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Homogeneous polar foliations of complex

hyperbolic spaces

Jürgen Berndt and José Carlos D́ıaz-Ramos

We prove that, up to isometric congruence, there are exactly 2n +
1 homogeneous polar foliations of the complex hyperbolic space
CHn, n ≥ 2. We also give an explicit description of each of these
foliations.

1. Introduction

A proper isometric action of a connected Lie group G on a complete Rieman-
nian manifold M is called polar if there exists a connected closed submanifold
S of M such that

(i) S meets each orbit of the action, i.e., for each p ∈ M the intersection
of S and the orbit G · p of G containing p is nonempty;

(ii) S intersects each orbit orthogonally, i.e., for all p ∈ S the tangent space
TpS of S at p is contained in the normal space νp(G · p) of G · p at p.

Such a submanifold S is called a section of the action. The classical paper
on this topic is by Dadok [5] who determined all connected Lie subgroups
of the orthogonal group O(n) acting polarly on the Euclidean space E

n.
Using Dadok’s result it is not difficult to deduce a classification of all polar
actions up to orbit equivalence on the sphere Sn and in the real hyperbolic
space RHn, see e.g., [14]. Podestà and Thorbergsson classified in [13] all
polar actions on compact Riemannian symmetric spaces of rank one up
to orbit equivalence. Kollross studied polar actions on compact Riemannian
symmetric spaces of higher rank and obtained a complete classification in [9]
for the case when the isometry group of the symmetric space is simple, and
in [10] for the case when the symmetric space is an exceptional compact Lie
group. A striking difference between the rank one case and the higher rank
case is that in the higher rank case polar actions are hyperpolar, that is, the
section S is flat. This is not true for the rank one case.

The classification of polar actions on Riemannian symmetric spaces of
noncompact type is more complicated due to the noncompactness of the
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isometry groups. One cannot expect a general correspondence using the
concept of duality between symmetric spaces of compact type and of non-
compact type. It is known that there are symmetric spaces of compact type
which do not admit any polar actions, whereas on every symmetric space
of noncompact type there are polar actions. However, for actions by reduc-
tive groups Kollross established in [11] a correspondence. Polar actions with
a fixed point on Riemannian symmetric spaces of noncompact type have
been classified by the second author and Kollross in [6]. Polar actions with
codimension one orbits, or equivalently, cohomogeneity one actions, on Rie-
mannian symmetric spaces of noncompact type are also well understood,
see [2, 3].

The motivation for this paper is to understand better the general classi-
fication problem for the complex hyperbolic space CHn = SU(1, n)/S(U(1)
U(n)). We restrict here to the situation when the orbits of the action form
a foliation of CHn, in which case we call the foliation a homogeneous polar
foliation of CHn. There are two trivial homogeneous polar foliations on
CHn, one for which the leaves are points in CHn, and one with exactly
one leaf equal to CHn. Consider a restricted root space decomposition
g = g−2α ⊕ g−α ⊕ g0 ⊕ gα ⊕ g2α, where g is the Lie algebra of SU(1, n). The
subspace g0 decomposes into g0 = k0 ⊕ a, where a is a one-dimensional sub-
space of p in a Cartan decomposition g = k ⊕ p and k0 is the centralizer of a in
k. The Kähler structure of CHn induces a complex structure on gα, turning
gα into an (n − 1)-dimensional complex vector space. To each real subspace
w of gα and each subspace V of a we associate a subalgebra sV,w of g. Note
that dimV ∈ {0, 1} and dimw ∈ {0, . . . , n − 1}. Let SV,w be the connected
subgroup of SU(1, n) with Lie algebra sV,w. We will show that the action
of SV,w induces a homogeneous polar foliation of CHn with cohomogeneity
equal to dimw if V = a and equal to dimw + 1 if V = {0}. Moreover, the
actions of two such subgroups SV,w and SV ′,w′ are orbit equivalent if and only
if dimV = dimV ′ and dimw = dim w′. We therefore can define Sa,b := SV,w

with a = dim V ∈ {0, 1} and b = dimw ∈ {0, . . . , n − 1}, and up to isomet-
ric congruence Sa,b is well defined. The group S1,0 acts transitively on CHn,
and the group S0,0 induces a foliation of CHn by horospheres. Our main
result states:

Main Theorem. Every nontrivial homogeneous polar foliation of CHn,
n ≥ 2, is up to isometric congruence one of the following:

(i) The homogeneous polar foliation induced by S0,b, b ∈ {0, . . . , n − 1} –
in this case the codimension of the foliation is equal to b + 1 and all
leaves are contained in horospheres of CHn;
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(ii) The homogeneous polar foliation induced by S1,b, b ∈ {1, . . . , n − 1} –
in this case the codimension of the foliation is equal to b and no leaf
is contained in a horosphere of CHn.

It is worthwhile to point out that none of the foliations in (i) and (ii)
has a totally geodesic leaf.

This paper is organized as follows. In Section 2, we present some relevant
material about the structure theory of the Lie algebra of SU(1, n), and in
Section 3 we prove that the action of SV,w induces a homogeneous polar
foliation of CHn. In Section 4, we present the proof of the Main Theorem.

2. Preliminaries

For the concepts and notation on Lie groups and Lie algebras we follow [8].
For more information on the complex hyperbolic space and its relation to
Damek–Ricci spaces see [4].

