On the Kähler manifolds with the largest infimum of spectrum of Laplace–Beltrami operators and sharp lower bound of Ricci or holomorphic bisectional curvatures

Song-Ying Li

The paper studies the extremal or rigidity problem associated to the largest infimum of spectrum of Laplace-Beltrami operator Δg on Kähler manifolds (M^n, g) under the sharp lower bound assumption on either Ricci curvature or holomorphic bisectional curvature. The paper provides some counterexamples on those rigidity problems. In particular, we consider $D(A) = \{ z \in \mathbb{C}^n : |z|^2 + \text{Re} \sum_{j=1}^{n} A_j z_j^2 < 1 \}$ a convex domain in \mathbb{C}^n with $n > 1$ and $A_j \in (-1, 1)$. Assuming g_0 is the Kähler-Einstein metric on $D(A)$, we prove that $\lambda_1(\Delta g_0) = n^2$ on $(D(A), g_0)$, but $D(A)$ is not biholomorphic to the unit ball B_n when $A \neq 0$. Moreover, we prove that $\rho(z) = -e^u$ is strictly plurisubharmonic in $D(A)$ where u is the potential function for Kähler-Einstein metric on $D(A)$. We also construct a complete Kähler metric g_1 on $D(A)$ with holomorphic bisectional curvature $K_{g_1} \geq -1$ and $\lambda_1(\Delta g_1) = n^2$, but $D(A)$ is not biholomorphic to B_n when $A \neq 0$.

1. Introduction

Let (M^n, g) be a Kähler manifold of complex dimension n with Kähler metric $g = \sum_{i,j=1}^{n} g_{ij} dz_i \otimes d\bar{z}_j$. Then the Laplace–Beltrami operator with respect to the metric g is defined as follows:

(1.1) $\Delta_g = -4 \sum_{i,j=1}^{n} g^{ij} \frac{\partial^2}{\partial z_i \partial \bar{z}_j}$,

where $[g^{ij}]^t = [g_{ij}]^{-1}$. We define

(1.2) $\lambda_1(\Delta_g, M) = \inf \left\{ 4 \int_M \sum_{i,j=1}^{n} g^{ij} \frac{\partial f}{\partial z_i} \frac{\partial f}{\partial \bar{z}_j} dv_g : f \in C_0^\infty(M), \|f\|_{L^2} = 1 \right\}$,
where dv_g is the volume measure on M with respect to the Kähler metric g.

When M is compact and Δ_g is uniformly elliptic, $\lambda_1(\Delta_g)$ is the first positive eigenvalue of Δ_g with Dirichlet boundary condition (see, for example, the lecture notes of Li [8] and the paper of S. Udagawa [19] and references therein). When (M^n, g) is a complete noncompact Kähler manifold, in general, $\lambda_1(\Delta_g)$ is not an eigenvalue of Δ_g (see for example, [1, 10, 11, 16, 18]). However, it is the infimum of the positive spectrum of Δ_g. There have been many researches on the analytic and geometric problems associated with λ_1. An important analytic problem is to find an sharp estimate on $\lambda_1(\Delta_g)$ with certain low bound assumptions on curvatures, which provides sharp upper bound for Poincaré inequality. An important upper bound estimate was obtained by Li and Wang in [10]. They proved that $\lambda_1(\Delta_g) \leq n^2$ if the holomorphic bisectional curvature of M is bounded below by -1. Their estimate is sharp and equality is achieved by the complex hyperbolic space \mathbb{CH}^n. Cheng [1] proved that $\lambda_1(\Delta_g) \leq n^2$ if Ricci curvature satisfying $R_{i\overline{j}} \geq -(n+1)g_{i\overline{j}}$. Munteanu [18] proved that $\lambda_1(\Delta_g) \leq n^2$ if the Ricci curvature $R_{i\overline{j}} \geq -(n+1)g_{i\overline{j}}$. His estimate is sharp because if $M = B_n$ and g is Kähler–Einstein metric then $\lambda_1 = n^2$ and $R_{i\overline{j}} = -(n+1)g_{i\overline{j}}$. Some more results along this line with different assumptions and estimates were obtained in [5, 6, 11, 21] and references therein. Li and Tran [16] provided some alternative conditions; the authors considered a bounded pseudoconvex domain D in \mathbb{C}^n with negative defining function $\rho \in C^2(D)$ so that $u = -\log(-\rho)$ is strictly plurisubharmonic in D, and Kähler metric $g_{i\overline{j}} = \frac{\partial^2 u}{\partial z_i \partial \overline{z}_j}$ (induced by u). They proved several theorems. In particular, the following result was proved in [16] which will be used later.

Theorem 1.1. Let D be a bounded strictly pseudoconvex domain in \mathbb{C}^n with a plurisubharmonic negative defining function $\rho \in C^2(D)$ so that $u = -\log(-\rho)$ is strictly plurisubharmonic in D. Let g be the Kähler metric induced by u. Then (D, g) is a complete Kähler manifold and $\lambda_1(\Delta_g) = n^2$.

Geometric–type problems associated with $\lambda_1(\Delta_g)$ are rigidity problems. One may raise the following general questions:

Question 1.1. Under the assumptions: holomorphic bisectional curvature $K_g \geq -1$ and $\lambda_1(\Delta_g) = n^2$. What can one say about M?

Question 1.2. Under the assumptions: Ricci curvature $R_{i\overline{j}} \geq -(n+1)g_{i\overline{j}}$ and $\lambda_1(\Delta_g) = n^2$. What can one say about M?
Questions 1.1 and 1.2 for the Riemannian case were studied by Li and Wang [11, 13], and they proved a very pretty splitting theorem. Li and Wang [10, 12] considered Kähler manifolds and also obtained a similar splitting theorem. The following theorem is their results for the Kähler case.

Theorem 1.2. Let \((M^n, g)\) be a complete Kähler manifold. Then

(i) If the Ricci curvature \(R_{ij} \geq -(n+1)g_{ij}\) and \(\lambda_1 > \frac{n+1}{2}\), then \(M\) must have one infinite volume end;

(ii) If the holomorphic bisectional curvature \(K_g \geq -1\) and \(\lambda_1 = \frac{n}{2}\), then either \(M\) has only one end or \(M = \mathbb{R} \times N\) with \(N\) being a compact manifold. Moreover, the metric on \(M\) is of the form

\[
(1.3) \quad ds_M^2 = dt^2 + e^{4t}\omega_2^2 + e^{2t}\sum_{i=3}^{2n} \omega_i^2,
\]

where \(\{\omega_2, \ldots, \omega_{2n}\}\) are orthonormal basis of \(N\) with \(J\ dt = \omega_2\).

Munteanu [18] proved the same result under a weaker condition: \(R_{ij} \geq -(n+1)g_{ij}\) and \(\lambda_1 = n^2\). Kong et al. [6] considered a complete quaternionic Kähler manifold \((M^{4n}, g)\) and proved the same theorem under the condition: the scalar curvature \(S_M \geq -16n(n+2)\) and \(\lambda_1 \geq (2n+1)^2\).

As we know that if \(M = B_n\) is the unit ball in \(\mathbb{C}^n\) and \(g\) is the Kähler–Einstein metric then

\[
(1.4) \quad \lambda_1(\Delta_g) = n^2, \quad R_{ij} = -(n+1)g_{ij}, \quad R_{ijkl} = g_{ij}g_{kl} + g_{ik}g_{jl},
\]

which means that holomorphic bisectional curvature equals \(-1\). Comparing Obata theorem and Cheng theorem for compact Riemannian manifolds (see [8, 9]) and result in [15]. It is natural to ask the following question.

Question 1.3. Assume that \(D\) is a smoothly bounded strictly pseudoconvex domain in \(\mathbb{C}^n\) with a complete Kähler metric \(g\) satisfying either

\[
(1.5) \quad R_{ij} = -(n+1)g_{ij}
\]

or holomorphic bisectional curvature \(K_g \geq -1\). Assume that \(\lambda_1(\Delta_g) = n^2\). Is \(D\) biholomorphic to the ball in \(\mathbb{C}^n\)?

