_3) e^K_{+}\right] e^I_{+}
\]

\[
= \left(p_1^2 + p_2^2 - p_3^2 - p_4^2\right) e^I_{+} + 2 \left(p_1 p_4 + p_2 p_3\right) e^I_{+}
\]

\[
+ 2 \left(p_2 p_4 - p_1 p_3\right) e^K_{+}.
\]

Similarly, one finds that

\[
p_k p_j dx^k e^I_{-} dx^j = 2 \left(p_2 p_3 - p_1 p_4\right) e^I_{+} + \left(p_1^2 - p_2^2 + p_3^2 - p_4^2\right) e^I_{+}
\]

\[
+ 2 \left(p_1 p_2 + p_3 p_4\right) e^K_{+},
\]

\[
p_k p_j dx^k e^K_{-} dx^j = 2 \left(p_1 p_3 + p_2 p_4\right) e^I_{+} + 2 \left(p_3 p_4 - p_1 p_2\right) e^I_{+}
\]

\[
+ \left(p_1^2 - p_2^2 - p_3^2 + p_4^2\right) e^K_{+}.
\]

Denote

\[
c_1 = q_1^+ - |P|^{-2} \left(\left(p_1^2 + p_2^2 - p_3^2 - p_4^2\right) q_1^- + 2 (p_2 p_3 - p_1 p_4) q_2^- + 2(p_1 p_3 + p_2 p_4) q_3^-\right),
\]

\[
c_2 = q_2^+ - |P|^{-2} \left(2(p_1 p_4 + p_2 p_3) q_1^- + \left(p_1^2 - p_2^2 + p_3^2 - p_4^2\right) q_2^- + 2(p_3 p_4 - p_1 p_2) q_3^-\right),
\]

\[
c_3 = q_3^+ - |P|^{-2} \left(2(p_2 p_4 - p_1 p_3) q_1^- + 2(p_1 p_2 + p_3 p_4) q_2^- + \left(p_1^2 - p_2^2 - p_3^2 + p_4^2\right) q_3^-\right).
\]
When $|P| = 0$, we set
\[
\begin{align*}
c_1 &= q_i^+ - |S|^{-2} \left((s_1^2 + s_2^2 - s_3^2 - s_4^2)q_i^- + 2(s_1s_3 - s_1s_4)q_2^- \\ &+ 2(s_1s_3 + s_2s_4)q_3^- \right), \\
c_2 &= q_i^+ - |S|^{-2} \left(2(s_1s_4 + s_2s_3)q_1^- + (s_1^2 - s_2^2 + s_3^2 - s_4^2)q_2^- \\ &+ 2(s_3s_4 - s_1s_2)q_3^- \right), \\
c_3 &= q_i^+ - |S|^{-2} \left(2(s_2s_4 - s_1s_3)q_1^- + 2(s_1s_2 + s_3s_4)q_2^- \\ &+ (s_1^2 - s_2^2 - s_3^2 + s_4^2)q_3^- \right),
\end{align*}
\]

where s_1, s_2, s_3, s_4 are arbitrary real numbers such that $|S| = \sqrt{\sum_i s_i^2} \neq 0$.

We choose ϕ^- by $s_kdx^0dx^k\phi^+ = -|S|\phi^-$. Then we can repeat the above calculation, replacing p_k by s_k. Therefore,
\[
\begin{align*}
\sum_{i < j} \langle \phi_0, dx^i dx^j q_{ij} i\phi_0 \rangle &= \langle \phi^+, (e_+^I c_1 + e_+^J c_2 + e_+^K c_3) i\phi^+ \rangle \\
&= 2\langle \phi^+, (Ic_1 + Jc_2 + Kc_3) i\phi^+ \rangle.
\end{align*}
\]

By the Pauli representation (2.4), we have
\[
\Re \sum_{i < j} \langle \phi_0, dx^i dx^j q_{ij} i\phi_0 \rangle = 2\Re \langle \phi^+, C\phi^+ \rangle,
\]

where
\[
C = \begin{pmatrix} c_1 & -ic_2 + c_3 \\ ic_2 + c_3 & c_1 \end{pmatrix},
\]

which has real eigenvalues $\lambda = \pm |C|, |C| = \sqrt{\sum_i c_i^2}$. Now we take ϕ^+ to be the eigenspinor of eigenvalue $-|C|$ with $|\phi^+|^2 = \frac{1}{2}$. We obtain
\[
E - |P| - |C| = 4C_4^{-1} \int_M \left| \tilde{\nabla}_A \phi \right|^2 + \langle \phi, \tilde{R}\phi \rangle \geq 0.
\]

