On p-Bergman kernel for bounded domains in \mathbb{C}^n

JIAFU NING, HUIPING ZHANG, AND XIANGYU ZHOU

In this paper, we obtain some properties of the p-Bergman kernels by applying L^p extension theorem. We prove that for any bounded domain in \mathbb{C}^n, it is pseudoconvex if and only if its p-Bergman kernel is an exhaustion function, for any $p \in (0, 2)$. As an application, we give a negative answer to a conjecture of Tsuji.

1. Introduction

T. Ohsawa and K. Takegoshi [16] proved the Ohsawa-Takegoshi L^2 extension theorem, which turns out to be useful in several complex variables and complex geometry. B. Berndtsson and M. P˘aun [2] proved the $L^{2/m}$ version of Ohsawa-Takegoshi theorem for $m \in \mathbb{N}$. Recently, Qi’an Guan and Xiangyu Zhou [9] obtained optimal estimate for L^p ($0 < p \leq 2$) extension as an application of their solution of a sharp L^2 extension problem.

In the present paper, we study the p-Bergman kernels for bounded domains in \mathbb{C}^n, and apply L^p extension theorem to give some properties of p-Bergman kernels.

The definition of p-Bergman kernel is as follows:

Definition 1.1. For a domain $\Omega \subseteq \mathbb{C}^n$ and $p \in (0, 2]$, the p-Bergmann kernel $K_{\Omega,p}$ is denoted by

$$K_{\Omega,p}(z) = \sup_{f \in A^p(\Omega)} \frac{|f(z)|^p}{\int_{\Omega} |f|^p},$$

where

$$A^p(\Omega) = \left\{ f \in \mathcal{O}(\Omega) : \int_{\Omega} |f|^p < +\infty \right\}$$

(the integral is w.r.t. Lebesgue measure).

2010 Mathematics Subject Classification: 32A35, 32J25, 32T05, 32U10, 32W05, 14C30.

The authors were partially supported by NSFC. H. P. Zhang and X. Y. Zhou are corresponding authors.

887
According to the extreme property, the usual Bergman kernel is just 2-Bergman kernel for the case \(p = 2 \) in the above definition, which has been studied for years.

Let \(S \) be a closed complex subvariety of a domain \(U \subset \mathbb{C}^n \). It’s known that one has the same Bergman kernels on \(U \) and \(U \setminus S \), since for any \(f \in A^2(U \setminus S) \), one can holomorphically extend \(f \) to \(U \). That is to say, one can not distinguish \(U \) and \(U \setminus S \) by the Bergman kernel.

However, the \(p \)-Bergman kernel may give some distinction. We will prove that for a bounded domain, it is pseudoconvex if and only if its \(p \)-Bergman kernel is an exhaustion function for any \(p \in (0, 2) \). Besides, the \(p \)-Bergman kernel is interesting per se. We’ll also give estimate about the boundary behavior of the \(p \)-Bergman kernel for a bounded pseudoconvex domain. In the last section, we’ll answer negatively a conjecture of H. Tsuji in [20].

The first author would like to thank Qi’an Guan for helpful discussions.

2. The \(p \)-Bergman kernel

Note that when \(p = 2 \), the \(p \)-Bergmann kernel is just the usual Bergman kernel. For simplicity, we write \(K_\Omega \) for \(K_{\Omega, 2} \). The \(p \)-Bergmann kernel has some properties similar to the usual Bergman kernel, for example, it is easy to see that \(K_{\Omega_1, p}(z) \geq K_{\Omega_2, p}(z) \) for \(z \in \Omega_1 \) and two domains \(\Omega_1 \subseteq \Omega_2 \), and the \(p \)-Bergmann kernels are plurisubharmonic.

We will study some more properties of \(K_{\Omega, p} \).