The main purpose of this paper is to provide a way of constructing some counter examples for Question 1.3. In particular, we consider strictly a
pseudoconvex domain in \mathbb{C}^n whose boundary is real ellipsoid. After a linearly holomorphic change of variables, these domains can be described as follows:

\[(1.6)\quad D(A) = \{ z \in \mathbb{C}^n : r(z) = |z|^2 + \text{Re} \sum_{j=1}^{n} A_j z_j^2 - 1 < 0 \}\]

with

\[(1.7)\quad 0 \leq A_1 \leq A_2 \leq \cdots \leq A_n < 1.\]

It was proved by Webster [22] that $D(A)$ is biholomorphic to the unit ball in \mathbb{C}^n if and only if $A = (A_1, \ldots, A_n) = 0$. We will prove the following theorem in this paper.

Theorem 1.3. For any $0 \leq A_1 \leq \cdots \leq A_n < 1$, we have the following:

(i) If g is the Kähler–Einstein metric on $D(A)$ then $\lambda_1(\Delta_g) = n^2$.

(ii) There is a Kähler metric g^0 on $D(A)$ with $A_n \leq 2/5$ so that the holomorphic bisectional curvature $K_{g^0} \geq -1$ and $\lambda_1(\Delta_{g^0}) = n^2$.

Combining Theorem 1.3 and the above theorem of Webster in [22], we answer Question 1.3 negatively with the counter examples: $D(A)$ with $A \neq 0$ and $n > 1$.

This paper is organized as follows: in Section 2, we provide an explicit formula to approximate the potential function of the Kähler–Einstein metric. In Section 3, we prove part (i) of Theorem 1.3. Finally, part (ii) of Theorem 1.3 is proved in Section 4.

2. Approximation formula

Let D be a smoothly bounded pseudoconvex domain in \mathbb{C}^n. A plurisubharmonic function u on D is said to be the potential function for the Kähler–Einstein metric on D if u is the solution of the Monge–Ampère equation:

\[(2.1)\quad \det H(u) = e^{(n+1)u} \quad \text{in } D; \quad u = +\infty \quad \text{on } \partial D.\]

The existence of such a solution for (2.1) was proved by Cheng and Yau [2], the uniqueness was proved by Fefferman [3]. When D is strictly pseudoconvex, Cheng and Yau [2] prove that $e^{-u} \in C^{n+3/2}(\overline{D})$. Lee and Melrose [7]
Kähler manifolds with the largest infimum 559

give the following asymptotic expansion for e^{-u}:

$$(2.2) \quad \rho(z) = -e^{-u(z)} = \sum_{j=0}^{\infty} a_j \rho^0(z) \left(\rho^0(z)^{n+1} \log(-\rho^0(z)) \right)^j,$$

where $a_j \in C^\infty(D)$ and ρ^0 is any negative defining function for D with $\rho^0 \in C^\infty(D)$. Fefferman [3] gave a method of how to approximate $\rho(z)$ in terms of $\rho^0(z)$. In particular, he proved $a_0(z) = J(\rho^0)^{-1/(n+1)} + \sum_{j=1}^{n} a_{0,j}(\rho^0(z))^j$, where

$$J(\rho^0)(z) = -\det \left[\frac{\partial \rho^0}{\partial z} \frac{\partial \rho^0}{\partial \bar{z}}^* H(\rho^0) \right],$$

where $\partial \rho^0 = (\frac{\partial \rho^0}{\partial z_1}, \ldots, \frac{\partial \rho^0}{\partial z_n})$, $H(\rho^0)$ is the complex Hessian matrix of ρ^0 on D. Question about how to compute $a_{0,j}$ in (2.2) in terms of ρ^0 explicitly has been studied by Fefferman [3] and Graham [4]; they provided a certain iteration formula for evaluating $a_{0,j}$, respectively. Here we give an alternative formula for $a_{0,j}$ or approximation ρ in terms of ρ^0 as follows.

Theorem 2.1. Let $r(z)$ be a smooth negative defining function for D so that $\ell(\rho) := -\log(-r(z))$ is strictly plurisubharmonic in D. Let

$$(2.4) \quad \rho_0(z) = r(z), \quad \rho_{j+1}(z) = \rho_j(z) J(\rho_j)^{-1/(n+1)} e^{-B_j},$$

with

$$(2.5) \quad B_j(z) = \frac{\text{tr}(H(\ell(\rho_j))^{-1} H(\log J(\rho_j)))}{(j + 2)(n - j)(n + 1)}.$$

Then

$$(2.6) \quad J(\rho_{j+1})(z) = 1 + O(\delta(z)^{j+2}), \quad j = 0, 1, \ldots, n - 1$$

and

$$(2.7) \quad \delta(z) = \text{dist}(z, \partial D), \quad a_0(z) = \frac{\rho_n(z)}{\rho_0(z)}.$$

Moreover, if

$$(2.8) \quad B_n = \frac{\text{tr}(H(\ell(\rho_n))^{-1} H(\log J(\rho_n)))}{(n + 2)(n + 1)} \ell(\rho_n(z)).$$
then

\[J(\rho_{n+1}) = 1 + O(\delta(z)^{n+2} \log \delta(z)). \]

Proof. Let \(K = J(\rho_j) \exp((n+1)b_j\rho_j) \) with \(B_j = b_j\rho_j(z) \). Then \(\rho_{j+1} = \rho_j K^{-1/(n+1)} \) and

\[J(\rho_{j+1}) = (-\rho_{j+1}(z))^{n+1} \det H(\ell(\rho_{j+1}))(z) \]

\[= \frac{J(\rho_j)}{K} \det \left[I_n + \frac{1}{n+1} H(\ell(\rho_j))^{-1} H(\log K)(z) \right] \]

\[= e^{-(n+1)B_j} \det \left[I_n + \frac{1}{n+1} H(\ell(\rho_j))^{-1} (H(\log J(\rho_j))(z) + (n+1)H(b_j\rho_j)) \right] \]

\[= e^{-(n+1)B_j} \det \left[I_n + \frac{1}{n+1} H(\ell(\rho_j))^{-1} (H(\log J(\rho_j))(z) \right. \]

\[\left. + H(\ell(\rho_j))^{-1} (b_jH(\rho_j) + (\partial b_j)^*(\partial \rho_j) + (\partial \rho_j)^*(\partial b_j) + \rho_j(z)H(b_j)) \right]. \]

Let \(X = [x_{ij}] \) be an \(n \times n \) matrix. Then

\[\det[I_n + X] = 1 + \text{tr}(X) + O(\delta(z)), \quad \text{if} \ x_{ij} = O(\delta(z)). \]

Notice that

\[\sum_{j=1}^{n} \left(\rho^i_j - \frac{\rho^i_j \rho^j_\rho}{|\partial \rho|^2 - \rho} \right) \partial_j \rho = \frac{\rho^i(-\rho)}{|\partial \rho|^2 - \rho}, \]

\[\times \sum_{i,j=1}^{n} \left(\rho^i_j - \frac{\rho^i_j \rho^j_\rho}{|\partial \rho|^2 - \rho} \right) \partial_i \rho \partial_j \rho = \frac{|\partial \rho|^2(-\rho)}{|\partial \rho|^2 - \rho}, \]

one has

\[\text{tr} \left(H(\ell(\rho_0))^{-1}(b_0H(\rho_0) + (\partial b_0)^*(\partial \rho_0) + (\partial \rho_0)^*(\partial b_0) + \rho_0(z)H(b_0)) \right) \]

\[= -(n-1)b_0\rho_0(z) + O(\delta(z)^2). \]