We denote by CHn, n ≥ 2, the complex hyperbolic space equipped with
the Bergman metric normalized so that the holomorphic sectional curvature
is equal to −1. It can be realized as the Riemannian symmetric space G/K
with G = SU(1, n) and K = S(U(1)U(n)) and a G-invariant Riemannian
metric induced by the Killing form of the Lie algebra g of G. Here, G is
the identity component of the isometry group of CHn and K is the isotropy
subgroup of G at a point o ∈ CHn, which we will fix from now on. Let B
denote the Killing form of g = su(1, n), the Lie algebra of SU(1, n). If p

is the orthogonal complement of k in g with respect to B, then we have a
Cartan decomposition g = k ⊕ p. The Killing form is negative definite on k

and positive definite on p. Let θ be the Cartan involution of g with respect
to this Cartan decomposition, i.e., θ acts as the identity on k and as minus
the identity on p. Then we can define a positive definite inner product,
the so-called Killing metric, on g by 〈X, Y 〉 = −B(θX, Y ) for all X, Y ∈ g.
Moreover, we have 〈ad(X)Y, Z〉 = −〈Y, ad(θX)Z〉 for all X, Y , Z ∈ g. As
usual, ad denotes the adjoint map at Lie algebra level, ad(X)Y = [X, Y ],
whereas Ad will denote the adjoint map at Lie group level. Recall that p

can be identified with the tangent space ToCHn and hence can be viewed
naturally as a complex vector space.

We choose a maximal abelian subspace a of p. Then a is one-dimensional.
This abelian subspace induces a restricted root space decomposition g =
g−2α ⊕ g−α ⊕ g0 ⊕ gα ⊕ g2α, where gλ = {X ∈ g : ad(H)X = λ(H)X for all
H ∈ a} and λ ∈ a∗. Recall that [gλ, gμ] = gλ+μ. The set Σ = {−2α,−α, α, 2α}
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is called the set of roots. It is known that θgλ = g−λ for any λ ∈ Σ ∪ {0},
and g0 = k0 ⊕ a, where k0 = g0 ∩ k. It can be seen that k0 is isomorphic to
u(n − 1), and that g2α is one-dimensional. From now on, we introduce an
ordering in Σ such that α and 2α are positive roots. This choice selects
precisely one unit vector B in a for which α(B) = 1/2.

Let n = gα ⊕ g2α, which is a nilpotent subalgebra of g isomorphic to the
(2n − 1)-dimensional Heisenberg algebra. Then g = k ⊕ a ⊕ n is an Iwasawa
decomposition of g. It is known that the connected subgroup AN of G whose
Lie algebra is a ⊕ n acts simply transitively on CHn. We endow AN , and
hence a ⊕ n, with the left-invariant metric 〈 · , · 〉AN and the complex struc-
ture J that make CHn and AN isometric. If X, Y ∈ a ⊕ n ∼= T1AN are con-
sidered as left-invariant vector fields then the relation between the Killing
form and the inner product on a ⊕ n is given by 〈X, Y 〉AN = 〈Xa, Ya〉 +
1
2〈Xn, Yn〉, where subscript means orthogonal projection. The complex struc-
ture J on a ⊕ n is such that gα is J-invariant, thus gα is a complex vector
subspace, and Ja = g2α. Therefore, we can define Z = JB ∈ g2α. Notice
that, while B and Z are unit vectors with respect to the a ⊕ n metric, we
have 〈B, B〉 = 1 but 〈Z, Z〉 = 2 with respect to the Killing metric. With this
notation, the Lie bracket in a ⊕ n can be written as

[aB + U + xZ, bB + V + yZ] = − b

2
U +

a

2
V +

(
−bx + ay +

1
2
〈JU, V 〉

)
Z,

where a, b, x, y ∈ R, and U , V ∈ gα.
We can also define pλ = (1 − θ)gλ ⊂ p and kλ = (1 + θ)gλ ⊂ k. Then we

have p = a ⊕ pα ⊕ p2α, pα is complex, and p2α is one-dimensional. If i denotes
the complex structure of p then we have

(2.1) iB =
1
2
(1 − θ)Z and i(1 − θ)U = (1 − θ)JU.

There are exactly two conjugacy classes of Cartan subalgebras in g. We
are interested in the so-called maximally noncompact ones. These are, up to
conjugacy, of the form t ⊕ a, where t is some abelian subspace of k0. Then,
[t, a] = [t, g2α] = 0, and [t, gα] ⊂ gα. The vector space t ⊕ a ⊕ n turns out to
be a maximal solvable subalgebra of g, of the so-called maximal noncompact
type.

To finish this section, we prove the following result, which will be used
several times henceforth.
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Lemma 2.1. We have

[θU, Z] = −JU for all U ∈ gα;(2.2)

〈T, (1 + θ)[θU, V ]〉 = 2〈[T, U ], V 〉 for all T ∈ t and U , V ∈ gα.(2.3)

Proof. Assume that U ∈ gα. It is clear that [θU, Z] ∈ gα. Moreover,
if V is another element in gα we have 〈[θU, Z], V 〉 = −〈Z, [U, V ]〉 =
−1

2〈JU, V 〉〈Z, Z〉 = −〈JU, V 〉, where we have used 〈Z, Z〉 = 2. This
implies (2.2).

Now let T ∈ t and U , V ∈ gα. Then

〈T, (1 + θ)[θU, V ]〉 = 〈T, [θU, V ]〉 + 〈T, [U, θV ]〉 = −〈[U, T ], V 〉 + 〈[V, T ], U〉
= 2〈[T, U ], V 〉,

from where (2.3) follows. �

3. Polar foliations

The following criterion for homogeneous polar foliations was proved by
Gorodski in [7] for Riemannian symmetric spaces of compact type, but the
proof for the noncompact type is analogous (see also [1]).

Theorem 3.1. Let M = G/K be a Riemannian symmetric space of non-
compact type and H be a connected closed subgroup of G whose orbits form a
homogeneous foliation F of M . Consider the corresponding Cartan decom-
position g = k ⊕ p and define

h⊥p = { ξ ∈ p : 〈ξ, Y 〉 = 0 for all Y ∈ h }.

Then the action of H on M is polar if and only if h⊥p is a Lie triple system
in p and h is orthogonal to the subalgebra [h⊥p , h⊥p ] ⊕ h⊥p of g. In this case,
let H⊥

p be the connected subgroup of G with Lie algebra [h⊥p , h⊥p ] ⊕ h⊥p . Then
the orbit S = H⊥

p · o is a section of the H-action on M .