Proposition 2.1. Let \(\Omega_1 \subset \mathbb{C}^n \) be simply connected domain and \(\Omega_2 \subset \mathbb{C}^n \) be a domain. Then for any \(\phi : \Omega_1 \to \Omega_2 \) biholomorphism, we have

\[
K_{\Omega_1, p}(z) = K_{\Omega_2, p}(\phi(z)) |J\phi(z)|^2,
\]

where \(J\phi \) is the determinant of Jacobian of \(\phi \). In particular, if \(p = \frac{2}{m} \), where \(m \in \mathbb{N} \), there is no need for the condition that \(\Omega_1 \) is simply connected.

Proof. As \(\Omega_1 \) is simply connected and \(J\phi \) is nonvanishing, we can choose a single valued holomorphic function of \(\log J\phi \).

Then

\[
\Phi : A^p(\Omega_2) \to A^p(\Omega_1)
\]

\[
f \mapsto f \circ \phi e^{\frac{2}{p} \log J\phi}
\]

is isometric, since

\[
\int_{\Omega_2} |f|^p = \int_{\Omega_1} |f \circ \phi|^p |J\phi|^2 = \int_{\Omega_1} |f \circ \phi e^{\frac{2}{p} \log J\phi}|^p.
\]
When \(p = \frac{2}{m}, m \in \mathbb{N} \), we take

\[
\Phi : A^p(\Omega_2) \rightarrow A^p(\Omega_1) \\
f \mapsto f \circ \phi (J\phi)^m,
\]
in this case, the simply connected condition is not needed any more.

By definition,

\[
K_{\Omega_2,p}(\phi(z)) = \sup_{f \in A^p(\Omega_2)} \frac{|f(\phi(z))|^p}{\int_{\Omega_2} |f|^p} \\
= \sup_{f \in A^p(\Omega_2)} \frac{|f(\phi(z))|^p}{\int_{\Omega_1} |f \circ \phi|^p |J\phi|^2} \\
= \frac{1}{|J\phi(z)|^2} \sup_{f \in A^p(\Omega_2)} \frac{|f \circ \phi(z) e^{\frac{2}{p} \log(J\phi(z))}|^p}{\int_{\Omega_1} |f \circ \phi e^{\frac{2}{p} \log(J\phi)}|^p} \\
= K_{\Omega_1,p}(z) \frac{|J\phi(z)|}{|J\phi(z)|^2}.
\]

\[\square\]

It’s easy to see that, if \(J\phi \) is constant, then the above proposition is still true without the assumption that \(\Omega_1 \) is simply connected. For example, if the domain \(\Omega \) is a \(G \)-invariant domain w.r.t. a linear action of a semisimple Lie group \(G \), then the \(p \)-Bergmann kernel is \(G \)-invariant.

The condition that \(\Omega_1 \) is simply connected is necessary for some \(p \in (0, 2) \) (see Remark 2.3).

Similar to the usual Bergman kernel, the following proposition holds for the \(p \)-Bergman kernel.

Proposition 2.2. Suppose that \(\Omega_j \subset \mathbb{C}^n \) are bounded domains and \(\Omega_j \subset \Omega_{j+1} \) for \(j \geq 1 \), \(\cup_{j=1}^{\infty} \Omega_j = \Omega \), where \(\Omega \) is a bounded domain in \(\mathbb{C}^n \). Then for \(0 < p \leq 2 \),

\[
\lim_{j \to \infty} K_{\Omega_j,p}(z) = K_{\Omega,p}(z),
\]
and the convergence is uniform on compact subsets of \(\Omega \).

Proof. As \(K_{\Omega_j,p}(z) \) is decreasing,

\[
\lim_{j \to \infty} K_{\Omega_j,p}(z)
\]
exists and \(\geq K_{\Omega,p}(z) \).
For fixed $z \in \Omega$, we may assume $z \in \Omega_{j_0}$. There is $f_j \in \mathcal{O}(\Omega_j)$ such that
\[
\int_{\Omega_j} |f_j|^p = 1
\]
and
\[
|f_j(z)|^p = K_{\Omega_j,p}(z)
\]
for each $j \geq j_0$.

