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METRICS DEFINED BY BREGMAN DIVERGENCES: PART 2∗

PENGWEN CHEN† , YUNMEI CHEN‡ , AND MURALI RAO§

Abstract. Bregman divergences have played an important role in many research areas. Diver-
gence is a measure of dissimilarity and by itself is not a metric. If a function of the divergence is a
metric, then it becomes much more powerful. In Part 1 we have given necessary and sufficient condi-
tions on the convex function in order that the square root of the averaged associated divergence is a
metric. In this paper we provide a min-max approach to getting a metric from Bregman divergence.
We show that the “capacity” to the power 1/e is a metric.
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1. Introduction

Kullback-Liebler divergence was introduced to overcome some difficulties asso-
ciated with the Shannon entropy. Bregman divergences are generalizations of this
notion and are associated with strictly convex functions. In the last decade, Bregman
divergences [3] have become an important tool in many research areas. For instance,
several specific Bregman divergences, such as Itakura-Saito distance [4, 13], Kullback-
Leibler divergence [8, 9], and Mahalanobis distance [16] have been used in machine
learning as the distortion functions (or loss functions) for clustering tasks. These
divergences have also been used in generalizations of principal component analysis to
data with distributions belonging to the exponential family [7]. However, they are
not metrics, because they are neither symmetric nor satisfy the triangle inequality.

The Jensen-Shannon divergence [15] defined by
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where KL is Kullback-Leibler divergence, is nonnegative, symmetric, bounded and
vanishes only if f =g. Thus it has two of the three properties of a metric.

In [11], it was proved that the square root of Jensen-Shannon divergence is a
metric. Jensen-Shannon divergence is an “averaged Bregman divergence” associated
with the convex function xlogx. It is natural to ask whether the square root of other
averaged Bregman divergences also satisfy the triangle inequality. In [19], we gave a
sufficient and necessary condition on the associated convex function, in order that the
square root of the averaged Bregman divergence is a metric. Clearly the justification
of the triangle inequality is the only nontrivial part.

Triangle inequalities provide valuable information in pattern recognition research
area. For instance, a popular method is to start with a similarity criterion given
through a user-defined distance function and search for the nearest neighbor. Most
often this happens in a multidimensional vector space. In the last decade, many
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efficient algorithms have been proposed to find a nearest neighbor in a variety of
metric spaces [17, 18]. One economical method of finding the nearest neighbor is
through constructing a so-called metric tree, of say N objects, with height ≈ log2N .
Then use of triangle inequality saves a lot of effort in finding the nearest neighbor.
Indeed the total distance computations are reduced from N to log2N . Our current
work provides a large class of metrics for the choice of metric trees.

In this paper we provide a min-max approach to obtaining a metric from Bregman
divergence. This method is sometimes used to measure the discrimination of proba-
bility distributions symmetrically. In information theory this leads to the notion of
capacity, which has played an important role [8]. Capacity may be thought of as a
minimal enclosing Kullback-Leibler divergence sphere. However, it is also known that
capacity itself is not a metric [10]. In this paper, we show that the capacity to the
power 1/e is a metric.

This paper is organized as follows. In section 2, we start with the definition of
min-max procedure, and illustrate its relationship to the typical min-max problem in
convex programming. In sectio 3, we derive necessary and sufficient conditions for the
min-max procedure to lead to a metric in case of scalars. In section 4, we generalize
this result to the case of vector spaces. Our conjecture is that the condition found also
works for the vector space case. However, the computations become very complex.
Therefore we will concentrate on one dimension, i.e., real numbers.

2. Preliminaries and problem formulation

In this paper, we adopt the following notations:

R : real numbers,

RHS : the right-hand side of the equation,

LHS : the left-hand side of the equation,

Ω: the interior domain of the associated convex functionf,i.e., {x : |f ′(x)|<∞}.

Definition 2.1 (Bregman divergence). The Bregman divergence is defined as
Bf (x,y) :=f(x)−f(y)−(x−y)f ′(y), for any strictly convex function f .
For the sake of simplicity, we assume all the convex functions mentioned in this paper
are smooth, i.e., C∞.

In general, Bf (x,y) is not symmetric. We consider two kinds of averaging proce-
dures to achieve symmetry averaging. The first procedure is

mf (x,y)=
1

2
(Bf (x,z)+Bf (y,z)), z =

1

2
(x+y). (2.1)

We can reformulate this as mf (x,y)= 1
2 (f(x)+f(y))−f( 1

2 (x+y)); This has been
discussed in Part 1 [19].

The second procedure is min-maximizing. The inspiration for this is the following
fact:

Given any N points xi,i=1,2,...,n in RN , the center and radius of the smallest
sphere containing these points are simultaneously determined by minz∈RN maxi |z−
xi|.