As a first application of this theorem we construct examples of homo-
geneous polar foliations of the complex hyperbolic space CHn. Here and
henceforth the symbol � denotes orthogonal complement.

Theorem 3.2. Let w be a real subspace of gα and V be a subspace of
a (then, either V = {0} or V = a). Let SV,w be the connected subgroup of
AN whose Lie algebra is sV,w = V ⊕ (gα � w) ⊕ g2α. Then SV,w induces a
homogeneous polar foliation of CHn.
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Proof. It is clear that sV,w is a subalgebra of a ⊕ n. Since SV,w is contained
in AN it is obvious that it induces a homogeneous foliation of CHn. So, it
remains to use Theorem 3.1 to show that it also acts polarly on CHn.

It is easy to calculate that

(sV,w)⊥p = (a � V ) ⊕ (1 − θ)w.

The subspace above is real in p (use for example (2.1)), and hence it is a
Lie triple system of p. Now, if W , W̃ ∈ w, we have [(1 − θ)W, (1 − θ)W̃ ] =
(1 + θ)[W, W̃ ] − (1 + θ)[θW, W̃ ] = −(1 + θ)[θW, W̃ ] ∈ k0, which is orthogo-
nal to a ⊕ n and thus to sV,w. Also, [B, (1 − θ)W ] = 1

2(1 + θ)W , and since
w is orthogonal to sV,w, so is the latter element of kα. This finishes the proof
of the theorem. �

Denote by K0 the subgroup of K with Lie algebra k0. The adjoint action
of K0 on gα is isomorphic to the standard action of U(n − 1) on C

n−1.
This implies that for any two real subspaces w and w′ of gα with dim w =
dimw′ the subgroups SV,w and SV,w′ are conjugate in SU(1, n). Hence the
corresponding two homogeneous polar foliations on CHn are isometrically
congruent to each other.

We will now proceed with the proof of the Main Theorem.

4. Proof of the main theorem

Assume that H is a connected closed subgroup of G = SU(1, n) acting
polarly on CHn in such a way that the orbits of H form a homogeneous
foliation of CHn. We denote by h the Lie algebra of H. According to [1] we
have:

Theorem 4.1. Let M be a Hadamard manifold and let H be a connected
closed subgroup of I(M) whose orbits form a homogeneous foliation F of
M . Then there exists a connected closed solvable subgroup S of H such that
the leaves of F coincide with the orbits of S. Moreover, all the orbits of S
or of H are principal.

Theorem 4.1 implies that we may assume that h is solvable. Thus h is
contained in a maximal solvable subalgebra of g. We can give a more precise
statement in our situation.

Proposition 4.1. Let M be a symmetric space of noncompact type and
rank one. Assume that H acts polarly on M inducing a foliation. Then the
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action of H is orbit equivalent to the action of a Lie group whose Lie algebra
is contained in a maximally noncompact Borel subalgebra.

Proof. We write M = G/K, where G is the connected component of the
isometry group of M . By Theorem 4.1 we may assume that H is solvable
and closed in G.

Let b be a maximal solvable subalgebra of g containing h. Then there
exists a Cartan decomposition g = k ⊕ p such that b = t ⊕ ã ⊕ ñ, with t ⊂ k,
ã ⊂ p, and such that t ⊕ ã is Cartan subalgebra of g [12]. Here, ñ is defined
as ñ = ⊕λ̃∈Σ̃+ g̃λ̃, where Σ̃ is the set of roots with respect to ã, g̃λ̃ = {X ∈ g :
ad(H)X = λ̃(H)X for all H ∈ ã}, and Σ̃+ is the set of positive roots with
respect to some choice of ordering. Since M has rank one, either ã = {0} or
dim ã = 1. If ã = {0} then b = t is compact. Hence, the action of H is orbit
equivalent to the action of a compact subgroup, and thus has a fixed point
by Cartan’s fixed point theorem. Since H induces a foliation, it follows that
the orbits of H are points. Therefore, we may assume dim ã = 1, and thus b

is maximally noncompact. We conclude that h is a subalgebra of t ⊕ a ⊕ n,
where a ⊂ p is a maximal abelian subspace. �

In view of Proposition 4.1 we may assume that h is a subalgebra of t ⊕
a ⊕ n, where a ⊂ p is a maximal abelian subspace and t ⊕ a is a maximally
noncompact Cartan subalgebra of g.

Let S be a section of the action of H. Then, according to Theorem 3.1,
S = H⊥

p · o, where H⊥
p is the connected subgroup of G = SU(1, n) whose Lie

algebra is [h⊥p , h⊥p ] ⊕ h⊥p ⊂ k ⊕ p = g, where h⊥p = { ξ ∈ p : 〈ξ, Y 〉 = 0 for all
Y ∈ h } ⊂ p. Since h⊥p is a Lie triple system it follows that h⊥p is either real
or complex, and thus S is also either real or complex. We deal first with the
complex case.

Proposition 4.2. If the section S of H is complex, then either H acts
transitively on CHn or the orbits of H are points.

Proof. Let π : h⊥p → a ⊕ p2α be the orthogonal projection of h⊥p onto a ⊕ p2α.
Note that π is J-linear, and thus π(h⊥p ) is either {0} or a ⊕ p2α.

Assume first that π(h⊥p ) = {0}. Then it is clear that h⊥p is a complex
subspace of pα. Since B and Z are orthogonal to h⊥p , there exist S, T ∈ t

such that S + B, T + Z ∈ h. Then, Z = [S + B, T + Z] ∈ h. Let V ∈ gα such
that (1 − θ)V ∈ h⊥p . Theorem 3.1 implies

0 = 〈Z, [(1 − θ)V, (1 − θ)JV ]〉 = 〈Z, [V, JV ]〉 =
1
2
〈V, V 〉〈Z, Z〉 = ‖V ‖2,
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and so h⊥p = {0}. Hence the section is zero-dimensional and therefore the
action of H must be transitive.