Next we compute $|C|$. Denote
\[
t_k = \begin{cases} |S|^{-1}s_k & \text{if } |P| = 0, \\ |P|^{-1}p_k & \text{if } |P| \neq 0. \end{cases}
\]
Obviously, $\sum_k t_k^2 = 1$. A straightforward computation gives
\[
\left((t_1^2 + t_2^2 - t_3^2 - t_4^2) + 2(t_2t_3 - t_1t_4)q_1^2 + 2(t_1t_3 + t_2t_4)q_2^2 \right)^2
\]
\[
+ \left(2(t_1t_4 + t_2t_3)q_1^2 + (t_1^2 - t_2^2 + t_3^2 - t_4^2)q_2^2 + 2(t_3t_4 - t_1t_2)q_3^2 \right)^2
\]
\[
+ \left(2(t_2t_4 - t_1t_3)q_1^2 + (t_1^2 - t_2^2 + t_3^2 - t_4^2)q_2^2 + 2(t_3t_4 - t_1t_2)q_3^2 \right)^2
\]
\[
= (q_1^2 + q_2^2 + q_3^2)^2.
\]

Therefore
\[
|C|^2 = (q_1^2 + q_2^2 + q_3^2)^2 + (q_4^2)^2 + (q_1^2 + q_2^2 + q_3^2)^2
\]
\[- 2(t_1^2 + t_2^2 - t_3^2 - t_4^2)q_1^2 - 2(t_2t_3 - t_1t_4)q_1^2 - 4(t_1t_3 + t_2t_4)q_1^2 q_2^2 - 4(t_3t_4 - t_1t_2)q_3^2
\]
\[- 4(t_1t_4 + t_2t_3)q_1^2 q_2^2 - 4(t_3t_4 - t_1t_2)q_3^2 q_2^2 - 2(t_1^2 - t_2^2 + t_3^2 - t_4^2)q_2^2
\]
\[- 4(t_2t_4 - t_1t_3)q_1^2 q_2^2 - 4(t_1t_2 + t_3t_4)q_3^2 q_2^2 - 2(t_1^2 - t_2^2 + t_3^2 - t_4^2)q_3^2
\]
\[
= \frac{1}{2} |Q|^2 + \tilde{T} \Omega \tilde{T},
\]

where $\tilde{T} = (t_1, t_2, t_3, t_4)^t$. Now we show when $|P| = 0$, there is another choice of constant spinor ϕ_0 such that the third term in (4.1) has sharper value. First, by mean value inequality and (4.4),
\[
|C|^2 \leq 2((q_1^2)^2 + (q_2^2)^2 + (q_3^2)^2 + (q_4^2)^2) = |Q|^2.
\]

On the other hand,
\[
\text{Re} \sum_{i<j} \left< \phi_0, dx^ix^jdq_{ij}i\phi_0 \right> = \text{Re} \left< \phi^+, q^+i\phi^+ \right> + \text{Re} \left< \phi^-, q^-i\phi^- \right>
\]
\[
= 2\text{Re} \left< \phi^+, Q^+\phi^+ \right> - 2\text{Re} \left< \phi^-, Q^-\phi^- \right>,
\]

where
\[
Q^+ = \begin{pmatrix} -q_1^+ & -iq_2^+ + q_3^+ \\ iq_2^+ + q_3^+ & q_1^+ \end{pmatrix}, \quad Q^- = \begin{pmatrix} -q_1^- & -iq_2^- + q_3^- \\ iq_2^- + q_3^- & q_1^- \end{pmatrix}.
\]

When $|P| = 0$, we can choose ϕ^+, ϕ^- freely. So we choose ϕ^+ to be the eigenspinor of eigenvalue $-|Q^+|$ of Q^+, and choose ϕ^- to be the eigenspinor of eigenvalue $|Q^-|$ of Q^- such that $|\phi^+|^2 + |\phi^-|^2 = 1$, $|Q^+|^2 = \sum_i (q_i^+)^2$, $|Q^-|^2 = \sum_i (q_i^-)^2$. Then,
\[
-\text{Re} \sum_{i<j} \left< \phi_0, dx^ix^jdq_{ij}i\phi_0 \right> = 2|Q^+|^2|\phi^+|^2 + 2|Q^-|^2|\phi^-|^2.
\]
We choose $\phi^- = 0$ if $|Q^+| \geq |Q^-|$, and $\phi^+ = 0$ if $|Q^+| \leq |Q^-|$. Thus

$$-\Re \sum_{i<j} \langle \phi_0, dx^i dx^j q_{ij} i \phi_0 \rangle = 2 \max \left\{ |Q^+|, |Q^-| \right\}$$

$$= \sqrt{|Q|^2 + 2|q_{12}q_{34} + q_{13}q_{42} + q_{14}q_{23}|}.$$

By (4.5), we know to get a sharper result by choose constant spinor in this way when $|P| = 0$. The proof of the first part of Theorem 1.6 is complete.