By the Montel theorem, there is a subsequence of j_k such that
\[
\lim_{k \to \infty} f_{j_k}
\]
is uniformly convergent to $f \in \mathcal{O}(\Omega)$.

It is easy to check that
\[
\int_{\Omega} |f|^p \leq 1.
\]

By the definition, we have
\[
K_{\Omega,p}(z) \geq |f(z)|^p = \lim_{j \to \infty} K_{\Omega_j,p}(z).
\]

As $K_{\Omega_p}(z)$ is continuous and $K_{\Omega_j,p}(z)$ is decreasing, it follows that $K_{\Omega_j,p}(z)$ converges uniformly to $K_{\Omega,p}(z)$ on compact subsets of Ω.

\begin{theorem}
Let Ω be one of the classical domains (see [11], [12], [13]):
\begin{align*}
\mathcal{R}_1 & := \{ Z \in M(m, n) : I^{(m)} - ZZ' > 0 \}, \\
\mathcal{R}_2 & := \{ Z \in M(n, n) : I^{(n)} - ZZ' > 0, Z = Z' \}, \\
\mathcal{R}_3 & := \{ Z \in M(n, n) : I^{(n)} - ZZ' > 0, Z = -Z' \}, \\
\mathcal{R}_4 & := \{ Z \in M(1, n) : |ZZ'| + 1 - 2ZZ' > 0, |ZZ'| < 1 \}.
\end{align*}

Then
\[
K_{\Omega,p}(Z) = K_{\Omega,2}(Z)
\]
for $Z \in \Omega$ for $p > 0$.
\end{theorem}

\begin{proof}
For $Z \in \Omega$ and $|t| \leq 1$, we have $tZ \in \Omega$.

For any $f \in \mathcal{O}(\Omega)$, we have
\[
\frac{1}{2\pi} \int_0^{2\pi} |f(e^{i\theta}Z)|^p d\theta \geq |f(0)|^p.
\]

Then by the Fubini Theorem,
\[
\int_{\Omega} |f|^p = \frac{1}{2\pi} \int_{0}^{2\pi} \int_{\Omega} |f(e^{i\theta}Z)|^p dV_Z d\theta
\]

\[
= \int_{\Omega} dV_Z \frac{1}{2\pi} \int_{0}^{2\pi} |f(e^{i\theta}Z)|^p d\theta \geq |f(0)|^p Vol(\Omega),
\]

we have

\[
K_{\Omega,p}(0) = \frac{1}{Vol(\Omega)}.
\]

As \(\Omega \) is homogenous, it is well known that \(\Omega \) is also simply connected, combining with the above proposition, we have \(K_{\Omega,p}(Z) = K_{\Omega,2}(Z) \) for \(Z \in \Omega \).

\[\square \]

Remark 2.1. The above result is true for any complete circular and bounded homogeneous domain. It’s known that any bounded symmetric domain is such a domain.

For a general bounded homogenous domain \(\Omega \), we have \(K_{\Omega,p}(z) \geq K_{\Omega,2}(z) \). It is well known that \(K_\Omega(z,w) \) is zero free and \(\Omega \) is simply connected, we can define a holomorphic function \(\log K_\Omega(z,w) \) for \(z \in \Omega \) and fixed \(w \in \Omega \). Then \(e^{2/p} \log K_\Omega(z,w) \in A^p(\Omega) \), and it is easy to get \(K_{\Omega,p}(z) \geq K_{\Omega,2}(z) \).

It seems to be strange that the \(p \)-Bergmann kernel may be independent of \(p \) for some domains. From the following theorem, we can deduce that, in general, \(K_{\Omega,p} \) is dependent on \(p \).