Now assume that π(h⊥p ) = a ⊕ p2α. As π is J-linear, kerπ is a complex
subspace of pα. Then h⊥p � ker π, the orthogonal complement of ker π in h⊥p ,
has complex dimension one, so there is a unique vector Y ∈ h⊥p � ker π such
that π(Y ) = B. Thus, we can write Y = B + (1 − θ)X, with X ∈ gα and X
(or (1 − θ)X) orthogonal to kerπ. In view of (2.1), we can also write

h⊥p = C(B + (1 − θ)X) ⊕ ker π

= R(B + (1 − θ)X) ⊕ R((1 − θ)JX +
1
2
(1 − θ)Z) ⊕ ker π.

It is obvious that ‖X‖2B − X, and −JX + ‖X‖2Z are orthogonal to
h⊥p (recall that ‖B‖2 = 1, and ‖Z‖2 = 2, where ‖·‖ is the norm induced by
〈 · , · 〉). Hence, there exist S, T ∈ t such that S + ‖X‖2B − X, T − JX +
‖X‖2Z ∈ h.

Using (2.2) we obtain

[h⊥p , h⊥p ] �
[
B + (1 − θ)X, (1 − θ)JX +

1
2
(1 − θ)Z

]

=
1
2
(1 + θ)JX +

1
2
(1 + θ)Z + (1 + θ)[X, JX]

− (1 + θ)[θX, JX] − 1
2
(1 + θ)[θX, Z]

= −(1 + θ)[θX, JX] + (1 + θ)JX +
1
2

(
1 + ‖X‖2

)
(1 + θ)Z.

Taking inner product of the previous vector with T − JX + ‖X‖2Z ∈ h,
and using the fact that ad(T ) is skew-symmetric, and (2.3), we obtain by
Theorem 3.1

0 = −〈(1 + θ)[θX, JX], T 〉 − ‖X‖2 +
‖X‖2

2
(
1 + ‖X‖2

) ‖Z‖2

= −2〈[T, X], JX〉 + ‖X‖4.

Therefore, we obtain 〈[T, X], JX〉 = ‖X‖4/2.
On the other hand, since h is a Lie algebra, and [t, g2α] = 0, we have that

h � [S + ‖X‖2B − X, T − JX + ‖X‖2Z]

= [T, X] − [S, JX] − ‖X‖2

2
JX + ‖X‖2

(
‖X‖2 +

1
2

)
Z.
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Taking inner product with (1 − θ)JX + 1
2(1 − θ)Z ∈ h⊥p , and using the fact

that ad(S) is skew-symmetric, yields

0 = 〈[T, X], JX〉 − ‖X‖4

2
+ ‖X‖2

(
‖X‖2 +

1
2

)
= ‖X‖2

(
‖X‖2 +

1
2

)
.

Therefore X = 0, and h⊥p = a ⊕ p2α ⊕ kerπ. Since kerπ is complex we can
find S, T ∈ t, and V ∈ gα, such that S + V , T + JV ∈ h. Then

0 = 〈[S + V, T + JV ], (1 − θ)Z〉
= 〈[S, JV ] − [T, V ] +

1
2
‖V ‖2Z, (1 − θ)Z〉 = ‖V ‖2.

This implies ker π = pα and h ⊂ t. Therefore H is compact. By Cartan’s
fixed point theorem H has a fixed point and thus fixes CHn pointwise. �

Altogether this proves that a homogeneous polar foliation of the complex
hyperbolic space cannot have a nontrivial complex section.

From now on we assume that the section is real, that is, h⊥p is a real
subspace of p. Consider again the orthogonal projection π : h⊥p → a ⊕ p2α.
Two different possibilities arise.

Case 1 dim π(h⊥p ) = 2: We will show that this possibility cannot hold. We
start with an algebraic result.

Lemma 4.1. The subspace h⊥p can be written as

h⊥p = R(B + (1 − θ)X) ⊕ R((1 − θ)Y + (1 − θ)Z) ⊕ (1 − θ)w,

where X, Y ∈ gα, w is a real subspace of gα, CX and CY are perpendicular
to w, and 〈X, JY 〉 = 1.

Proof. Since ker π ⊂ pα, we can find a subspace w ⊂ gα such that kerπ =
(1 − θ)w. By hypothesis, there exists a unique ξ ∈ h⊥p � kerπ such that
π(ξ) = B. Hence, there exists X ∈ gα such that ξ = B + (1 − θ)X ∈ h⊥p .
Similarly, there exists a unique η ∈ h⊥p � kerπ such that π(η) = (1 − θ)Z,
and thus, there exists Y ∈ gα such that η = (1 − θ)Z + (1 − θ)Y ∈ h⊥p .
Clearly, h⊥p = Rξ ⊕ Rη ⊕ ker π = R(B + (1− θ)X) ⊕ R((1− θ)Y + (1− θ)Z)
⊕ (1 − θ)w.

Since h⊥p is real, using (2.1) we obtain 0 = 〈ξ, iη〉 = −2 + 2〈X, JY 〉. Let
W ∈ w ⊂ gα be arbitrary. By definition of ξ, we obtain 0 = 〈(1 − θ)W, ξ〉 =
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2〈W, X〉, and since h⊥p is real, 0 = 〈(1 − θ)W, iξ〉 = 2〈W, JX〉. This implies
that CX is orthogonal to w. We can prove in a similar way that CY is
orthogonal to w, and hence the result follows. �

In view of Lemma 4.1 our first observation is that
(4.1)

for each U ∈ gα � w, −〈U, X〉B + U − 1
2
〈U, Y 〉Z is orthogonal to h⊥p .