For now, we consider only two elements of R1 and define

mf (x,y)=min
z

max
0≤p≤1

(pBf (x,z)+(1−p)Bf (y,z)). (2.2)
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We will show that

mf (x,y)= max
0≤p≤1

(pBf (x,z)+(1−p)Bf (y,z)), with z =px+(1−p)y. (2.3)

We can rewrite the above as

mf (x,y)= max
0≤p≤1,z=px+(1−p)y

(pf(x)+(1−p)f(y)−f(z)).

The auxiliary variable z is called the center of mf (x,y). For more properties of
Bregman divergences, we refer interested readers to see [1, 5].

In this paper we show that
√

mf is a metric if and only if 3(logf ′′)′′≥ ((logf ′′)′)2.
To this end, we need to verify that given three real numbers x,y,z

•
√

mf (x,y)≥0, ‘=’ holds only when x=y.

•
√

mf (x,y)=
√

mf (y,x).

•
√

mf (x,y)+
√

mf (y,z)≥
√

mf (x,z).

Clearly, we have the second property. From the forthcoming lemma, the first
property follows.

Lemma 2.2. The following are well known, important properties for Bregman diver-
gences.

Bf (x,z)≥0,′′=′′ holds if and only if x=z, (2.4)

and

pBf (x,z)+(1−p)Bf (y,z)≥pBf (x,px+(1−p)y)+(1−p)Bf (y,px+(1−p)y). (2.5)

Therefore we have mf (x,y)≥0, and equality holds only when x=y.
The proof can be found in [19].

Thus we only need to examine the third property: the triangle inequality. The
following lemma establishes that if a power of mf (x,y) is a metric, then the power
cannot exceed 1/2. Also, it will be clear from the lemma, that we only need to verify
the case

√
mf (x,z)+

√
mf (z,y)≥

√
mf (x,y), if x<z <y. (2.6)

Lemma 2.3. Suppose f(x) is a strictly convex, smooth (at least three times differen-
tiable) function on an open set Ω. Denote

mf (p;x,y) :=pf(x)+(1−p)f(y)−f(px+(1−p)y),

where 0<p<1, and x,y∈Ω. Then we have the following facts (the proof can be found
in [19]).

(1). mf (p;x,y)≥0, and equality holds if and only if x=y.

(2). Monotonicity: If x<y <z,x,y,z∈Ω, then mf (p;x,y)<

mf (p;x,z),mf (p;y,z)<mf (p;x,z), which gives
√

mf (p;x,y)<
√

mf (p;x,z)+√
mf (p;z,y),

√
mf (p;y,z)<

√
mf (p;y,x)+

√
mf (p;x,z).
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(3). Suppose we know the triangle inequality holds for some positive r0,

mf (p;x,y)r0 ≤mf (p;x,z)r0 +mf (p;z,x)r0 . (2.7)

Then the triangle inequality still holds for all 0≤ r<r0

mf (p;x,y)r ≤mf (p;x,z)r +mf (p;z,x)r. (2.8)

(4). Maximal possible exponent: if there exists a small neighborhood (0,ǫ) such
that

mf (p;x−a,x+a)r ≤mf (p;x−a,x)r +mf (p;x,x+a)r holds for all a∈ (0,ǫ),
(2.9)

then we have 1
2 ≥ r≥0.

Thus, maximizing on 0<p<1, then property (2) tells us that if x<y <z,x,y,z∈
Ω, then

√
mf (x,y)<

√
mf (x,z)+

√
mf (z,y),

√
mf (y,z)<

√
mf (y,x)+

√
mf (x,z).

2.1. Examples of Bregman divergences. The above definition of Bregman
divergence is defined between scalars, but it can be easily generalized to vectors. Let
x,y be vectors in Rn with components {x1,... ,xn}, {y1,... ,yn}. The vector version
Bregman divergence can be defined as

Bf (x,y) :=

n∑

i=1

f(xi)−f(yi)−(xi−yi)f
′(yi).

In the literature, three Bregman divergences have played a more important role than
the rest: Euclidean distance, Kullback-Leibler divergence (I-divergence), and Itakura-
Saito distance. Their associated strictly convex functions are f(x)=x2, xlogx, and
−logx, respectively.

Definition 2.4. We are given two non-negative vectors x := (x1,...,xn),y :=
(y1,...,yn)∈Rn. The Kullback-Leibler divergence is defined as

KL(x,y) :=

n∑

i=1

xi log
xi

yi

,when

n∑

i=1

xi =

n∑

i=1

yi =1. (2.10)

The I-divergence is defined as

CKL(x,y) :=

n∑

i=1

xi log
xi

yi

−
n∑

i=1

xi +

n∑

i=1

yi. (2.11)

The Itakura-Saito distance is defined as

IS(x,y) :=
n∑

i=1

−log
xi

yi

+
n∑

i=1

xi

yi

−1. (2.12)

2.2. The min-max procedure for mf . In this section, we describe the
min-max procedure for obtaining a metric. This metric acting on any two points
(scalars or vectors) can be regarded as the “radius” of the smallest sphere enclosing
these two points.
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[Numbers:] Let us consider the min-max procedure between two numbers first.