Lemma 2.4. For \(\Omega \subset \mathbb{C}^n \), we have

\[K_{\Omega,p_m}(z) \geq K_{\Omega,p}(z) \]

for any \(p \in (0,2) \) and \(m \in \mathbb{N} \).

Proof. If \(f \in A^p(\Omega) \), then

\[f^m \in A^{\frac{p}{m}}(\Omega), \]

and

\[\int_{\Omega} |f|^p = \int_{\Omega} |f^m|^{\frac{p}{m}}. \]

By the definition of \(p \)-Bergman kernel, we have

\[K_{\Omega,p_m}(z) \geq K_{\Omega,p}(z). \]

\[\square \]
The next theorem needs the L^p extension theorem. We state it in the following. For the proof, one can refer to [2] or [9].

Theorem 2.5. (see [2] or [9]) Let Ω be a bounded pseudoconvex domain in \mathbb{C}^n, L be a complex affine line in \mathbb{C}^n, and $\Omega \cap L \neq \emptyset$. For $0 < p \leq 2$, then for any $f \in A^p(\Omega \cap L)$, there is $F \in A^p(\Omega)$, such that $F|_{\Omega \cap L} = f$ and

$$\int_{\Omega} |F|^p \leq C \int_{\Omega \cap L} |f|^p,$$

where C is a constant depending only on diam Ω and n.

Theorem 2.6. Let $\Omega \subset \mathbb{C}^n$ be a bounded pseudoconvex domain, $p \in (0, 2)$ and $l = \max\{s \in \mathbb{N}_+ : s < \frac{2}{p}\}$. Then we have

$$K_{\Omega, p}(z) \geq \frac{c}{\delta(z)^{pl}},$$

where $\delta(z) = \inf_{w \in \partial \Omega} d(z, w)$ and c is a constant positive number.

Proof. For any complex line L, after a unitary transform, we may assume $L = \{z_2 = \cdots = z_n = 0\}$.

Let $z^0 = (z^0_1, 0, \ldots, 0) \in \partial \Omega \cap L$, take

$$f = \frac{1}{(z_1 - z^0_1)^l} \in A^p(\Omega \cap L).$$

From the L^p extension theorem 2.5, we get $F \in A^p(\Omega)$ such that $F|_{\Omega \cap L} = f$, and

$$\int_{\Omega} |F|^p \leq C \int_{\Omega \cap L} |f|^p \leq 1/c$$

for some constant $c > 0$, c depends only on diam Ω and n.

Then

$$K_{\Omega, p}(z)|_{\Omega \cap L} \geq \frac{c}{|z_1 - z^0_1|^{pl}}.$$

As we can choose arbitrary complex line and boundary points, we get

$$K_{\Omega, p}(z) \geq \frac{c}{\delta(z)^{pl}}.$$

According to the above theorem and the fact that the p-Bergman kernel is plurisubharmonic, we can easily get the following interesting theorem.
Theorem 2.7. For any bounded domain Ω in \mathbb{C}^n, Ω is pseudoconvex if and only if $K_{\Omega,p}(z)$ is an exhaustion function for $p \in (0, 2)$.

Remark 2.2. The condition that Ω is bounded is necessary. If we consider $\Omega = \mathbb{C} \setminus \Delta$, then $K_{\Omega,p}(z)$ is bounded near ∞ for $0 < p < 2$.

Theorem 2.8. Let $\Delta^* = \{z \in \mathbb{C} : 0 < |z| < 1\}$ and $1 \leq p < 2$, then we have $K_{\Delta^*,p}(z) = O(1/|z|^p)$.

Proof. For any $f \in A^p(\Delta^*)$, we have $f(z) = \sum_{n=-\infty}^{\infty} a_n z^n$, then $g(z) := \sum_{n=0}^{\infty} a_n z^n$ is holomorphic on $\Delta = \{z \in \mathbb{C} : |z| < 1\}$.