If we let

\[b_0(z)\rho_0(z) = B_0(z) = \frac{1}{2n(n+1)} \text{tr}(H(\ell(\rho_0))^{-1} H(\log J(\rho_0))(z)), \]
then by (2.10), (2.12) and (2.13), one has

\[J(\rho_1)(z) = 1 + \frac{\text{tr}(H(\ell(\rho_0))^{-1}H(\log J(\rho_0))(z))}{(n + 1)} - (n - 1)b_0(\rho_0(z)) - (n + 1)B_0(z) + O(\delta(z)^2) = 1 + O(\delta(z)^2). \]

Assume that \(J(\rho_j) = 1 + O(\delta(z)^{j+1}) \) for some \(1 \leq j \leq n - 1 \). Then by (2.12), one has

\[\text{tr}(H(\ell(\rho_j))^{-1}H(\log J(\rho_j))) = O(\delta(z)^{j+1}). \]

If one assumes (a priori) that

\[B_j(z) = b_j(z)\rho_j(z) = \tilde{b}_0(\rho_j(z))^{j+1}, \quad \tilde{b}_0 \in C^\infty(\bar{D}) \]

and uses (2.12), then one has

\[\text{tr}\left(H(\ell(\rho_j))^{-1}(b_jH(\rho_j) + (\bar{\partial}b_j)^*(\bar{\partial}\rho_j) + (\bar{\partial}\rho_j)^*(\bar{\partial}b_j) + \rho_j(z)H(b_j))\right) = -(n - 1)B_j(z) + 2jB_j - j(n - j)B_j + O(\delta(z)^{n+2}). \]

Similar to (2.15), if we let

\[B_j = \frac{\text{tr}(H(\ell(\rho_j))^{-1}\log J(\rho_j))}{(2 + j)(n - j)(n + 1)}, \]

then

\[J(\rho_{j+1}) = 1 + O(\delta(z)^{j+2}) \]

for \(j = 1, 2, \ldots, n - 1 \).

\textbf{Remark.} We must notice here that in the proof of (2.12), we use \(H(\rho) \) as positive definite near \(\partial D \). When \(H(\rho_j) \) is not strictly positive definite, the conclusion remains true with the following argument: let \(\tilde{\rho}_j = \rho_j + C\rho_j^2 \) with
some positive number C so that $H(\bar{\rho}_j)$ is positive definite near ∂D. Then
\[
H(\ell(\rho_j))^{-1} = (1 + c \rho)^{-1}[H(\ell(\rho_j)) + \frac{c(1 + 2c \rho)}{1 + c \rho}(\partial \rho_j) \otimes (\overline{\partial} \rho_j)]^{-1}
\]
\[
= (1 + O(\delta(z)))H(\ell(\bar{\rho}_j))^{-1}.
\]

With the help of the above formula, all arguments in proof of (2.12) remain true.

When $j = n$, if we let
\[
(2.21) \quad \rho_{n+1}(z) = \rho_n J(\rho_n)^{-1/(n+1)} e^{-B_n(z)}, \quad B_n(z) = b_n \rho_n(z)(- \log(-\rho_n(z)),
\]
then
\[
J(\rho_{n+1}) = e^{-(n+1)B_n} \det \left[I_n + \frac{1}{n+1} H(\ell(\rho_n))^{-1} H(\log J(\rho_n))(z)
\right.
\]
\[
+ (n + 1) H(b_n \rho_n \ell(\rho_n)) \right]
\]
\[
= e^{-(n+1)B_n} \det \left[I_n + \frac{1}{n+1} H(\ell(\rho_n))^{-1} H(\log J(\rho_n))(z)
\right.
\]
\[
+ \ell(\rho_n) H(\ell(\rho_n))^{-1}(b_n H(\rho_n) + (\partial b_n)^*(\overline{\partial} \rho_n) + (\overline{\partial} \rho_n)^*(\partial b_n)
\]
\[
+ \rho_n(z) H(b_n) + H(\ell(\rho_n))^{-1}(\rho_n(z) b_n H(\ell(\rho_n) - (\partial b_n)^*(\overline{\partial} \rho_n)
\]
\[
- (\overline{\partial} \rho_n)^*(\partial b_n)) + \frac{2b_n}{-\rho_n}(\overline{\partial} \rho_n)^*(\overline{\partial} \rho_n)) \right]
\]
\[
= e^{-(n+1)B_n} \det \left[I_n + \frac{1}{n+1} H(\ell(\rho_n))^{-1} H(\log J(\rho_n))(z)
\right.
\]
\[
+ \ell(\rho_n) b_n(n + 1) H(\ell(\rho_n))^{-1}(H(\rho_n) + \frac{n}{\rho_n(z)}(\partial \rho_n)^*(\overline{\partial} \rho_n)
\]
\[
+ \ell(\rho_n) H(\ell(\rho_n))^{-1}((\rho_n(z))^{n+1} H(\partial b_n)]
\]
\[
+ (\overline{\partial} \rho_n)^*(\partial b_n)] + (\rho_n(z))^{n+1} H(\partial b_n)) \right]
\]
\[
+ H(\ell(\rho_n))^{-1}[\rho_n(z)b_n H(\ell(\rho_n) + 2(n + 1) \frac{b_n}{-\rho_n}(\overline{\partial} \rho_n)^*(\overline{\partial} \rho_n)]
\]
\[
- H(\ell(\rho_n))^{-1}[\rho_n(z))^n((\partial b_n)^*(\overline{\partial} \rho_n) + (\overline{\partial} \rho_n)^*(\partial b_n))] \right]
\]
\[
= 1 + O(\delta(z)^{n+2} \log(\delta(z))).
\]
if we choose

$$b_n(z)\rho_n(z) = \frac{1}{(n+2)(n+1)}\text{tr}(H(\ell(\rho_n))^{-1}H(\log J(\rho_n))).$$

This completes the proof of Theorem 2.1. \(\square\)

3. Domain whose boundary is real ellipsoid

We consider a class of strictly pseudoconvex domains in \(\mathbb{C}^n\) with the real ellipsoid as their boundary. After a linearly holomorphic change of variables, those domains can be written as

$$(3.1)\quad D(A) = \{z \in \mathbb{C}^n : r(z) < 0\},$$

where

$$r(z) = |z|^2 + \text{Re} \sum_{j=1}^{n} A_j z_j^2 - 1, \quad 0 \leq A_1 \leq A_2 \leq \cdots \leq A_n < 1.$$

Then \(H(r) = I_n\) and

$$(3.3)\quad J(r) = -r(z) + \sum_{j=1}^{n} |r_j(z)|^2 = \text{Re} \sum_{j=1}^{n} A_j z_j^2 + \sum_{j=1}^{n} A_j^2 |z_j|^2 + 1.$$

Let

$$(3.4)\quad \rho^1(z) = e^{-b_0(z)r(z)}J(r)^{-\frac{1}{n+1}}r(z),$$

where

$$(3.5)\quad b_0(z)r(z) = \frac{1}{2n(n+1)}\text{tr}(H(\ell(r))^{-1}H(\log J(r))).$$

Notice that

$$(3.6)\quad H(J(r)) = \text{diag}(A_1^2, \ldots, A_n^2), \quad \partial_i J(r) = A_i \partial_r r,$$
one has
\begin{equation}
(3.7)
\end{equation}
\begin{align*}
b_0(z)r(z) &= \frac{-r(z)}{2n(n+1)J(r)} \text{tr} \left(\left[I_n - \frac{(\partial r) \otimes (\partial r)}{J(r)} \right] \left[H(J(r)) - \frac{(\partial J(r) \otimes (\partial J(r))}{J(r)} \right] \right) \\
&= \frac{-r(z)}{2n(n+1)J(r)} \left(\|A\|^2 - 2 \sum_{j=1}^{n} A_j^2 |\partial_j r(z)|^2 \frac{J(r)}{J(r)} + \sum_{j=1}^{n} A_j (\partial_j r)^2 \right). \\
\end{align*}

Therefore,
\begin{equation}
(3.8)
\end{equation}
\begin{align*}
b_0(z) &= \frac{-1}{2n(n+1)J(r)} \left(\|A\|^2 - 2 \sum_{j=1}^{n} A_j^2 |\partial_j r(z)|^2 \frac{J(r)}{J(r)} + \sum_{j=1}^{n} A_j (\partial_j r)^2 \right). \\
\end{align*}

By Theorem 2.1, one can easily see that if \(\rho(z) = -e^{-u(z)} \) with \(u \) is the potential function Kähler–Einstein metric then
\begin{equation}
(3.9)
\end{equation}
\begin{align*}
\det H(\rho) &= \det H(\rho^1) \quad \text{on } \partial D(A), \\
\end{align*}

since \(\rho(z) = \rho^1(z) + A_3(z) \) with \(A_3(z) = O(\delta(z)^3) \) on \(D(A) \) and \(H(A_3)(z) = 0 \) on \(\partial D(A) \).