Lemma 2.5. For 0≤p≤1, and q =1−p, denote mf (p;x,y) :=pBf (x,px+qy)+
qBf (y,px+qy)=pf(x)+qf(y)−f(px+qy), and

mf (x,y) := max
0≤p≤1,p+q=1

mf (p;x,y). (2.13)

Suppose x 6=y. Then the maximizer (p,q)=(p∗,q∗) of m(p;x,y) can be solved uniquely
by solving the equation:

f(x)−f(y)−(x−y)f ′(p∗x+q∗y)=0, (2.14)

and as (p,q)=(p∗,q∗), we have mf (p∗;x,y)=Bf (x,p∗x+q∗y)=Bf (y,p∗x+q∗y), i.e.,
equal divergences.

Proof. p=0 or q =0 implies mf (p;x,y)=0, so we may assume p 6=0,p 6=1. Thus,

we have
∂mf (p;x,y)

∂p
=0 for some p=p∗,q = q∗, which implies equation (2.14). By the

Mean Value Theorem and the strict convexity of f , we know that p∗,q∗ exist and are
unique. Also, we can rewrite this equation as

f(x)−f(p∗x+q∗y)−(x−(p∗x+q∗y))f ′(p∗x+q∗y) (2.15)

=f(y)−f(p∗x+q∗y)−(y−(p∗x+q∗y))f ′(p∗x+q∗y), (2.16)

i.e., Bf (x,p∗x+q∗y)=Bf (y,p∗x+q∗y), equal divergences. Since mf (x,y)=
max0≤p≤1,p+q=1(pBf (x,px+qy)+qBf (y,px+qy)), we have mf (x,y)=Bf (x,p∗x+
q∗y)=Bf (y,p∗x+q∗y).

The following remark provides an alternate viewpoint.

Remark 2.6. Consider the problem

min
z

R, subject to Bf (x,z)≤R,Bf (y,z)≤R. (2.17)

By standard convex programming arguments [2], this can be reformulated as

max
0≤p≤1,p+q=1

mf (p;x,y). (2.18)

Thus mf (x,y)=Bf (x,p∗x+q∗y)=Bf (y,p∗x+q∗y) may be thought of as the radius
of the smallest “sphere” enclosing x,y in the sense of Bregman divergence.

[Vectors:] We outline a generalization of this procedure to vectors to obtain a
new type of metric in higher dimensional spaces, which we call the min-max metric.

Consider a strictly convex function F with its effective domain Ω :={x∈R :
F (x)<∞,F ′(x)<∞}. We are given vectors f,g,l,a∈Rn, with their components
f(j),g(j),l(j)∈Ω, and a(j) >0 for j =1,... ,n. MF (f,g;a) is defined as the smallest R,
such that

min
l∈Ωn

R,subject to BF (f,l;a)≤R,BF (g,l;a)≤R, (2.19)

where the vector version of the Bregman divergence is defined as

BF (f,l;a) :=

n∑

j=1

(F (f(j))−F (l(j))−(f(j)− l(j))F
′(l(j)))a(j). (2.20)
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We can also consider the case of multiple vectors. Define

MF (f1,...,fm;a) :=max
p∈∆

m∑

i=1

piBF (fi,<pf >;a),

where the convex set ∆ is defined by

∆:={(p1,... ,pm) :

m∑

i=1

pi =1, and each pi is nonnegative number}.

Let <pf >:=
∑m

i=1pifi ∈Ωn. The following holds.

Lemma 2.7. Consider vectors f1,...,fm,h∈Ωn with an integer m≥2, and vectors
a∈Rn with components aj >0, and p∈∆. Then we have

m∑

i=1

piBF (fi,h;a)≥
m∑

i=1

piBF (fi,<pf >;a), (2.21)

and equality holds only when h=<pf >.

Proof.

LHS−RHS =BF (<pf >,h;a)≥0. (2.22)

Theorem 2.8 (Properties of MF (f1,... ,fm;a)). Given m vectors f1,... ,fm that
are not all identical, let p∗ =(p∗1,...,p

∗
m) be the maximizer of MF (f1,... ,fm;a). Denote

M(p)=
∑m

i=1piBF (fi,<pf >;a). Then we have

1.MF (f1,... ,fm;a)>0.

2.For all i with 0<p∗i <1,we have the same constant λ :=BF (fi,<p∗f >;a).

3.M(p∗)=BF (fi,<p∗f >;a), for all i with p∗i >0.

Proof. Let p=(1,0,...,0), then M(p)=BF (f1,f1;a)=0. Since M(p) is strictly
concave, then M(p∗)>M(p)=0, which means that p∗ is not one of the vertices of the
domain of p, and MF (f1,... ,fm;a)>0.
Let

L(p,λ)=

m∑

i=1

piBF (fi,<pf >;a)−λ

(
m∑

i=1

pi−1

)
.