In the present proof, we denote by $\|f\|_p = (\int_{\Delta^*} |f|^p)^{\frac{1}{p}}$ for $f \in A^p(\Delta^*)$.

Obviously, $\int_{\Delta^*} |g(z)|^p < \infty$, where $\Delta^*_\tau = \{z \in \mathbb{C} : 0 < |z| < \tau\}$ and $0 < \tau < 1$.

It’s easy to see that

$$\int_{\Delta^*} \left| \frac{1}{z} \right|^p dxdy = \int_0^1 \int_0^{2\pi} r^{1-p} d\theta dr = \frac{2\pi}{2-p}.$$

From

$$\|g + h\|_p \leq \|g\|_p + \|h\|_p,$$

we get

$$h(z) := \sum_{n=-\infty}^{2} a_n z^n \in A^p(\Delta^*_\tau).$$

We want to prove $h = 0$.

$$\int_{\Delta^*_\tau} |h(z)|^p dxdy = \int_{C \setminus \Delta^*_\tau} \left| h \left(\frac{1}{z} \right) \right|^p \frac{dxdy}{|z|^4} = \int_{\frac{1}{\tau}}^{\infty} \int_0^{2\pi} \left| h \left(\frac{e^{i\theta}}{r} \right) \right|^p dr d\theta.$$

Let $\tilde{h}(z) = h(1/z)$, then \tilde{h} is holomorphic on $\mathbb{C} \setminus \Delta^*_\frac{1}{\tau}$ and

$$\tilde{h}(z) = \sum_{n=2}^{\infty} a_{-n} z^n.$$

If \tilde{h} is not 0, then there is $n_0 > 1$ such that $a_{-n_0} \neq 0$ and $a_{-n} = 0$ for $1 < n < n_0$. Write $\tilde{h}(z) = z^{n_0} f_1(z)$, where $f_1(z) = \sum_{n=n_0}^{\infty} a_{-n} z^{n-n_0}$.
By the submean property
\[\int_0^{2\pi} |f_1 \left(\frac{e^{i\theta}}{r} \right) |^p d\theta \geq 2\pi |a_{-n_0}|^p, \]
and \(n_0p - 3 > -1 \), it follows that
\[\int_{\Delta^*_r} |h(z)|^p dxdy \geq 2\pi |a_{-n_0}|^p \int_1^\infty r^{n_0p-3} dr = \infty. \]

Therefore, \(h = 0 \). That is to say, for any \(f \in A^p(\Delta^*) \), we have \(f(z) = \sum_{n=-1}^\infty a_n z^n \).

Note that
\[K_{\Delta^*,p}(z) \geq \frac{1}{|z|^p} \frac{|a + f(z)|^p}{\int_{\Delta^*} |z + f(z)|^p dxdy} \]

From (1), for \(z \) near 0, we may take \(a = 1 \). For \(f \in A^p(\Delta) \)

(a) If \(\|f\|_p^p > 2^p \frac{2\pi}{2-p} \), then \(\|f(z) + \frac{1}{z}\|_p \geq \|f(z)\|_p - \|\frac{1}{z}\|_p > \frac{1}{2} \|f(z)\|_p \), so
\[\frac{|1 + zf(z)|^p}{\int_{\Delta^*} |\frac{1}{z} + f(z)|^p dxdy} < \frac{2^p(1 + |zf(z)|^p)}{(1/2^p) \int_{\Delta^*} |f|_p^p} < 2^{2p} \left(\frac{2 - p}{2p+1}\pi + |z|^p K_{\Delta,p}(z) \right). \]

(b) If \(\|f\|_p^p \leq 2^p \frac{2\pi}{2-p} \), then \(|f(z)| \leq C \) for all \(z \) near 0, where \(C \) is a positive constant independent on \(f \).