In order to calculate \(\det H(\rho^1) \) on \(\partial D(A) \), we need the following lemma.

Lemma 3.1. Let \(A = (A_1, \ldots, A_n) \) and \(B = (B_1, \ldots, B_n) \) be two row vectors in \(\mathbb{C}^n \). Then
\begin{equation}
(3.10)
\end{equation}
\begin{align*}
\det(I_n - A^* B - B^* A) &= |1 - \langle A, B \rangle|^2 - |A|^2 |B|^2. \\
\end{align*}

Moreover, if \(\langle B, A \rangle \neq 1 \) then
\begin{equation}
(3.11)
\end{equation}
\begin{align*}
(I_n - A^* B)^{-1} = I_n + \frac{1}{1 - \langle B, A \rangle} A^* B. \\
\end{align*}

Proof. First, we consider the case \(A = |A|(0, \ldots, 1) = |A|e_n. \) Then
\begin{align*}
\det(I_n - A^* B - B^* A) &= 1 - |A|(B_n + \overline{B}_n) - |A|^2 \sum_{j=1}^{n-1} |B_j|^2 \\
&= 1 - |A|(B_n + \overline{B}_n) + |A|^2 |B_n|^2 - |A|^2 |B|^2 \\
&= |1 - \langle A, B \rangle|^2 - |A|^2 |B|^2. \\
\end{align*}
For a general row vector A, we choose a unitary matrix $U = [\alpha_{ij}]$ so that $AU = |A|e_n$. Then
\[
\det(I_n - A^* B - B^* A) = \det(I_n - (AU)^*(BU) - (BU)^*(AU)) = |1 - \langle AU, BU \rangle|^2 - |AU|^2|BU|^2 = |1 - \langle A, B \rangle|^2 - |A|^2|B|^2.
\]
Since
\[
(I_n - A^* B)^{-1} = I_n + \sum_{j=1}^{\infty} (A^* B)^j = I_n + \sum_{j=1}^{\infty} (\langle B, A \rangle)^{j-1} A^* B
\]
So, the proof of the lemma is complete. \(\square\)

The main purpose of this section is to prove the following theorem.

Theorem 3.1. Let u be the potential function for the Kähler–Einstein metric on $D(A)$, and let $\rho(z) = -e^{-u(z)}$ on D. Then $\rho(z)$ is strictly plurisubharmonic in $D(A)$.

Proof. We first prove $\det H(\rho) \geq 0$ on $\partial D(A)$. By (3.9), it suffices to prove
\[
(3.12) \quad \det H(\rho^1) \geq 0 \quad \text{on} \quad \partial D(A).
\]

Let
\[
(3.13) \quad B = (n + 1)J(r)b_0 \partial r + \overline{\partial} J(r)
\]
be the row vector. Notice
\[
(3.14) \quad |\partial J|^2 = \sum_{j=1}^{n} A_j^2 |\partial_j r(z)|^2, \quad \overline{\partial} J(r) = \sum_{j=1}^{n} A_j (\partial_j r(z))^2
\]
and $\det H(a + br(z)^k) = \det H(a)$ on $\partial D(A)$ for any $k \geq 3$. Moreover, by the fact that $|\partial r|^2 = J(r)$ on $\partial D(A)$ and Lemma 3.1, for any $z \in \partial D(A)$, one has
\[
\det H(\rho^1) J(r)^{n/(n+1)} = J(r)^{n/(n+1)} \det H\left(\frac{r - b_0 r^2}{J(r)^{1/(n+1)}}\right)
\]
\[\det \left[H(r) - 2b_0(\partial r) \otimes (\bar{\partial}r) - \frac{(\partial J) \otimes (\bar{\partial}r) + (\partial r) \otimes (\bar{\partial}J)}{(n + 1)J(r)} \right] \]

\[= \det \left[I_n - \frac{(B \otimes (\partial r) + (\partial r) \otimes B)}{(n + 1)J(r)} \right] \]

\[= \left| 1 - \frac{\langle B, \bar{\partial}r \rangle}{(n + 1)J(r)} \right|^2 - \frac{\|B\|^2\|\partial r\|^2}{(n + 1)^2J(r)^2} \]

\[= \left| 1 - \frac{(n + 1)b_0J(r)|\partial r|^2 + \bar{R}J}{(n + 1)J(r)} \right|^2 \]

\[- \frac{(n + 1)^2J(r)^2b_0^2|\partial r|^2 + 2(n + 1)J(r)b_0\Re(\bar{R}J) + |\partial J(r)|^2}{(n + 1)^2J(r)} \]

\[= 1 - 2b_0|\partial r|^2 - \frac{2\Re(\bar{R}J)}{(n + 1)J(r)} + b_0^2|\partial r|^4 + 2\frac{b_0|\partial r|^2}{(n + 1)J(r)}\Re(\bar{R}J(r)) \]

\[+ \frac{\left| \bar{R}J(r) \right|^2}{(n + 1)^2J(r)^2} - b_0(z)^2J(r)|\partial r|^2 - \frac{2b_0}{(n + 1)}\Re(\bar{R}J(r)) - \frac{|\partial J(r)|^2}{(n + 1)^2J(r)} \]

\[= 1 - 2b_0|\partial r|^2 - \frac{2\Re(\bar{R}J)}{(n + 1)J(r)} + \frac{\left| \bar{R}J(r) \right|^2}{(n + 1)^2J(r)^2} - \frac{|\partial J(r)|^2}{(n + 1)^2J(r)} \]

\[\geq \left(1 - \frac{\left| \bar{R}J(r) \right|}{(n + 1)J(r)} \right)^2 - \frac{A_n^2}{(n + 1)^2} - 2b_0J(r) \]

\[\geq \left(1 - \frac{\left| \bar{R}J(r) \right|}{(n + 1)J(r)} \right)^2 - \frac{A_n^2}{(n + 1)^2} \]

\[+ \frac{\|A\|^2 - 2\sum_{j=1}^{n} A_j^2|\partial_j r|^2J(r)^{-1}}{n(n + 1)} + \left| \sum_{j=1}^{n} A_j(\partial_j r)^2 \right|^2J(r)^{-2} \]

\[\geq \left(1 - \frac{A_n}{(n + 1)} \right)^2 - \frac{A_n^2}{(n + 1)^2} \]

\[+ \frac{\|A\|^2 - 2A_n^2 + \left| \sum_{j=1}^{n} A_j(\partial_j r)^2 \right|^2J(r)^{-2}}{n(n + 1)} \]
≥ 1 - \frac{2}{n+1} A_n - \frac{A_n^2}{n(n+1)} + \frac{\left| \sum_{j=1}^{n} A_j (\partial_j r)^2 \right|^2}{n(n+1)} \frac{J(r)^{-2}}{}

> 0

if \(n \geq 2 \) (in the above inequalities, we use the assumption: \(0 \leq A_1 \leq \cdots \leq A_n \)). When \(n = 1 \), we pick up the term \(\left| \sum_{j=1}^{n} A_j (\partial_j r)^2 \right|^2 J(r)^{-2} = A_n^2 \) in the estimation of \(\det H(\rho^1) \) on \(\partial D(A) \); we have

\[
\text{(3.15)} \quad \det H(\rho) \geq 1 - \frac{2A_n}{n+1} = 1 - A_n > 0 \quad \text{on } \partial D(A).
\]

Notice that \(J(\rho) = 1 \) on \(D(A) \), then

\[
\text{(3.16)} \quad \det H(\rho) = \frac{\det H(\rho)}{J(\rho)} = e^{u(z)} (1 - |\partial u|_u^2).
\]

It was proved by the author in [14] that \(\det H(\rho) \) attains its minimum over \(\overline{D(A)} \) at the same point on \(\partial D(A) \). By the first step, we have \(\det H(\rho) > 0 \) on \(\partial D(A) \). Therefore, \(\det H(\rho) > 0 \) on \(D(A) \) and the proof of the theorem is complete.