For those i, with 0<p∗i <1, we have ∂ ÃL
∂pi

(p∗)=0, which implies that

n∑

j=1

(F (fi)−fiF
′(<p∗f >))(j)a(j)−λ=0,i.e., (2.23)

BF (fi,<p∗f >;a)=λ−
n∑

j=1

(F (<p∗f >)−<p∗f >F ′(<p∗f >))(j)a(j). (2.24)
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Thus, BF (fi,<p∗f >;a) is a constant, independent of i.
Note that since we are maximizing a concave functional L, we always have

∂L
∂pi

(p∗)≤0. Thus, the statement (2) is the optimal condition for p∗.

Now, multiplying the statement (2) by p∗i , and summing over all i, we have
λ=M(p∗), and

M(p∗)=BF (fi,<p∗f >;a), for all i with p∗i >0. (2.25)

In other words, BF (fi,<p∗f >;a) is constant on the set of i such that p∗i >0. Let
R denote this number. Then for each j with BF (fj ,p

∗f ;a)<R, we must have p∗j =0.

In Euclidean space, by convex programming [2] the radius R of the sphere con-
taining m vectors v1,...,vm in Rn may be characterized by

R= min
v∈RN

max
i

‖vi−v‖. (2.26)

In the case of Bregman divergences, we have

Theorem 2.9.

MF (f1,...,fm;a)= min
h∈Ωn

max
i

BF (fi,h;a). (2.27)

Proof. By the previous lemma, since
∑m

i=1pi =1

m∑

i=1

piBF (fi,<pf >;a)≤
m∑

i=1

piBF (fi,h;a)≤max
i

BF (fi,h;a) (2.28)

Now, taking the maximum in p on both sides and minimizing among all possible
h∈Ωn, we have

MF (f1,...,fn;a)≤min
h

max
i

BF (fi,h;a), (2.29)

and by the previous theorem, we know that when h=<pf >, equality holds.

3. Min-max metric in case of numbers

Based on Lemma 2.3, our task is to find the condition on f which ensures that
for any a<b<c, we have

√
mf (a,b)+

√
mf (b,c)−

√
mf (a,c)≥0. (3.1)

In the next lemma, we consider three numbers that are close to each other. Then
we use Taylor’s expansion to get the leading term’s coefficient in the LHS of equation
(3.1). This coefficient needs to be nonnegative, giving us a necessary condition. Since
the computation is quite lengthy, we do it in the appendix.

Lemma 3.1 (Necessary condition). If
√

mf is a metric, then

−4

(
f ′′′

f ′′

)2

+3
f ′′′′

f ′′ ≥0, or 3(logf ′′)′′−((logf ′′)′)2≥0. (3.2)



934 METRICS DEFINED BY BREGMAN DIVERGENCES

Let us examine the case when equality holds. Denote z := (logf ′′)′. Then we
have 3z′−z2≥0. Clearly equality holds when either z(x)=− 3

x−c1
, with x≥ c1, or

z(x)=0 for all x. In the first case, we have f ′′(x)= c2(x−c1)
−3 with c2 >0, i.e.,

f(x)= c2

x−c1
+c3x+c4. In the second case, we have f(x)= c2x

2 +c3x+c4. In both
cases, c1,c2 >0,c3,c4 are constants of integration.

Next, we can solve for the maximizer p in mf (p;a,b) by equation (2.14). In the first
case, let f(x) := 1

x
, then f ′(x)=− 1

x2 . For any two points (a, 1
a
), (b, 1

b
), equation (2.14)

yields that f ′(pa+(1−p)b)=(f(a)−f(b))/(a−b)=− 1
ab

. Thus, p=
√

b/(
√

a+
√

b),
and

mf (a,b)=pf(a)+(1−p)f(b)−f(pa+(1−p)b)

=
1

a

(
1−

√
a

√
a+

√
b

)
+

1

b

(
1−

√
b

√
a+

√
b

)
− 1√

ab
=

(
1√
a
− 1√

b

)2

.

Hence, its square root is a metric, and for any given numbers a<b<c we have√
mf (a,b)+

√
mf (b,c)=

√
mf (a,c).

In the second case, we get the Euclidean distance, and we have
√

mf (a,b)+√
mf (b,c)=

√
mf (a,c) and p=1/2 in both cases.

Definition 3.2. Define a class of functions F
′ as {f : 3(logf ′′)′′≥

((logf ′′)′)2, with f ′′ >0}. Define the sub-class of functions G by {f :f ′′ >
0, 3(logf ′′)′′ =((logf ′′)′)2}. This class G is in fact the same as the
class {g :g(x)= c2

x−c1
+c3x+c4,x>c1} ∪{g :g(x)= c2x

2 +c3x+c4}∪{g :g(x)=
c2

x−c1
+c3x+c4,x<c1}, here c2 >0,c1,c3,c4 are scalars.