Hence, for each U ∈ gα � w there exists TU ∈ t such that TU − 〈U, X〉B +
U − 1

2〈U, Y 〉Z ∈ h.
Using (2.2) we also obtain

[B + (1 − θ)X, (1 − θ)Y + (1 − θ)Z](4.2)

= −(1 + θ)[θX, Y ] +
1
2
(1 + θ)Y + (1 + θ)JX +

1
2
(1 + θ)Z.

Lemma 4.2. We have that Y ∈ CX. More explicitly, there exists γ ∈ R

such that

Y = γX − 1
‖X‖2

JX.

Proof. According to (4.1), there exist TX , TY ∈ t such that

TX − ‖X‖2B + X − 1
2
〈X, Y 〉Z, TY − 〈X, Y 〉B + Y − ‖Y ‖2

2
Z ∈ h.

Since h is orthogonal to [ h⊥p , h⊥p ] by Theorem 3.1, taking inner product
of TY − 〈X, Y 〉B + Y − 1

2‖Y ‖2Z with (4.2), and using (2.3) we obtain

0 = −〈TY , (1 + θ)[θX, Y ]〉 + 〈JX, Y 〉 = −2〈[TY , X], Y 〉−1,

so 〈[TY , Y ], X〉 = 1/2.
Now, since h is a Lie algebra

h � [TX − ‖X‖2B + X − 1
2
〈X, Y 〉Z, TY − 〈X, Y 〉B + Y − ‖Y ‖2

2
Z]

= [TX , Y ] − [TY , X] +
1
2
(〈X, Y 〉X − ‖X‖2Y )

+
(‖X‖2‖Y ‖2

2
− 〈X, Y 〉2

2
− 1

2

)
Z.
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Taking inner product with (1 − θ)Y + (1 − θ)Z ∈ h⊥p , using the skew-
symmetry of ad(TX), and 〈[TY , Y ], X〉 = 1/2, we obtain

0 = 〈[TX , Y ] − [TY , X], Y 〉 +
1
2
(‖X‖2‖Y ‖2 − 〈X, Y 〉2) + 〈JX, Y 〉

=
1
2
(‖X‖2‖Y ‖2 − 〈X, Y 〉2 − 1).

This implies
‖X‖2‖Y ‖2 − 〈X, Y 〉2 = 1 = 〈JX, Y 〉2.

We may write Y = γX + δJX + E with γ, δ ∈ R and E ∈ gα � CX. Then,
the equation above reads ‖X‖2‖E‖2 = 0, and since X �= 0 we obtain E = 0.
As 〈X, JY 〉 = 1, this readily implies the result. �

Let g ∈ G be an arbitrary isometry. The groups H and Ig(H) = gHg−1

are conjugate, and since H induces a foliation so does Ig(H). Since all the
orbits of a homogeneous foliation are principal and H and Ig(H) are con-
jugate, so are their isotropy groups at the origin, Ho and Ig(H)o respec-
tively. In particular, their Lie algebras have the same dimension, that is,
dim(h ∩ k) = dim(Ad(g)(h) ∩ k). From now on let us choose

g = exp
(
− 2
‖X‖2

X

)
.

We will see that dim(h ∩ k) < dim(Ad(g)(h) ∩ k), thus leading to a contra-
diction.

Note that the slice representation is trivial at each point because all the
orbits are principal. Since h ∩ t = h ∩ k is the isotropy subalgebra of h at o
and h⊥p = νo(H · o), we therefore obtain [h ∩ t, h⊥p ] = 0. Since [t, gα] ⊂ gα and
[t, a] = 0, we obtain from the previous equality that [h ∩ t, B + (1 − θ)X] =
0, and thus

[h ∩ t, X] = 0 and Ad(g)(h ∩ t) = h ∩ t.

It follows that h ∩ t = Ad(g)(h ∩ t) ⊂ Ad(g)(h) ∩ k, and therefore we
obtain dim(h ∩ k) = dim(h ∩ t) ≤ dim(Ad(g)(h) ∩ t) ≤ dim(Ad(g)(h) ∩ k).
From (4.1), there exists TJX ∈ t such that TJX + JX + 1

2Z ∈ h. We will
show the following two facts:

Ad(g)(TJX + JX +
1
2
Z) = TJX ∈ Ad(g)(h) ∩ t, and TJX /∈ h ∩ t.

This, and the previous inequalities, exhibit the fact that dim(h ∩ k) <
dim(Ad(g)(h) ∩ k) which gives the desired contradiction.
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We have by (2.3) and (4.2)

0 = 〈TJX + JX +
1
2
Z, [B + (1 − θ)X, (1 − θ)Y + (1 − θ)Z]〉

= −2〈[TJX , X], Y 〉 + ‖X‖2 =
2

‖X‖2
〈[TJX , X], JX〉 + ‖X‖2,

and hence,

〈[TJX , X], JX〉 = −‖X‖4

2
.

In particular, since [h ∩ t, X] = 0 and X �= 0, this implies TJX /∈ h ∩ t.
Let us then show Ad(g)(TJX + JX + 1

2Z) = TJX . Let U ∈ gα �
(CX ⊕ w) and by (4.1) take TU ∈ t such that TU + U ∈ h. Then, by (2.3)
and (4.2),

0 = 〈TU + U, [B + (1 − θ)X, (1 − θ)Y + (1 − θ)Z]〉 = −2〈[TU , X], Y 〉
=

2
‖X‖2

〈[TU , X], JX〉,

and thus 〈[TU , X], JX〉 = 0. On the other hand,

[TJX , U ] − [TU , JX] = [TJX + JX +
1
2
Z, TU + U ] ∈ h,

and hence

0 = 〈[TJX , U ] − [TU , JX], B + (1 − θ)X〉 = 〈[TJX , U ], X〉 − 〈[TU , JX], X〉
= −〈[TJX , X], U〉,

thus showing [TJX , X] ∈ RJX ⊕ w. Now, for any W ∈ w,

0 = 〈TJX + JX +
1
2
Z, [B + (1 − θ)X, (1 − θ)W ]〉

= 〈TJX + JX +
1
2
Z,−(1 + θ)[θX, W ] +

1
2
(1 + θ)W 〉

= −〈TJX , (1 + θ)[θX, W ]〉 = −2〈[TJX , X], W 〉,

using (2.3) once again. This, together with 〈[TJX , X], JX〉 = −‖X‖4

2 implies

[TJX , X] = −‖X‖2

2
JX.
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Now, taking this into account, and [X, JX] = ‖X‖2

2 Z, we obtain

Ad(g)(TJX + JX +
1
2
Z) = ead

(
−2

‖X‖2 X
)
(TJX + JX +

1
2
Z)