Now suppose $E_i = 0$. Then $p_{1k} = 0$, $1 \leq k \leq 4$, $c_{1j} = 0$, $1 \leq j \leq 3$ and $q_{1ij} = 0$, $1 \leq i, j \leq 4$. Take constant spinor $\{\psi_\mu : \mu = 1, 2, 3, 4\}$ which form a basis of W on M_1 and $\psi_\mu = 0$ on all other ends M_i, where we take W as complex bundle. Let ψ_μ be the solutions of $D_A \psi_\mu = 0$ constructed from this data by Theorem 3.3. The vanishing of E_1 then implies $\tilde{\nabla}_A \psi_\mu = 0$ and $\psi_\mu \rightarrow 0$ uniformly on each end except M_1. But this contradicts Lemma 3.1 (i) unless M_1 is the only end of M. By Lemma 3.1 (ii), $\{\psi_\mu : \mu = 1, 2, 3, 4\}$ are linearly independent everywhere on M, so in a local frame $\{e_i\}$ of M,

$$-\frac{1}{4} \tilde{R}_{\alpha\beta ij} e^\alpha e^\beta \psi_\mu + \frac{1}{2} F_{Ai\mu} \psi_\mu = (\tilde{\nabla}_A \tilde{\nabla}_B - \tilde{\nabla}_B \tilde{\nabla}_A - \tilde{\nabla}_{A(e_i, e_j)}) \psi_\mu = 0.$$

In terms of (2.3), (2.4), we obtain

$$\left(\begin{array}{c} \tilde{R}_{ij1}^+ - F_{Ai\mu} \\ \tilde{R}_{ij2}^+ \\ \tilde{R}_{ij3}^+ \\ \tilde{R}_{ij01}^+ - \tilde{R}_{ij02}^+ \\ \tilde{R}_{ij03}^+ + \tilde{R}_{ij04}^+ \\ \tilde{R}_{ij01}^- + \tilde{R}_{ij02}^- \\ \tilde{R}_{ij03}^- + \tilde{R}_{ij04}^- \end{array} \right) \psi_\mu = 0,$$

where

$$\tilde{R}_{ij1}^\pm = \tilde{R}_{ij12} \pm \tilde{R}_{ij34}, \quad \tilde{R}_{ij2}^\pm = \tilde{R}_{ij13} \pm \tilde{R}_{ij42}, \quad \tilde{R}_{ij3}^\pm = \tilde{R}_{ij14} \pm \tilde{R}_{ij23}.$$

This immediately implies that, over M, $\tilde{R}_{ij}\alpha\beta = 0$, $F_{Ai\mu} = 0$. Therefore $T_{00} = 0$ by the Einstein equations, and $\tilde{R}_{0i0j} = 0$, $F_{Ai0} = 0$ by the charged dominant energy condition. Thus the proof of Theorem 1.6 is complete. □

5. Appendix: Analogue on 4-Lorentzian Manifolds.

In this appendix, we assume N is a 4-dimensional Lorentzian manifold with Lorentzian metric \tilde{g} of signature $(-1,1,1,1)$, which satisfies the Einstein equations (1.1), and M is a spacelike hypersurface in N which is asymptotically flat of order $\tau > \frac{1}{2}$. Let L be a $U(1)$ line bundle which is a $Spin^c(3,1)$
structure of N. We assume L is also asymptotically flat of order $\tau > \frac{1}{2}$ over M. The total energy, the total linear momentum and the total electromagnetic momentum of each end of M can be defined same as (1.7), (1.8), (1.9) except that we integrate over the sphere in 3-dimensional asymptotically flat ends.