Remark 3.3. Examples of f with (logf ′′)′′≥ ((logf ′′)′)2/3:

f(x) (logf ′′) (logf ′′)′ (logf ′′)′′

xα/(α(α−1)),α=2,α≥−1 (α−2)logx (α−2)/x −(α−2)/x2

xlogx−x −logx −1/x 1/x2

−logx −2logx −2/x 2/x2

1/(2x) −3logx −3/x 3/x2

Definition 3.4. We say that f is in the class F if
√

mf is a metric, f is smooth (at
least four times differentiable), and f ′′ >0.

Now, we will point out two important relations between F
′ and G.

Lemma 3.5. Let four points x1 <x2 <x3 <x4 and f ∈F
′ be given. Then there are

scalars c1,c2 6=0,c3,c4 such that one of the functions c2

x−c1
+c3x+c4 (the RECIPRO-

CAL CASE) or c2x
2 +c3x+c4 (the QUADRATIC CASE) agrees with f at exactly

these 4 points.

Proof. Let yk =f(xk), k =1,... ,4. Assuming that the assertion holds we must
have

yk+1−yk =f(xk+1)−f(xk)=
c2

xk+1−c1
− c2

xk−c1
+c3(xk+1−xk),k =1,2,3. (3.3)

So for k =1,2, we also have

yk+3−yk+2

xk+3−xk+2
− yk+2−yk+1

xk+2−xk+1
=− c2

(xk+3−c1)(xk+2−c1)
+

c2

(xk+2−c1)(xk+1−c1)
.

(3.4)
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For the sake of notational simplicity, put rk,k+1 := yk+1−yk

xk+1−xk
. Then we have

r3,4−r2,3

x4−x2

(
r2,3−r1,2

x3−x1

)−1

=
x1−c1

x4−c1
. (3.5)

The left hand side (LHS) of equation (3.5) is positive because the function f is
strictly convex. Therefore either c1 <x1 <x4 or c1 >x4 >x1.

Note that as c1→∞, LHS→1+, and as c1→x+
4 , LHS→∞. Similarly, as

c1→−∞, LHS→1−, and as c1→x−
1 , LHS→0+. Thus if LHS 6=1, the existence

of c1 is guaranteed by the Intermediate Value theorem, and c1 is unique because
the right hand side is an increasing function of c1. Once we have c1, we can trace
the steps backwards to solve for c2,c3,c4 (using equations (3.4), (3.3)) and get the
RECIPROCAL CASE.

If LHS =1, then c1 cannot be determined. In this case, follow the same
steps as above replacing the reciprocal by the quadratic to see that we obtain the
QUADRATIC CASE.

Lemma 3.6. We are given any f ∈F
′, and g∈G. Then H =f −g vanishes at most

at four points or it vanishes identically on a segment and is positive outside this
segment. If H vanishes at four adjacent points {x1 <...<x4} and nowhere else then
H is positive and convex outside [x1,x4].

If H vanishes at the four points x1 <x2 <x3 <x4, then f −g takes values with
signs +,−,+,−,+ on (−∞,x1), (x1,x2), ... (x4,∞).

Proof. If H =0 at 5 points then H ′ vanishes at least at 4 points, and H ′′ =f ′′−g′′

vanishes at least at 3 points, say η1 <η2 <η3. This implies that log(f ′′/g′′) vanishes
at 3 points, and (log(f ′′/g′′))′ vanishes at least at 2 points, say ξ1 <ξ2 with η1≤
ξ1≤η2≤x2≤η3. Denote y(x) :=(logf(x)′′)′, z(x) :=(logg(x)′′)′, then y′≥y2/3≥0,
(y increases monotonically), z′ =z2/3, and we know that y−z vanishes at ξ1, ξ2.

There are three possibilities for z, depending on the sign of the initial condition
z(x0): either z(x0)<0, z(x0)=0, or z(x0)>0. Their solutions are z =−3/(x−c) with
x>c, z =0, or z =−3/(x−c) with x<c, respectively (here c is chosen to satisfy the
initial condition). The discussion in the first case can be applied to the third case if
we replace f(x),g(x) with f(−x),g(−x) to get z(−x0)<0. Hence, we only need to
discuss the cases z(x0)>0 and z(x0)=0.

In the first case, we have z =−3/(x−c) with some constant c to be determined,
and (c,∞) is the domain of g. Then z is negative in this domain. Hence, the zeroes of
y(x)−z(x) lie in the domain D :={x>c :y(x)<0}. Note D is a connected set because
3y′≥y2 implies that y increases monotonically. On D, we have

(
−1

y

)′
≥ 1

3
,

(
−1

z

)′
=

1

3
, and so

(
−1

y
+

1

z

)′
≥0. (3.6)

Recall that y−z =0 at ξ1,ξ2, i.e., 1/y−1/z vanishes at ξ1,ξ2. Combining this with
equation (3.6), we conclude that −1/y+1/z =0, i.e., y =z on [ξ1,ξ2]. We conclude
that f ′′ = c0g

′′ with some constant of integration c0. Moreover, f ′′(η2)=g′′(η2) and
ξ1≤η2≤ ξ2, implying that c0 =1. Since f ′−g′ has zeros in [ξ1,ξ2], we must have f =g
in [ξ1,ξ2].