= TJX + JX +
1
2
Z − 2

‖X‖2
([X, TJX ] + [X, JX])

+
2

‖X‖4
[X, [X, TJX ]] = TJX ,

which leads to the desired contradiction.
Altogether we have proved

Proposition 4.3. dim π(h⊥p ) ≤ 1.

Case 2 dim π(h⊥p ) ≤ 1: In this case, there exists a nonzero vector ξ ∈
h⊥p � ker π, which we can write as ξ = aB + (1 − θ)X + b(1 − θ)Z, with X ∈
gα, X orthogonal to kerπ, and a, b ∈ R. Clearly, a = b = 0 if π(h⊥p ) = 0;
otherwise, at least one of these numbers is nonzero. Let w be a subspace
of gα such that kerπ = (1 − θ)w. Note that, since h⊥p is real, w is also real,
and 0 = 〈Jξ, (1 − θ)W 〉 = 2〈JX, W 〉 for any W ∈ w, so RX ⊕ w is a real
subspace of gα.

Lemma 4.3. We have that h⊥p = R(aB + (1 − θ)X) ⊕ (1 − θ)w, where a ∈
R, X ∈ gα � w, and RX ⊕ w is a real subspace of gα.

Proof. We only have to prove that b = 0. Assume, on the contrary, that
b �= 0. It is easy to see that ‖X‖2B − aX and −2bX + ‖X‖2Z are orthog-
onal to h⊥p , so there exist S, T ∈ t such that S + ‖X‖2B − aX, T − 2bX +
‖X‖2Z ∈ h. Then

h � [S + ‖X‖2B − aX, T − 2bX + ‖X‖2Z]

= −2b[S, X] + a[T, X] − b‖X‖2X + ‖X‖4Z.

Taking inner product of this vector with aB + (1 − θ)X + b(1 − θ)Z ∈ h⊥p ,
and using that the elements of ad(t) are skew-symmetric, together with
〈Z, Z〉 = 2, yields 0 = −b‖X‖4 + 2b‖X‖4 = b‖X‖4, which implies X = 0.

Now take W ∈ w. Then JW is orthogonal to h⊥p and thus there exists
R ∈ t such that R + JW ∈ h. Since h is orthogonal to [h⊥p , h⊥p ], we obtain
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using (2.2),

0 = 〈R + JW, [aB + b(1 − θ)Z, (1 − θ)W ]〉
= 〈R + JW,

a

2
(1 + θ)W − b(1 + θ)JW 〉 = −b‖W‖2.

Since W ∈ w is arbitrary we conclude that w = 0. Then we can take U ∈ gα

and S, T ∈ t such that S + U , T + JU ∈ h. Since h is orthogonal to h⊥p , we
obtain

0 = 〈[S + U, T + JU ], aB + b(1 − θ)Z〉
= 〈[S, JU ] − [T, U ] +

1
2
‖U‖2Z, aB + b(1 − θ)Z〉 = b‖U‖2,

so U = 0. This implies gα = 0, which is not possible in CHn, n ≥ 2. There-
fore b = 0. �

Let us denote by (·)a⊕n and (·)t the orthogonal projections onto a ⊕ n

and t, respectively. The next step of our proof is:

Proposition 4.4. There exists an isometry g ∈ G such that (Ad(g)h)a⊕n =
sV,v for some subspace V of a and some real subspace v of gα.

Proof. Recall that h⊥p = R(aB + (1 − θ)X) ⊕ (1 − θ)w, where a ∈ R, X ∈
gα � w, and RX ⊕ w is a real subspace of gα.

If a = 0 the conclusion is obvious with g = 1, the identity isometry in G,
V = a and v = RX + w. So assume a �= 0 and renormalize X so that a = 1.
If X = 0, the result is again obvious just by taking g = 1 and v = w, so we
will also assume X �= 0.

Under these circumstances, we can define the isometry

g = exp
(
− 2
‖X‖2

X

)
.

We will show that (Ad(g)h)a⊕n = sa,v, where v = RX ⊕ w. Note that h ∩ k =
h ∩ t and Ad(g)(h) ∩ k = Ad(g)(h) ∩ t are conjugate because H and Ig(H)
are conjugate and all their orbits are principal. Since dim(Ad(g)h)a⊕n =
dim Ad(g)h− dim(Ad(g)(h)∩ t) = dim h− dim(h ∩ t) = dim ha⊕n = dim sa,v,
it suffices to show that (Ad(g)h)a⊕n ⊂ sa,v.
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From the definition of h⊥p it follows that

ha⊕n = R(‖X‖2B − X) ⊕ (gα � v) ⊕ g2α.

As in Case 1, all the orbits are principal and h ∩ t = h ∩ k is the isotropy
subalgebra of h at o. Thus we obtain [h ∩ t, h⊥p ] = 0, which implies
[h ∩ t, aB + (1 − θ)X] = 0. From this we conclude [h ∩ t, X] = 0 and
(Ad(g)(h ∩ t))a⊕n = 0.