As a corollary of Theorems 3.2 and 1.1, we have proved the following result.

Corollary 3.1. If \(g \) is the Kähler–Einstein metric on \(D(A) \) then \(\lambda_1 (\Delta_g) = n^2 \).

This gives the proof of part (i) of Theorem 1.3.

4. Holomorphic bisectional curvatures

If \((M, g)\) is a Kähler manifold with Kähler metric \(g \), then it is well known (see [20]) that the curvature tensor is given by the following formula:

\[
R_{ij\overline{k\ell}} = -\frac{\partial^2 g_{ij}}{\partial z_k \partial \overline{z}_{\ell}} + g^{p\overline{q}} \frac{\partial g_{p\overline{q}}}{\partial z_k} \frac{\partial g_{ij}}{\partial \overline{z}_{\ell}}.
\]

Assumes that the Kähler metric \(g \) is induced by a strictly plurisubharmonic potential function \(u \) on \(M \) with \(u = +\infty \) on \(\partial M \):

\[
g_{ij} = \frac{\partial^2 u}{\partial z_i \partial \overline{z}_j} = u_{ij}, \quad \rho(z) = -e^{-u(z)},
\]
where ρ becomes a negative defining function for M. We first provide a formula for the curvature tensor with the components of holomorphic bisectional curvature plus some derivatives of the defining function ρ.

Proposition 4.1. Let $u = -\log(-\rho)$ be strictly plurisubharmonic in D. Then

$$R_{i\bar{j}k\bar{l}} = -(u_{i\bar{j}} u_{k\bar{l}} + u_{k\bar{j}} u_{i\bar{l}}) + E_{i\bar{j}k\bar{l}},$$

where

$$E_{i\bar{j}k\bar{l}} = -\frac{\rho_{i\bar{j}k\bar{l}}}{-\rho} + \frac{1}{\rho^2} g^{\bar{p}\bar{q}} \left[\rho_{i\bar{p}k} \rho_{p\bar{j}\bar{l}} + \rho_{i\bar{p}k} u_p \rho_{\bar{j}\bar{l}} + \rho_{\bar{j}\bar{l}} u_p \rho_{i\bar{p}k} \right]$$

$$- (1 - |\partial u|_g^2) \frac{\rho_{ik} \rho_{\bar{j}\bar{l}}}{\rho^2}.$$

Note: A theorem of Lu Qi-Keng [17] states that if g is a Bergman metric for a bounded domain in D in \mathbb{C}^n then D is biholomorphic to the unit ball in \mathbb{C}^n if and only if $R_{i\bar{j}k\bar{l}} = -(u_{i\bar{j}} u_{k\bar{l}} + u_{k\bar{j}} u_{i\bar{l}})$ on D (or $E_{i\bar{j}k\bar{l}} = 0$ on D).

Next, we prove Proposition 4.1.

Proof. Notice that

$$u = -\log(-\rho), \quad u_i = \frac{\rho_i}{-\rho}, \quad u_{i\bar{j}} = \frac{\rho_{ij}}{-\rho} + u_i u_{\bar{j}}, \quad u_{ik} = \frac{\rho_{ik}}{-\rho} + u_i u_k,$$

$$u_{i\bar{j}k} = \frac{\rho_{i\bar{j}k}}{-\rho} + \frac{\rho_{ij}}{-\rho} u_k + u_{ik} u_{\bar{j}} + u_{i\bar{j}} u_k$$

and

$$u_{i\bar{j}k\bar{l}} = \frac{\rho_{i\bar{j}k\bar{l}}}{-\rho} + \frac{\rho_{i\bar{j}k}}{-\rho} u_{\bar{l}} + \frac{\rho_{i\bar{j}l}}{-\rho} u_k + \frac{\rho_{ij}}{-\rho} u_{k\bar{l}} + \frac{\rho_{i\bar{j}}}{-\rho} u_{k\bar{l}}$$

$$+ \frac{\rho_{ik}}{-\rho} u_{\bar{l}} + \frac{\rho_{ij}}{-\rho} u_{k\bar{l}} + \frac{\rho_{ik}}{-\rho} u_{\bar{l}} + \frac{\rho_{i\bar{j}}}{-\rho} u_{k\bar{l}} + \frac{\rho_{ik}}{-\rho} u_{i\bar{l}} + \frac{\rho_{i\bar{j}}}{-\rho} u_{k\bar{l}} + \frac{\rho_{ik}}{-\rho} u_{i\bar{l}}$$

$$+ 2 u_{i\bar{l}} u_k u_{\bar{j}} + 2 u_{i\bar{j}} u_k u_{\bar{l}} + 2 u_i u_k u_{\bar{j}l}$$

$$= \frac{\rho_{i\bar{j}k\bar{l}}}{-\rho} + \frac{\rho_{ij}}{-\rho} u_{\bar{l}} + \frac{\rho_{i\bar{j}}}{-\rho} u_k + \frac{\rho_{ik}}{-\rho} u_{\bar{j}} + \frac{\rho_{i\bar{j}}}{-\rho} u_{k\bar{l}}$$

$$+ u_{i\bar{j}} (u_k u_{\bar{j}} + u_{k\bar{l}}) + u_{ik} (u_{\bar{j}l} u_{k\bar{l}} + u_{k\bar{j}l}) + u_{ik} (u_{i\bar{j}l} + u_{i\bar{j}l})$$

$$- 3 u_i u_{i\bar{j}} u_k u_{\bar{l}} + u_i u_{i\bar{l}} u_k u_{\bar{j}} + u_i u_{i\bar{j}} u_k u_{\bar{l}}.$$
By (4.5) and (4.6), one has
\[u_{i\bar{q}k} = \frac{\rho_{i\bar{q}k}}{-\rho} + u_{i\bar{q}} u_k - u_{i\bar{q}} u_k + u_{ik} u_{\bar{q}} + u_{i k \bar{q}} \]

and
\[u_{p j \bar{t}} = \frac{\rho_{p j \bar{t}}}{-\rho} + u_{p j \bar{t}} - u_p u_{j \bar{t}} + u_{p \bar{t}} u_j + u_{p \bar{t} j \bar{t}}. \]