Now, we consider the second case where there are exactly 4 zeros, say x1,x2,x3,x4.
Since (−1/y+1/z)′≥0, y−z has signs −,+, in (−∞,b), (b,∞), where b is the zero
of y−z =0. Therefore logf ′′− logg′′ takes values with signs +,−,+. Finally, f −g
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takes values with signs +,−,+,−,+ on (−∞,x1), (x1,x2), ... (x4,∞).

If we solve the equation z′ =z2/3 with z(x0)=0, we have z(x)=0 for all x∈R.
Since y increases monotonically, the equality y =z at ξ1,ξ2 implies y =z =0 on the
whole interval [ξ1,ξ2]. Using the same arguments as in the case z(x0)<0 above, we
find f =g on the whole interval [ξ1,ξ2]. Now suppose there are only 4 zeros. Since
z(x)=0 for all x, y−z monotonically increases. Using similar arguments as above,
we can show that f −g takes values with signs +,−,+,−,+ on (−∞,x1), (x1,x2), ...
(x4,∞).

Note that this lemma also implies that given any f ∈F
′, and three distinct num-

bers a,b,c, we can construct a unique g∈G such that f(a)=g(a), f ′(a)=g′(a),
f(b)=g(b) and f(c)=g(c).

 a^

 g

 f

 h

 a

 b

 c

 x
1

 b/k

z

b(α)

α

f

a(α)

Fig. 3.1. Figure for Thm. 3.8 (Left) and figure for Setting 4.1 (Right)

Here are several properties of mf (·,·).
Lemma 3.7. We are given numbers a,b, and k 6=0, and a strictly convex function h.

• Let g(x)=h(x−c0)+c1x+c2, where c0,c1,c2 are scalars. Then mg(a+c0,b+
c0)=mh(a,b).

• Let g(x)=h(kx), then mg(a,b)=mh(a/k,b/k), and if h∈G, then g∈G.

• We are given three numbers a<b≤ b1 and a strictly convex function f .
Assume f(a)=h(a)≥f(b1)=h(b), and f ≤h on [a,b]. Then mf (a,b1)≥
mh(a,b).

Proof. The first two statements are trivial. Hence, we only prove the third
statement. Let the line connecting two points (a,h(a)) and (b,h(b)) be y =s1x+ t1,
and the the line connecting the two points (a,f(a)) and (b1,f(b1)) be y =s2x+ t2. By
assumption, both slopes s1,s2 satisfy the relation s1≤s2≤0, and so s1x+ t1≤s2x+ t2
for any x∈ [a,b].

Consider the two regions D1 :={(x,y) :h(x)≤y≤s1x+ t1} and D2 :={(x,y) :
f(x)≤y≤s2x+ t2}. The validity of s1x+ t1≤s2x+ t2 and h(x)≥f(x) for any x∈ [a,b]
implies that D1⊂D2. Therefore the largest vertical line segment in D1 cannot be
longer than the largest vertical line segment in D2. That is, mh(a,b)≤mg(a,b1).

Now, we are ready to show the sufficient condition, i.e., F
′⊂F.
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Theorem 3.8. If f is four times differentiable, f ′′ >0 and 3(logf ′′)′′≥ ((logf ′′)′)2,
then

√
mf (a,b)+

√
mf (b,c)≥

√
mf (a,c) for any a<b<c∈Ω.

Proof. Let x1 be the center of mf (a,c). Without loss of generality, assume that
a<x1≤ b<c, otherwise replace f(x) with f(−x). Also assume f(a)=f(c), otherwise
replace f(x) with f(x)−(x−a)(f(c)−f(a))/(c−a). Then f ′(x1)=0.

By Lemma 3.6, there exists a g∈G agreeing with f at x1,b,c, and tangent at x1

(i.e., g′(x1)=0). Since g is convex and g′(x1)=0, we can find a point â, such that
g(â)=f(c)=g(c). Since f,g agree at x1,b,c, and are tangential at x1, by Lemma
3.6 f −g takes values with signs +,+,−,+ on (−∞,x1), (x1,b), (b,c), (c,∞). Thus
â≤a<x1. Since g(â)=f(a)=f(c)=g(c), g(x1)=f(x1) and g′(x1)=f ′(x1), we have

mf (a,c)=mg(â, c). (3.7)

Further, since f ≤g on [b,c],

mf (b,c)≥mg(b,c). (3.8)

Next, we claim mg(â,b)≤mf (a,b). To see this, set h(x) :=g(kx), where k := â/a≥
1. Then by Lemma 3.7 we have h∈G, and

mh(a,b/k)=mh(â/k,b/k)=mg(â,b). (3.9)