Let S ∈ t be such that S + ‖X‖2B − X ∈ h. For any U ∈ gα � v there
exists TU ∈ t such that TU + U ∈ h. Then, 0 = 〈[S + ‖X‖2B − X, TU + U ],
B + (1 − θ)X〉 = 〈[S, U ], X〉, so [S, X] ∈ w. On the other hand, by (2.3),

0 = 〈S + ‖X‖2B − X, [B + (1 − θ)X, (1 − θ)W ]〉 = −〈S, (1 + θ)[θX, W ]〉
= −2〈[S, X], W 〉,

for any W ∈ w. Thus, [S, X] = 0. This implies

Ad(g)(S + ‖X‖2B − X) = S + ‖X‖2B − X − 2
‖X‖2

(
−‖X‖2

2
X

)

= S + ‖X‖2B,

whose projection onto a ⊕ n is ‖X‖2B ∈ sa,v.
Now let U ∈ gα � v and TU ∈ t such that TU + U ∈ h. Clearly,

[X, U ], [X, [X, TU ]] ∈ g2α. On the other hand, using (2.3),

0 = 〈TU + U, [B + (1 − θ)X, (1 − θ)W ]〉 = −〈TU , (1 + θ)[θX, W ]〉
= −2〈[TU , X], W 〉,

for any W ∈ w. This and the skew-symmetry of ad(TU ) imply [X, TU ] ∈
gα � v, and thus

(Ad(g)(TU + U))a⊕n

=
(

TU + U − 2
‖X‖2

[X, TU ] − 2
‖X‖2

[X, U ] +
2

‖X‖4
[X, [X, TU ]]

)
a⊕n

= U − 2
‖X‖2

[X, TU ] − 2
‖X‖2

[X, U ] +
2

‖X‖4
[X, [X, TU ]]

∈ (gα � v) ⊕ g2α ⊂ sa,v.

Finally, let TZ ∈ t such that TZ + Z ∈ h. Using (2.3) we obtain

0 = 〈TZ + Z, [B + (1 − θ)X, (1 − θ)W ]〉 = −2〈[TZ , X], W 〉,
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for any W ∈ w, thus showing that [TZ , X] ∈ gα � v. Since [X, [X, TZ ]] ∈ g2α

we obtain

(Ad(g)(TZ + Z))a⊕n =
(

TZ + Z − 2
‖X‖2

[X, TZ ] +
2

‖X‖4
[X, [X, TZ ]]

)
a⊕n

= Z − 2
‖X‖2

[X, TZ ] +
2

‖X‖4
[X, [X, TZ ]] ∈ (gα � v) ⊕ g2α ⊂ sa,v.

Altogether this implies (Ad(g)h)a⊕n ⊂ sa,w, and since the dimensions are
the same, equality follows as we had claimed. �

So far we have shown that a group H which induces a polar foliation of
CHn, n ≥ 2, has a Lie subalgebra h that can be assumed to be contained in
a maximally noncompact Borel subalgebra t ⊕ a ⊕ n in such a way that its
projection onto a ⊕ n satisfies ha⊕n = sV,w, where sV,w is one of our model
examples with V ⊂ a a linear subspace, and w ⊂ gα a real subspace. Our
aim in what follows is to show that the actions of H and SV,w are orbit
equivalent. The fundamental part of the proof of this fact is contained in
the following assertion:

Proposition 4.5. With the notations as above, let ht denote the orthogonal
projection of h onto t. Then [ht, w] = 0. In particular, ht normalizes V ⊕
(n � w).

Proof. We begin with some general observations regarding h. Let W1, W2 ∈
w, U ∈ sV,w = V ⊕ (gα � w) ⊕ g2α, and T ∈ t such that T + U ∈ h. Since h

is orthogonal to [h⊥p , h⊥p ] we have by (2.3),

0 = 〈T + U, [(1 − θ)W1, (1 − θ)W2]〉 = −〈T, (1 + θ)[θW1, W2]〉
= −2〈[T, W1], W2〉.

This already implies [ht, w] ⊂ gα � w.
The fact that all the orbits are principal and that h ∩ t = h ∩ k is the

isotropy algebra at o, implies 0 = [h ∩ t, h⊥p ] = [h ∩ t, a ⊕ (1 − θ)w]. Hence
we obtain [h ∩ t, w] = 0.

For W ∈ w we define the map FW : sV,w → gα � w, U �→ [W, TU ], where
TU ∈ t is any vector satisfying TU + U ∈ h. This map is well-defined because
given SU , TU ∈ t such that SU + U , TU + U ∈ h, we have SU − TU =
(SU + U) − (TU + U) ∈ h ∩ t, and from [h ∩ t, w] = 0 it follows that
[W, SU ] = [W, TU ]. The map is clearly linear, and its image is contained in
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gα � w because [ht, w] ⊂ gα � w. The assertion will follow if we show that
FW = 0 for any W ∈ w.

Let H ∈ V , X ∈ gα � w, b ∈ R, and S, T ∈ t such that T + H + bZ,
S + X ∈ h. Since [t, a ⊕ g2α] = 0, we obtain [T, X] + 1

2〈H, B〉X =
[T + H + bZ, S + X] ∈ h. Thus, for any W ∈ w we have

0 = 〈[T, X] +
1
2
〈H, B〉X, (1 − θ)W 〉 = 〈[W, T ], X〉.

Since X ∈ gα � w is arbitrary and [ht, w] ⊂ gα � w, we obtain
FW (V ⊕ g2α) = 0 for any W ∈ w.

Let us denote by F̃W : gα � w → gα � w the restriction of FW to gα � w.
It now suffices to prove that F̃W = 0 for any W ∈ w.

Let X, Y ∈ gα � w and TX , TY ∈ t be such that TX + X, TY + Y ∈ h.
Then [TX , Y ] − [TY , X] + 1

2〈JX, Y 〉Z = [TX + X, TY + Y ] ∈ h, and thus, for
any W ∈ w, taking inner product with (1 − θ)W , we obtain 〈[W, TX ], Y 〉 =
〈[W, TY ], X〉. This readily implies 〈F̃W (X), Y 〉 = 〈F̃W (Y ), X〉 for any X, Y ∈
gα � w, so F̃W is a self-adjoint endomorphism of gα � w, and hence, it is
diagonalizable with real eigenvalues.