Thus,
\[(4.8) \quad g^{p \bar{q}} u_{i \bar{q} k} u_{p j \bar{t}} \]
\[= \left(g^{p \bar{q}} \frac{\rho_{i \bar{q}k}}{(-\rho)} + \delta_{ip} u_k - g^{p \bar{q}} u_i u_{\bar{q}} u_k + u_{ik} g^{p \bar{q}} u_{\bar{q}} + u_i \delta_{kp} \right) \]
\[\times \left(\frac{\rho_{p j \bar{t}}}{(-\rho)} + u_{p j \bar{t}} - u_p u_{j \bar{t}} + u_{p \bar{t}} u_j + u_{p \bar{t} j \bar{t}} \right) \]
\[= g^{p \bar{q}} \frac{\rho_{i \bar{q}k}}{(-\rho)} \frac{\rho_{p j \bar{t}}}{(-\rho)} \left(u_{p j \bar{t}} - u_p u_{j \bar{t}} + u_{p \bar{t}} u_j + u_{p \bar{t} j \bar{t}} \right) \]
\[+ \frac{\rho_{i \bar{q}k}}{(-\rho)} \left(\delta_{ip} u_k - g^{p \bar{q}} u_i u_{\bar{q}} u_k + u_{ik} g^{p \bar{q}} u_{\bar{q}} + u_i \delta_{kp} \right) \]
\[+ u_{i j \bar{t}} u_k - u_{i j k \bar{t}} + u_{i k j \bar{t}} - u_{i j k \bar{t}} - |\partial u|^2 u_{i j \bar{t}} u_k + u_{i j k \bar{t}} \]
\[+ u_{ik} u_{j \bar{t}} - |\partial u|^2 u_{ik} u_{j \bar{t}} + u_{ik} u_{j \bar{t}} + |\partial u|^2 u_{ik} u_{j \bar{t}} \]
\[+ u_{k j} u_{i \bar{t}} - u_{i k j \bar{t}} + u_{i j k \bar{t}} + u_{i k j \bar{t}} - 3 u_{i k j} u_{i \bar{t}} - (1 - |\partial u|^2 u_{ik} u_{j \bar{t}} + u_{ik} u_{j \bar{t}} + u_{ik} u_{j \bar{t}} \]
\[+ (1 - |\partial u|^2) u_{i j k \bar{t}} + |\partial u|^2 u_{ik} u_{j \bar{t}} + (1 - |\partial u|^2) u_{ik} u_{j \bar{t}}. \]

Therefore, by (4.1), (4.7), (4.8) and (4.5)
\[R_{i j k \bar{t}} = - (u_{i j \bar{t}} u_{k \bar{t}} + u_{k j \bar{t}} u_{i \bar{t}}) - \frac{\rho_{i j k \bar{t}}}{-\rho} + g^{p \bar{q}} \frac{\rho_{i \bar{q}k}}{(-\rho)} \frac{\rho_{p j \bar{t}}}{(-\rho)} \]
\[+ \frac{\rho_{i \bar{q}k}}{-\rho} g^{p \bar{q}} u_p (-u_{j \bar{t}} u_k + u_{j \bar{t}}) + \frac{\rho_{p j \bar{t}}}{-\rho} g^{p \bar{q}} u_{\bar{q}} (-u_i u_{\bar{q}} u_k + u_{ik}) \]
\[- (1 - |\partial u|^2) u_{i j k \bar{t}} - u_{i j u_k u_{\bar{t}} - u_{i k u_j u_{\bar{t}} - u_{ik} u_{j \bar{t}}}. \]
\begin{align*}
&= -(u_{ij}u_{k\bar{l}} + u_{k\bar{j}}u_{i\bar{l}}) - \frac{\rho_{i\bar{j}k\bar{l}}}{\rho} \\
&\quad + \frac{1}{\rho^2} g^{pq} \left[\rho_{\bar{p}k\bar{q}}\rho_{\bar{p}j\bar{q}} + \rho_{\bar{p}k\bar{q}}u_p\rho_{\bar{p}j\bar{q}} + \rho_{\bar{p}j\bar{q}}u_p\rho_{\bar{p}k\bar{q}} \right] - (1 - |\partial u|_g^2) \frac{\rho_{ik}\rho_{j\bar{l}}}{\rho^2}.
\end{align*}

This completes the proof of the proposition. \qed

Next we construct a Kähler metric g on $D(A)$ so that its holomorphic bisectional curvature $K_g \geq -1$ and $\lambda_1(\Delta_g) = n^2$. On $D(A)$, we let

\begin{equation}
(4.9) \quad \rho(z) = 2r(z) - \frac{\alpha}{2} r(z)^2, \quad 1 \leq \alpha \leq 2,
\end{equation}

where $r(z)$ is given by (3.2). Notice

\begin{equation}
(4.10) \quad H(r) = I_n, \quad H(\rho) = (2 - \alpha r(z))I_n - \alpha (\partial r) \otimes (\bar{\partial} r).
\end{equation}

It is easy to show that $r(z)$ and $-\log(-\rho(z))$ both are strictly plurisubharmonic negative defining functions for $D(A)$. Let

\begin{equation}
(4.11) \quad u(z) = -\log(-\rho), \quad g = g_{i\bar{j}}dz_i \otimes d\bar{z}_j = \frac{\partial^2 u}{\partial z_i \partial \bar{z}_j} dz_i \otimes d\bar{z}_j
\end{equation}

is a Kähler metric on $D(A)$ induced by u. It is easy to show that $(D(A), g)$ is a complete Kähler manifold. We will prove the following theorem.

Theorem 4.1. Let g be a Kähler metric defined by (4.9) and (4.11) on $D(A)$. If $A_n \leq 2/5$, then the holomorphic bisectional curvature $K_g \geq -1$ on $D(A)$.

Proof. For simplicity, we write

\begin{equation}
(4.12) \quad \rho(z) = 2r(z) - \frac{\alpha}{2} r(z)^2 =: \phi(r(z)).
\end{equation}

Then

\begin{align}
(4.13) &\quad \rho_i(z) = \phi'(r)r_i, \quad \rho_{i\bar{j}} = \phi'(r)r_{i\bar{j}} - \alpha r_i r_{\bar{j}}, \quad \rho_{ik} = \phi'(r)r_{ik} - \alpha r_i r_k \nonumber \\
(4.14) &\quad \rho_{ik\bar{q}} = -\alpha \left[r_{\bar{q}ri\bar{k}} + r_{i\bar{q}r_k} + r_i r_{k\bar{q}} \right]
\end{align}
and

\begin{align*}
\rho_{i\bar{j}k\bar{l}} &= -\alpha \frac{\partial}{\partial z_{\ell}}[r_{k\bar{l}}r_{\bar{i}j} + r_{i\bar{k}}r_{\bar{j}l} + r_{i\bar{l}}r_{k\bar{j}}] \\
&= -\alpha [r_{k\bar{l}}r_{\bar{i}j} + r_{i\bar{k}}r_{\bar{j}l} + r_{i\bar{l}}r_{k\bar{j}}] \\
&= -\alpha (\delta_{ij}\delta_{k\bar{l}} + A_iA_j\delta_{ik}\delta_{j\bar{l}} + \delta_{i\bar{k}}\delta_{kj}).
\end{align*}

From (4.13), one has

\begin{align*}
(4.16) \\
\rho_{i\bar{j}} &= \phi'(r) \left(\delta_{ij} - \frac{\alpha}{\phi'(r)} r_{i\bar{j}} \right), \quad \rho^{i\bar{j}} = \frac{1}{\phi'(r)} \left[\delta_{ij} + \frac{\alpha}{\phi'(r) - \alpha|\partial r^2} r_{i\bar{j}} \right].
\end{align*}

From (4.11) and (4.13), one has

\begin{align*}
(4.17) \\
g_{i\bar{j}} &= \frac{1}{1 - \rho} \left[\frac{1}{\rho} \rho_{i\bar{j}} + \frac{1}{\rho^2} \rho_{i\bar{j}} \right] \\
&= \frac{1}{1 - \rho} \left[\phi'(r) \delta_{ij} - \alpha r_{i\bar{j}} + \frac{\phi'(r)^2}{\rho} r_{i\bar{j}} \right] \\
&= \frac{\phi'(r)}{1 - \rho} \left[\delta_{ij} + \frac{\phi'(r)^2 + \alpha\rho}{\phi'(r) - \alpha\rho} r_{i\bar{j}} \right]
\end{align*}

and

\begin{align*}
(4.18) \\
g^{i\bar{j}} &= \frac{-\rho}{\phi'(r)} [\delta_{ij} - br_{i\bar{j}}] \quad \text{and} \quad b = \frac{\phi'(r)^2 + \alpha\rho}{\phi'(r) - \alpha\rho}\frac{1}{|\partial r|^2}.
\end{align*}