Since f ∈F,h∈G , there exists a ĉ with f(ĉ)=h(ĉ) such that f −h>0 on (ĉ,∞).
Moreover, h(c)=g(kc)≥g(c)=f(c), so that ĉ>c. Since f,h agree at a,ĉ and are tan-
gential at x1, then by Lemma 3.6 f −h takes values with signs +,−,−,+ on (−∞,a),
(a,x1), (x1, ĉ), (ĉ,∞). Therefore we have f ≤h in the interval [a,b]. Furthermore,
because f(a)=h(a)≥f(b)=h(b/k), the line segment connecting (a,f(a)),(b,f(b)) lies
above the segment connecting (a,h(a)),(b/k,h(b/k)). Hence by Lemma 3.7, we have
mf (a,b)≥mh(a,b/k). Using equation (3.9), we have

mf (a,b)≥mh(a,b/k)=mg(â,b). (3.10)

Finally, from (3.7), (3.8), (3.10), and
√

mg(â,c)=
√

mg(â,b)+
√

mg(b,c) for any
g∈G, we have

√
mf (a,c)=

√
mg(â,c)=

√
mg(â,b)+

√
mg(b,c)≤

√
mf (a,b)+

√
mf (b,c). (3.11)

Remark 3.9. The set F is convex, i.e., if f1,f2 both belong to F, then αf1 +(1−
α)f2∈F for α∈ [0,1] (the proof can be found in [19]).

We now generalize to vectors.

Theorem 3.10. Let F ∈F and f,g,l,a∈Rn, with their i−th components denoted by
fi,gi,li,ai respectively. Denote

MF (f,g;a) :=
n∑

i=1

mF (fi,gi)ai, then
√

MF (f,g;a)≤
√

MF (f,l;a)+
√

MF (l,g;a).

(3.12)



938 METRICS DEFINED BY BREGMAN DIVERGENCES

Proof.

√
MF (f,gi)=

√√√√
n∑

i=1

mF (fi,gi)ai =

√√√√
n∑

i=1

(√
mF (fi,gi)

)2

ai,

≤

√√√√
n∑

i=1

(√
mF (fi,li)+

√
mF (li,gi)

)2

ai, by the assumption F ∈F,

≤

√√√√
n∑

i=1

(√
mF (fi,li)

)2

ai +

√√√√
n∑

i=1

(√
mF (li,gi)

)2

ai, by Minkowski inequality,

=

√√√√
n∑

i=1

mF (fi,li)ai +

√√√√
n∑

i=1

mF (li,gi)ai =
√

MF (f,l)+
√

MF (l,g).

4. Generalization to vector spaces: capacity, min-max IS distance

In this section, we describe a family of metrics based on min-max Bregman di-
vergences between vectors or functions. Our conjecture is that the condition found
in the previous section should work in case of vectors and functions as well. Due to
the complexity of this problem, we generalize this result only to two separate impor-
tant cases. One is “capacity” associated with f =xlogx and the other is min-max
IS distance associated with f =−logx. First, we need to analyze the range of the
maximizer p∗.

4.1. Range of the maximizer p∗. The main purpose of this subsection is
to provide a bound on the actual range of p∗. This result will be used to prove that
the capacity to the power 1/e is a metric.

Notation 4.1. Let the domain of a strictly convex function f be (γ1,γ2). Fix a
point z∈ (γ1,γ2), and s :=f ′(z).

Consider the family of parallel lines {y =sx+α, with α∈ (α0,α1), α0 :=f(z)−
sz,α1 :=mini=1,2(f(γi)−sγi)}.

For each α∈ (α0,α1), any line y =sx+α intersects y =f(x) twice, say at a(α)
and b(α), with a(α)≤ b(α). Then z is the center of mf (a(α),b(α)) for all α∈ (α0,α1).
We have f(a(α))−sa(α)=α, f(b(α))−sb(α)=α. Differentiating with respect to α,
we have

da

dα
=

1

f ′(a)−s
,

db

dα
=

1

f ′(b)−s
. (4.1)

The maximizer p(α) :=argmaxpm(p;a(α),b(α)). Solving z =p(α)a(α)+(1−
p(α))b(α), we find p(α)=(b(α)−z)/(b(α)−a(α)).

Lemma 4.2. Suppose f ′′′≤0, and f ′′ >0. If a<b and p∗ :=argmaxpm(p;a,b), then
p∗ > 1

2 . Using 4.1, z =p(α)a(α)+(1−p(α))b(α) is fixed for all α, and p′(α)≥0.
Therefore, if γ1 >−∞, we have

sup
x

p∗(x)=sup
x

argmaxm(p;γ1,x), inf
x

p∗(x)=1−sup
x

p∗(x). (4.2)
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Proof. Note that the maximizer p=p∗ satisfies

f(b)−f(a)

b−a
−f ′(p∗a+(1−p∗)b)=0. (4.3)

By Taylor’s expansion, as |a−b| gets close to 0 we have

1

2
(b−a)f ′′(a)−((1−p∗)(b−a)f ′′(a))+O(|a−b|2)=0, (4.4)

which implies p∗→ 1
2 , as a→ b.