Since
\[\int_{\Delta^*} \left| \frac{1}{z} + f(z) \right|^p dxdy = \int_0^1 r^{1-p} dr \int_0^{2\pi} |1 + re^{i\theta} f(re^{i\theta})|^p d\theta \]
\[\geq 2\pi \int_0^1 r^{1-p} dr = \frac{2\pi}{2 - p}, \]
then
\[\frac{|1 + zf(z)|^p}{\int_{\Delta^*} |\frac{1}{z} + f(z)|^p dxdy} < \frac{(2 - p)(1 + |z|^p)}{2\pi}. \]

According to (a) and (b), we get that \(|z|^p K_{\Delta^*,p}(z) \) is bounded near 0.
From the above theorem, we know the lower bounds of Theorem 2.6 is optimal.

Remark 2.3. Let \(D = \{ z \in \mathbb{C} : |z| > 1 \} \), for \(p \in (1, 2) \), there is \(c = c(p) > 0 \) such that
\[
K_{D,p}(z) \leq \frac{c}{|z|^{2p}}
\]
for \(|z| \gg 1 \).

Let \(\varphi : \Delta^* \to D, z \mapsto 1/z \). For \(p \in (4/3, 2) \),
\[
K_{\Delta^*,p}(z) \neq K_{D,p}(1/z) \frac{1}{|z|^4}.
\]

Proof of the Remark:
For any \(f \in A^p(D) \), we have
\[
f(z) = \sum_{n=-1}^{\infty} a_n z^n + \sum_{n=2}^{\infty} b_n z^{-n}.
\]
Let \(f_1(z) = \sum_{n=-1}^{\infty} a_n z^n \) and \(f_2(z) = \sum_{n=2}^{\infty} b_n z^{-n} \).

It is easy to check that there is \(r \gg 1 \) such that \(\int_{\{|z|>r\}} |f_2|^p < \infty \) holds.

Hence \(\int_{\{|z|>r\}} |f_1|^p < \infty \).

If \(f_1 \) is not 0, we may choose \(k \) to be the integer such that \(a_n = 0 \) for \(n < k \), \(a_k \neq 0 \), then
\[
\int_{\{|z|>r\}} |f_1|^p = \int_{\{|z|>r\}} \left| \sum_{n=k}^{\infty} a_n z^n \right|^p = \int_r^\infty \rho d\rho \int_0^{2\pi} (\rho)^{kp} \left| \sum_{n=k}^{\infty} a_n z^{-k-n} \right|^p \geq 2\pi |a_k|^p \int_r^\infty (\rho)^{1+kp} = \infty.
\]

Therefore, \(f_1 = 0 \).

We get \(K_{D,p}(z) \leq \frac{c}{|z|^{2p}} \) for \(|z| \gg 1 \).

By the above theorem, \(K_{\Delta^*,p}(z) = O\left(\frac{1}{|z|^p}\right) \).

As
\[
K_{D,p}(1/z) \frac{1}{|z|^4} \leq \frac{c}{|z|^{4-2p}}
\]
for \(|z| \ll 1 \),
if \(p > 4/3 \), then
\[
K_{\Delta^*, p}(z) \neq K_{D, p}(z) \frac{1}{|z|^4}.
\]

We have finished the proof of the remark.

3. A conjecture of H. Tsuji

We first recall a definition for complex manifolds, see H. Tsuji [20].

Definition 3.1. Let \(M \) be a complex manifold with the canonical line bundle \(K_M \), for every positive integer \(m \), we set
\[
Z_m := \left\{ \sigma \in \Gamma(M, \mathcal{O}_M(mK_M)) \left| \int_M (\sigma \wedge \bar{\sigma})^{\frac{1}{m}} \right| < +\infty \right\}
\]
and
\[
K_{M, m} := \sup \left\{ |\sigma|^{\frac{2}{m}} ; \sigma \in \Gamma(M, \mathcal{O}_M(mK_M)) \left| \int_M (\sigma \wedge \bar{\sigma})^{\frac{1}{m}} \right| \leq 1 \right\},
\]
where the sup denotes the pointwise supremum.