Therefore,

\begin{align*}
(4.19) \\
\sum_{q=1}^{n} g^{p\bar{q}} \rho_{i\bar{k}q} &= -\rho \phi'(r) [\delta_{pq} - br_{p\bar{q}}] \left(-\alpha [r_{p\bar{r}}r_{ik} + r_{i\bar{r}}r_{kq} + r_{i\bar{r}}r_{kq}] \right) \\
&= -\alpha \frac{-\rho}{\phi'(r)} \left(r_{p\bar{r}}r_{ik} + r_{i\bar{r}}r_{kq} + r_{i\bar{r}}r_{kq} - br_{p}(|\partial r|^2 r_{ik} + 2r_{i\bar{r}}r_{k}) \right).
\end{align*}

Hence,

\begin{align*}
(4.20) \\
\sum_{p,q=1}^{n} g^{p\bar{q}} \rho_{i\bar{k}q} u_p &= -\alpha \frac{-\rho}{\phi'(r)} \left(r_{p\bar{r}}r_{ik} + r_{i\bar{r}}r_{k} - br_{p}(|\partial r|^2 r_{ik} + 2r_{i\bar{r}}r_{k}) \right) \frac{\phi'(r)}{-\rho} r_p \\
&= -\alpha (1 - b|\partial r|^2)(|\partial r|^2 r_{ik} + 2r_{i\bar{r}}r_{k}).
\end{align*}
\(n \) and
\[
\frac{1}{\rho^2} \sum_{p,q=1}^{n} g^{\rho q} u_p \rho i k \tilde{\rho} j \tilde{\rho}_k = -\alpha \left(1 - \frac{b|\partial r|^2}{\rho^2} \right) \left(|\partial r|^2 r_{ik} + 2r_ri_k \right) [\phi'(r) r_{j} \tilde{\rho} - \alpha r_{j} r_{\tilde{\rho}}]
\]

Using
\[
\frac{1}{\rho^2} \sum_{p,q=1}^{n} g^{\rho q} u_p \rho i k \tilde{\rho} j \tilde{\rho}_k = -\alpha \left(1 - \frac{b|\partial r|^2}{\rho^2} \right) \left(|\partial r|^2 r_{j} \tilde{\rho} + 2r_{j} r_{\tilde{\rho}} \right) [\phi'(r) r_{ik} - \alpha r_{ik}].
\]

(4.21), (4.22) and (4.23), one has
\[
\frac{1}{\rho^2} \sum_{p,q=1}^{n} g^{\rho q} [u_p \rho i k \tilde{\rho} j \tilde{\rho}_k + u_{\tilde{\rho} p} \rho j \tilde{\rho} r_k]
\]

\[
= -2\alpha \left(1 - \frac{b|\partial r|^2}{\rho^2} \right) \left[\phi'(r)|\partial r|^2 r_{ik} r_{j} \tilde{\rho} + \left(\phi'(r) - \frac{\alpha}{2}|\partial r|^2 \right) \times (r_{ik} r_{j} \tilde{\rho} + r_{j} \tilde{\rho} r_{ik}) - 2\alpha r_{ik} r_{j} r_{\tilde{\rho}} \right]
\]

\[
= -2\alpha \left(1 - \frac{b|\partial r|^2}{\rho^2} \right) \left[\phi' |\partial r|^2 A_i \delta_{ik} A_j \delta_{j} \tilde{\rho} + \left(\phi' - \frac{\alpha}{2}|\partial r|^2 \right) \times (A_i \delta_{ik} r_{j} \tilde{\rho} + A_j \delta_{j} r_{i} r_k) - 2\alpha r_{ik} r_{j} r_{\tilde{\rho}} \right].
\]

Since
\[
|\partial u_q|^2 = \sum_{p,q=1}^{n} g^{pq} u_p u_q = \frac{-\rho}{\phi'(r)} (\delta_{pq} - \rho r_{pq}) \frac{\phi'(r)^2}{\rho^2} r_{p} r_{\tilde{\rho}} = \frac{\phi'(r)}{-\rho} |\partial r|^2 (1 - b|\partial r|^2),
\]

one has
\[
1 - b|\partial r|^2 = 1 - \frac{(\phi'(r)^2 + \alpha \rho)|\partial r|^2}{\phi'(r)(-\rho) + (\phi'(r)^2 + \alpha \rho)|\partial r|^2}
\]

\[
= \frac{\phi'(r)(-\rho) + (\phi'(r)^2 + \alpha \rho)|\partial r|^2}{\phi'(r)(-\rho) + (\phi'(r)^2 + \alpha \rho)|\partial r|^2}
\]
\[
\frac{\phi'(r)(-\rho)b}{(\phi'(r)^2 + \alpha \rho)}.
\]

Thus,

\[
(4.24) \\
1 - |\partial u|^2 = 1 - \frac{(-\rho)(\phi'(r) - \alpha |\partial r|^2)b}{(\phi'(r)^2 + \alpha \rho)}
\]

and

\[
\frac{1}{\rho^2}(1 - |\partial u|^2)\rho_{ik}\rho_{\bar{j}\bar{\ell}}
= \frac{(-\rho)(\phi'(r) - \alpha |\partial r|^2)b}{(\phi'(r)^2 + \alpha \rho)}(\phi'(r)A_i \delta_{ik} - \alpha r_i r_k)(\phi'(r)A_j \delta_{j\ell} - \alpha r_j r_{\ell})
= \frac{(-\rho)(\phi'(r) - \alpha |\partial r|^2)b}{(\phi'(r)^2 + \alpha \rho)}(\phi'(r)^2 A_j A_i \delta_{ik} \delta_{j\ell} - \alpha \phi'(r) - \alpha r_i r_j r_{\ell})
\]

Therefore,

\[
(4.25) \\
\frac{(-\rho)}{\rho^2} \sum_{p,q=1}^n g^{p\bar{q}}[u_p \rho_{ik}\rho_{\bar{j}\ell} + u_{\bar{p}} \rho_{\bar{j}\ell} \rho_{ik}] - \frac{(-\rho)}{\rho^2}(1 - |\partial u|^2)\rho_{ik}\rho_{\bar{j}\bar{\ell}}
= \frac{2\alpha \phi'(r)b}{(\phi'(r)^2 + \alpha \rho)} \left(\phi' |\partial r|^2 A_i \delta_{ik} A_j \delta_{j\ell} + (\phi' - \frac{\alpha}{2} |\partial r|^2) \right)
\times (A_i \delta_{ik} r_j r_{\bar{\ell}} + A_j \delta_{j\ell} r_i r_k - 2\alpha r_i r_j r_{\bar{\ell}r_{\bar{\ell}}})
= \frac{2\alpha \phi'(r)b}{(\phi'(r)^2 + \alpha \rho)} \left(\phi' |\partial r|^2 A_i \delta_{ik} A_j \delta_{j\ell} - \alpha \phi'(r)(A_j \delta_{j\ell} r_i r_k + A_i \delta_{ik} r_j r_{\bar{\ell}}) + \alpha^2 r_i r_j r_{\bar{\ell}r_{\bar{\ell}}} \right)
= \frac{-2\alpha \phi'(r)b}{(\phi'(r)^2 + \alpha \rho)} A_i A_j \delta_{ik} \delta_{j\ell} - \frac{\alpha \phi'(r) b}{(\phi'(r)^2 + \alpha \rho)}
\times (A_j \delta_{j\ell} r_i r_k + A_i \delta_{ik} r_j r_{\bar{\ell}}) + \frac{2\alpha b(3\phi'(r) + \alpha |\partial r|^2)}{(\phi'(r)^2 + \alpha \rho)} r_i r_j r_{\bar{\ell}r_{\bar{\ell}}}.
\]