Assume, by contradiction, that there exists W ∈ w such that F̃W �=
0. Then there is an eigenvalue λ �= 0 of F̃W and a nonzero vector X ∈
gα � w such that F̃W (X) = λX. Let TX ∈ t be such that TX + X ∈ h; then
[W, TX ] �= 0 because F̃W (X) �= 0.

We define g = exp(− 1
λW ). The groups H and Ig(H) are conjugate, and

since H induces a foliation so does Ig(H). Since all the orbits of a homo-
geneous foliation are principal and H and Ig(H) are conjugate, so are their
isotropy groups at the origin, Ho and Ig(H)o respectively. In particular,
their Lie algebras must have the same dimension, that is, dim(h ∩ k) =
dim(Ad(g)(h) ∩ k). We will see that this is not true, hence obtaining our
contradiction.

Clearly, h ∩ k = h ∩ t. On the other hand, since [h ∩ t, w] = 0, we obtain
Ad(g)|(h ∩ t) = 1h∩t, the identity on h ∩ t, so h ∩ t ⊂ Ad(g)(h) ∩ k. Finally,
let b = 1

2λ〈JW, X〉 − 1
4λ2 〈JW, [W, TX ]〉 and S ∈ t such that S + bZ ∈ h.

Recall that [W, S] = 0 because of FW (g2α) = 0. Then,

Ad(g)(TX + X + S + bZ)

=
∞∑

k=0

1
k!

ad
(
− 1

λ
W

)k

(TX + X + S + bZ)

= TX + X + S + bZ − 1
λ

([W, TX ] + [W, X]) +
1

2λ2
[W, [W, TX ]]
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= TX + S + X − 1
λ

F̃W (X) +
(

b − 1
2λ

〈JW, X〉 +
1

4λ2
〈JW, [W, TX ]〉

)
Z

= TX + S ∈ k.

Now, TX + S /∈ t ∩ h as [W, TX ] �= 0, [S, w] = 0, and [h ∩ t, w] = 0. This
exhibits the fact that h ∩ t is strictly contained in Ad(g)(h) ∩ k, which
contradicts the property that H induces a foliation. Therefore F̃W = 0 for
all W ∈ w, and we obtain [ht, w] = 0.

In order to obtain the last assertion, first observe that t centralizes a ⊕
g2α. Now if X ∈ gα, T ∈ ht, and W ∈ w, we obtain 〈[T, X], W 〉 =
−〈[T, W ], X〉 = 0, from where it follows that ht normalizes gα � w. �

Now we are ready for the final step of the proof.

Proposition 4.6. Let t ⊕ a ⊕ n be a maximally noncompact Borel subalge-
bra of g. Let h be a subalgebra of t ⊕ a ⊕ n such that ha⊕n = sV,w. Assume
that the orbits of the connected subgroup H of G whose Lie algebra is h form
a homogeneous polar foliation of CHn. Then the actions of H and SV,w on
CHn are orbit equivalent.

Proof. First recall from Proposition 4.5 that ht normalizes V ⊕ (gα � w) ⊕
g2α = V ⊕ (n � w). We also denote by Ht the connected subgroup of SU(1, n)
whose Lie algebra is ht.

We now show that an element g ∈ H sufficiently close to the identity in
H can be written as g = tan where t ∈ Ht, a ∈ exp(V ) ⊂ A and n ∈ S{0},w,
where as usual S{0},w is the connected subgroup of AN whose Lie algebra is
n � w. First write g = exp(T + aB + X) with T ∈ t, a ∈ R, and X ∈ n � w.
By the Iwasawa decomposition we can write g = exp(S) exp(bB) exp(Y ),
with S ∈ t, b ∈ R, and Y ∈ n. The Baker–Campbell–Hausdorff formula yields

exp(Y ) = exp(−bB) exp(−S) exp(T + aB + X)
= exp(−S − bB) exp(T + aB + X)

= exp(T − S + (a − b)B + X − 1
2
[S, X] − b

2
[B, X] + · · · ),

where the dots involve linear combinations of iterated brackets of X with S
and B. Comparing both sides of the equation we immediately obtain S = T
and b = a. Now, since ht ⊕ a normalizes n � w, the right-hand side of the
equation above is in n � w, and so is Y , as we wanted to show.

From Proposition 4.5 we also have [ht, w] = 0, which obviously implies
Ad(exp(T ))ξ = ξ for any ξ ∈ (1 − θ)w and T ∈ ht. Let g ∈ H be sufficiently
close to the identity of H and write g−1 = tan with t ∈ Ht ⊂ K, a ∈
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exp(V ) ⊂ A and n ∈ S{0},w as explained above. Then g = n−1a−1t−1, and
since A normalizes S{0},w we can write n−1a−1 = a−1n′ with n′ ∈ S{0},w.
Thus, g(o) = a−1n′t−1(o) = a−1n′(o) and hence H · o ⊂ SV,w · o in a neigh-
borhood of o ∈ H · o. Since both orbits H · o and SV,w · o have the same
dimension and are connected and complete we conclude H · o = SV,w · o.

Now, let p = expo(ξ) with ξ ∈ νo(H · o) ∼= (a � V ) ⊕ (1 − θ)w ⊂ p. Using
the fact that H acts isometrically on CHn, n ≥ 2, and that t−1∗ ξ = Ad(t−1)
ξ = ξ we obtain

g(p) = expg(o)(g∗ξ) = expa−1n′t−1(o)((a
−1n′t−1)∗ξ)

= expa−1n′(o)((a
−1n′)∗ξ) = a−1n′(p).

Hence, H · p ⊂ SV,w · p in a neighborhood of p ∈ H · p, and as above we
can conclude that both orbits coincide. Since the action of H is polar, all
the orbits can be obtained in this way, and so, H and SV,w have the same
orbits. �

This concludes the proof of the Main Theorem.
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