Then let
\[
K_{M, \infty} := \limsup_{m \to \infty} K_{M, m}
\]
and \(h_{\text{can}, M} := \text{the lower envelope of } \frac{1}{K_{M, \infty}} \).

Lemma 3.1. For \(\Omega \subset \mathbb{C}^n \), we have
\[
\sup_{m \in \mathbb{N}} K_{\Omega, \frac{2}{m}}(z) = \sup_{p \in (0, 2]} K_{\Omega, p}(z).
\]

Proof. By Lemma 2.4, we have
\[
\sup_{m \in \mathbb{N}} K_{\Omega, \frac{2}{m}}(z) = \sup_{p \in (0, 2]} K_{\Omega, p}(z).
\]

If \(f \in \mathcal{O}(\Omega) \) and \(\int_\Omega |f|^p < \infty \), then
\[
\lim_{q \to p, q < p} \int_\Omega |f|^q = \int_\Omega |f|^p.
\]

So
\[
\sup_{p \in (0, 2]} K_{\Omega, p}(z) = \sup_{p \in (0, 2]} K_{\Omega, p}(z)
\]
and the lemma follows. \(\square \)
For $\Delta^* = \{ z \in \mathbb{C} : 0 < |z| < 1 \}$, since the canonical bundle K_{Δ^*} is trivial, so when we consider $K_{\Delta^*,\infty}$ and $h_{\text{can},\Delta^*}^{-1}$, we can omit the form dt.

H. Tsuji [20] proposed the following conjecture (see Conjecture 2.16 in [20]):

$$h_{\text{can},\Delta^*}^{-1} = O \left(\frac{1}{|z|^2(\log|z|)^2} \right)$$

holds.

However, we get the following theorem:

Theorem 3.2. One has

$$h_{\text{can},\Delta^*}^{-1}(z) \geq K_{\Delta^*,\infty}(z) \geq \frac{1}{2\pi e} \frac{1}{|z|^2|\log|z||}$$

for $0 < |z| < e^{-1}$.

Proof. Since

$$\int_{\Delta^*} \left| \frac{1}{z} \right|^p = \frac{2\pi}{2 - p},$$

by Lemma 2.4 and Lemma 3.1, we get

$$K_{\Delta^*,\infty}(z) = \limsup_{m \to \infty} K_{\Delta^*,m}(z) = \sup_{m \geq 1} K_{\Delta^*,m}(z)$$

$$= \sup_{p \in (0,2]} K_{\Delta^*,p}(z) \geq \sup_{p \in (0,2]} \frac{2 - p}{2\pi} \frac{1}{|z|^p}.$$

For $0 < |z| < e^{-1}$, let

$$p = 2 + \frac{1}{\log|z|} \in [1, 2],$$

therefore

$$\frac{2 - p}{2\pi} \frac{1}{|z|^p} = \frac{1}{2\pi e} \frac{1}{|z|^2|\log|z||},$$

so

$$K_{\Delta^*,\infty}(z) \geq \frac{1}{2\pi e} \frac{1}{|z|^2|\log|z||}.$$

Hence

$$h_{\text{can},\Delta^*}^{-1}(z) \geq K_{\Delta^*,\infty}(z) \geq \frac{1}{2\pi e} \frac{1}{|z|^2|\log|z||}.$$

\[\square \]

From the above theorem, we know that $h_{\text{can},\Delta^*}^{-1}$ is not integrable near 0.
References

College of Mathematics and Statistics, Chongqing University
Chongqing 401331, China
E-mail address: ningjiafu@amss.ac.cn

Department of Mathematics, Information School
Renmin University of China
Beijing 100872, China
E-mail address: huipingzhang@ruc.edu.cn

Academy of Mathematics and Systems Science
Chinese Academy of Sciences
Beijing 100190, China
E-mail address: xyzhou@math.ac.cn

Received March 16, 2015