Therefore, by (4.4), (4.15) and (4.25), for any \(\xi, \eta \in \mathbb{C}^n \), one has

\[
(4.26) \\
(-\rho)E_{ij\bar{k}\bar{l}}\xi_i \bar{\xi}_{\bar{j}} \eta_{\bar{k}} \bar{\eta}_{\bar{l}} \\
\geq a \left(|\xi|^2 |\eta|^2 + \sum_{i=1}^n A_i \xi_i \eta_i \right)^2 + \sum_{i=1}^n |\xi_i \bar{\eta}_i|^2.
\]
\[-\left(\frac{\alpha r^2 + \phi'(r)}{\phi'(r)^2 + \alpha} \right) \left| \sum_{i=1}^{n} A_i \xi_i \eta_i \right|^2 \]

\[- \frac{2 \alpha \phi'(r)^2 b}{(\phi'(r)^2 + \alpha)} \sum_{j=1}^{n} A_j \tilde{\xi}_j \bar{\eta}_j \left(\sum_{i=1}^{n} \xi_i r_i \right) \left(\sum_{k=1}^{n} \eta_k \bar{r}_k \right) \]

\[+ \alpha^2 b(3 \phi'(r) + \alpha r^2) \sum_{i=1}^{n} r_i \xi_i \left| \sum_{k=1}^{n} r_k \eta_k \right|^2 \]

\[\geq \alpha \left(|\xi|^2 |\eta|^2 + \sum_{i=1}^{n} A_i \xi_i \bar{\eta}_i \right)^2 + \sum_{i=1}^{n} \xi_i \bar{\eta}_i \right)^2 \]

\[- \left(\frac{\alpha r^2 + \phi'(r)}{(\phi'(r)^2 + \alpha)} \right) \left| \sum_{i=1}^{n} A_i \xi_i \eta_i \right|^2 \]

\[- \frac{1}{4} \left(\frac{2 \alpha \phi'(r)^2 b}{(\phi'(r)^2 + \alpha)} \right)^2 \left(\frac{\phi'(r)^2 + \alpha}{\alpha b(3 \phi'(r) + \alpha r^2)} \right) \sum_{j=1}^{n} A_j \tilde{\xi}_j \bar{\eta}_j \right|^2 \]

\[= \alpha \left(|\xi|^2 |\eta|^2 + \sum_{i=1}^{n} A_i \xi_i \bar{\eta}_i \right)^2 \]

\[+ \alpha \left(1 - \frac{\phi'(r)^2 b(4/\alpha) \phi'(r)^2 + \alpha r^4 + 4 \phi'(r) r |r|^2}{(\phi'(r)^2 + \alpha)(3 \phi'(r) + \alpha r^2)} \right) \sum_{j=1}^{n} A_i \tilde{\xi}_j \bar{\eta}_j \right|^2 \]

\[= \alpha \left(|\xi|^2 |\eta|^2 + \sum_{i=1}^{n} A_i \xi_i \bar{\eta}_i \right)^2 \]

\[+ \alpha \left(1 - \frac{\phi'(r)^2 (\phi'(r) (2/\alpha) + |r|^2)^2}{(\phi'(r) (\phi'(r)^2 + \alpha r^2)(3 \phi'(r) + \alpha r^2)} \right) \sum_{j=1}^{n} A_i \tilde{\xi}_j \bar{\eta}_j \right|^2 . \]

Notice

\[(4.27) \quad 16 \geq \phi'(r)^2 \geq \phi'(r)^2 + \alpha r = 4 - 4r(z) + 2r(z)^2 \geq 2 \phi'(r) \geq 4 \]

and since \(|z|^2 (1 - A_n) < 1\) on \(D(A)\), one has

\[(4.28) \quad - r(z) + 2 |\partial r(z)|^2 \]

\[\geq -2r(z) + 2 |\partial r(z)|^2 \]
\[
\geq 2(1 - |z|^2 - \sum_{j=1}^{n} A_j \text{Re} z_j^2 + |z|^2 + 2 \sum_{j=1}^{n} A_j \text{Re} z_j^2 + \sum_{j=1}^{n} A_j^2 |z_j|^2) \\
\geq 2(1 + \sum_{j=1}^{n} A_j \text{Re} z_j^2 + \sum_{j=1}^{n} A_j^2 |z_j|^2) \\
\geq 2(1 - \sum_{j=1}^{n} A_j^2 |z_j|^2 - \frac{1}{4} |z|^2 + \sum_{j=1}^{n} A_j^2 |z_j|^2) \\
\geq 2(1 - \frac{|z|^2}{4}) \\
\geq 2(1 - \frac{1}{4(1 - A_n)}) \\
= \frac{3 - 4A_n}{2(1 - A_n)}.
\]

Therefore, with \(A_n < 3/4\)

(4.29)

\[
\phi'(r)(-\rho) + (\phi'(r)^2 + \alpha \rho) |\partial r|^2 \geq \phi'(r)(-\rho) + 2\phi'(r)|\partial r|^2 \\
= \phi'(r)[-\rho + 2|\partial r|^2] \\
\geq \frac{(3 - 4A_n)\phi'(r)}{2(1 - A_n)}.
\]

Since \(|\partial r(z)|^2 \leq \phi'(r)|\partial r(z)|^2 \leq 4\). Thus, since \(\alpha \in [1, 2]\), one has

\[
\frac{(\phi'(r)(2/\alpha) + |\partial r|^2)^2}{3\phi'(r) + \alpha |\partial r|^2} \leq (\phi'(r) + |\partial r|^2) \leq 4.
\]

Therefore, if \(A_n \leq 2/5\), then

\[
1 - \frac{2\phi'(r)^2(\phi'(r)(2/\alpha) + |\partial r|^2)^2}{(\phi'(r)(-\rho) + (\phi'(r)^2 + \alpha \rho)|\partial r|^2)(3\phi'(r) + \alpha |\partial r|^2)} \\
\geq 1 - \frac{4\phi'(r)(1 - A_n)}{3 - 4A_n} \\
\geq 1 - \frac{16(1 - A_n)}{(3 - 4A_n)} \\
= -\frac{13 - 12A_n}{(3 - 4A_n)} \\
\geq -\frac{41}{7}.
\]
Therefore, if $0 \leq A_n \leq 2/5$, then

\begin{equation}
(4.30) \quad (\rho - \frac{3}{7} A_n) |\xi|^2 |\eta|^2 \geq \alpha (1 - \frac{41}{7} A_n^2) |\xi|^2 |\eta|^2 \geq \alpha \frac{11}{175} |\xi|^2 |\eta|^2 \geq 0.
\end{equation}

Therefore, the proof of the theorem is complete. \qed

Finally, we will prove part (ii) of Theorem 1.3.

Proof of part (ii) of Theorem 1.3.

Proof. Let $r(z) = |z|^2 + \sum_{j=1}^n \text{Re} A_j z_j^2 - 1$ on $D(A)$, and let

$$
\rho(z) = 2r(z) - \frac{1}{2} r(z)^2, \quad u(z) = -\log(-\rho(z)), \quad g = \sum_{i,j=1}^n \frac{\partial u}{\partial z_i \partial \overline{z}_j} dz_i \otimes d\overline{z}_j.
$$

If $A_n \leq 2/5$ then $|r(z)| \leq 5/3$. By (4.10), it is easy to show that $\rho(z)$ is strictly plurisubharmonic in $D(A)$. By Theorem 1.1, we have $\lambda_1(\Delta_g) = n^2$. By Theorem 4.2, we have $K_g \geq -1$ on $D(A)$. Therefore, the proof of part (ii) of Theorem 1.3 is complete. \qed

Acknowledgment

S.-Y.L. thanks Peter Li, Zhiqin Lu and Lei Ni for several useful conversations he has had with them during the preparation of this work. He also appreciates the referees who read the manuscript carefully and gives several valuable suggestions for the revision.

References

Department of Mathematics
University of California
Irvine
CA 92697–3875
USA

AND

School of Math and Computer Science
Fujian Normal University
Fujian, China
E-mail address: sli@math.uci.edu

Received May 5, 2010