Proof of Theorem 1.7. Let V be (locally) $SL(2, C)$ bundle. The complex spinor bundle W of N is equal to $(\tilde{V} \otimes L^{\frac{1}{2}}) \oplus (V^* \otimes L^{\frac{1}{2}})$. Note that $L^{\frac{1}{2}}$ is globally-defined over M since every orientable 3-manifold is spin. Now the Clifford multiplication can be defined as follows: For any $X \in T^*N$ with coordinate (x_0, x_1, x_2, x_3), we identify it to the corresponding elements $X \in Hom(\tilde{V} \otimes L^{\frac{1}{2}} \rightarrow V^* \otimes L^{\frac{1}{2}})$ and $X^\sigma \in Hom(V^* \otimes L^{\frac{1}{2}} \rightarrow \tilde{V} \otimes L^{\frac{1}{2}})$,

$$X \mapsto \begin{pmatrix} x_0 - x_1 & x_2 + ix_3 \\ x_2 - ix_3 & x_0 + x_1 \end{pmatrix}, \quad X^\sigma \mapsto \begin{pmatrix} x_0 + x_1 & -x_2 - ix_3 \\ -x_2 + ix_3 & x_0 - x_1 \end{pmatrix}.$$

Then the Clifford multiplication $T^*N \otimes W \rightarrow W$ is defined by $X \otimes (\xi, \eta)^t = (X^\eta, X^\sigma \xi)^t$. We refer to [PT, Z2] for details. Now let $\phi_0 = (\xi_0, \eta_0)^t$,

$$p_{lk}dx^0dx^k\phi_0 + \sum_{i<j} dx^i dx^j q_{ij} i\phi_0 = (C_{l1}\xi_0, C_{l2}\eta_0)^t,$$

where

$$C_{l\xi} = \begin{pmatrix} p_{l1} - q_{l23} & -p_{l2} + q_{l31} - i(p_{l3} - q_{l12}) \\ -p_{l2} + q_{l31} + i(p_{l3} - q_{l12}) & -p_{l1} + q_{l23} \end{pmatrix},$$

$$C_{l\eta} = \begin{pmatrix} -p_{l1} + q_{l23} & p_{l2} + q_{l31} + i(p_{l3} + q_{l12}) \\ p_{l2} + q_{l31} - i(p_{l3} + q_{l12}) & p_{l1} + q_{l23} \end{pmatrix}.$$

Note $C_{l\xi}$ has eigenvalues $\pm \lambda_{l\xi}$,

$$\lambda_{l\xi} = \sqrt{(p_{l1} - q_{l23})^2 + (p_{l2} - q_{l31})^2 + (p_{l3} - q_{l12})^2},$$

and $C_{l\eta}$ has eigenvalues $\pm \lambda_{l\eta}$,

$$\lambda_{l\eta} = \sqrt{(p_{l1} + q_{l23})^2 + (p_{l2} + q_{l31})^2 + (p_{l3} + q_{l12})^2}.$$

We choose spinor $\phi_0 = (\xi_0, \eta_0)$ such that ξ_0 is the eigenspinor of eigenvalue $-\lambda_{l\xi}$ and η_0 is the eigenspinor of eigenvalue $-\lambda_{l\eta}$. Moreover, $|\xi_0|^2 + |\eta_0|^2 = 1$. Then

$$\langle \phi_0, p_{lk}dx^0dx^k\phi_0 \rangle + \sum_{i<j} \langle \phi_0, dx^i dx^j q_{ij} i\phi_0 \rangle = -\lambda_{l\xi}|\xi_0|^2 - \lambda_{l\eta}|\eta_0|^2.$$
Positive mass theorem for hypersurface in 5 Lorentzian manifolds

We choose $\eta_0 = 0$ if $\lambda_l \geq \lambda_{l_0}$, and $\xi_0 = 0$ if $\lambda_l \leq \lambda_{l_0}$. Thus, if M satisfies the charged dominant energy condition, then

$$E_l \geq \sqrt{|P_l|^2 + |Q_l|^2 + 2|p_{l1}q_{l2} + p_{l2}q_{l1}| + p_{l3}q_{l12}}.$$

If $E_{l_0} = 0$ for some l_0, then M has only one end, $p_{l_0k} = 0$, $q_{l_0ij} = 0$, and $R_{\alpha\beta\gamma\delta} = 0$, $F_{A\alpha\beta} = 0$ over M. Thus the proof of Theorem 1.7 is complete. □

Acknowledgements. The author would like to express his gratitude to Professor S.T. Yau for his suggestion, to Professors L.F. Tam and T. Ilmanen for their interest in this work. He would also like to thank referees for their suggestions to improve the writing of the paper. This work was partially done while the author visited Max-Planck-Institute for Mathematics in the Sciences.

References.

INSTITUTE OF MATHEMATICS, CHINESE ACADEMY OF SCIENCES
BEIJING 100080, P.R. CHINA
E-mail addresses: xzhang@math08.math.ac.cn

RECEIVED JUNE 1, 1998.