For the second statement, we proceed as follows. In the setting of 4.1, consider
the intersections (a(α),b(α)) with b(α)≥a(α), a(α0)= b(α0)=z. Since by assumption
f ′′′≤0, f ′ is concave.

f ′(x)−f ′(z)≥ f ′(b)−f ′(z)

b−z
(x−z), for x∈ (z,b), (4.5)

which implies

Bf (b,z)=f(b)−f(z)−(b−z)f ′(z)=

∫ b

z

(f ′(x)−f ′(z))dx (4.6)

≥ f ′(b)−f ′(z)

b−z

∫ b

z

(x−z)dx=
1

2
(f ′(b)−f ′(z))(b−z). (4.7)

Similarly,

Bf (a,z)=

∫ z

a

(f ′(z)−f ′(x))dx≤ 1

2
(f ′(z)−f ′(a))(z−a). (4.8)

Since Bf (b,z)=Bf (a,z), using the above two equations we have

(f ′(b)−f ′(z))(b−z)−(f ′(z)−f ′(a))(z−a)≤0. (4.9)

On the other hand, since p(α) satisfies z =p(α)a(α)+(1−p(α))b(α), differentiating
with respect to α we have

0=p′a+pa′−p′b+(1−p)b′ =p′(a−b)+
1

b−a

(
b−z

f ′(a)−f ′(z)
+

z−a

f ′(b)−f ′(z)

)
.

(4.10)
We have

p′ =
1

(b−a)2
· (b−z)(f ′(b)−f ′(z))−(a−z)(f ′(a)−f ′(z))

(f ′(b)−f ′(z))(f ′(a)−f ′(z))
. (4.11)

Since f ′′ >0,

(f ′(b)−f ′(z))(f ′(a)−f ′(z))=
(f ′(b)−f ′(z))(f ′(a)−f ′(z))

(b−z)(a−z)
(b−z)(a−z)<0.

Finally, using equation (4.9), equation (4.11) implies p′(α)>0.

Given a<b, assume p∗ =argmaxpm(p;a,b), and let z(α0)=p∗a+(1−p∗)b. Then
because p′(α)>0, we have p∗ >p(α0)= 1

2 , so p∗ >q∗.
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Remark 4.3. By the above result, if f(x) :=xlogx, then γ1 =0. p∗ is bounded by
the sup and the inf of {argmaxpmp(0,a),a>0}. Since

m(p;0,a)=p ·0+qaloga−qalogqa=−aq logq, (4.12)

we have

argmax
p

m(p;0,a)=1− 1

e
, thus

1

e
≤p∗≤1− 1

e
. (4.13)

Of course, this result does not depend on the base of the logarithm.

Remark 4.4. Let us consider a subset of Bregman divergences, f(x) := 1
α(α−1)x

α,

α>1, and restrict its domain to (0,∞). Since the maximizer (p,q) of m(p;0,a) sat-

isfies aα−0α =(a−0)α(p ·0+qa)α−1, we obtain q =α− 1
α−1 . Note that this result is

independent of a. Interestingly, as α→1 we have q =limα→1(1+(α−1))
−1

α−1 =1/e,
which is exactly the conclusion in the previous remark.

We extend the above to functions on a measure space.

Theorem 4.5. Given functions f(x),g(x) and a convex function F , let

p∗(x) :=argmax
p

(pBF (f(x),pf(x)+qg(x))+qBF (g(x),pf(x)+qg(x))), (4.14)

with p+q =1, and let

p∗ :=argmax
p

∫
pBF (f(x),pf(x)+qg(x))+qBF (g(x),pf(x)+qg(x))dµ, (4.15)

with p+q =1. We assume that this integral well-defined (for instance, under the
condition µ(Ω)<∞).
The above lemma gives a bound for p∗:

sup
x∈Ω

p∗(x)≥p∗≥ inf
x∈Ω

p∗(x). (4.16)

Proof. For the sake of simplicity, let f,g denote f(x) and g(x).
By equation (2.14), p∗(x) and p∗ satisfy the equations

F (f)−F (g)=(f −g)F ′(p∗(x)f +q∗(x)g) (4.17)

and
∫

F (f)−F (g)dµ=

∫
(f −g)F ′(p∗f +q∗g)dµ. (4.18)

Integrating the first equation, and subtracting the second one, we have
∫

(f −g)(F ′(p∗(x)f +q∗(x)g)−F ′(p∗f +q∗g))dµ=0. (4.19)

By the Mean Value Theorem, there exists an η(x) lying between p∗(x),p∗ such that

F ′(p∗(x)f +q∗(x)g)−F ′(p∗f +q∗g)=(p∗(x)−p∗)(f −g)F ′′ (η(x)f +(1−η(x))g) .
(4.20)

Hence, we have
∫

(f −g)2F ′′(η(x)f +(1−η(x))g)(p∗(x)−p∗)dµ=0. (4.21)

But since F ′′ >0 and f −g does not vanish everywhere, we conclude that p∗ must lie
between supx∈Ωp∗(x), and infx∈Ωp∗(x).
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4.2. Min-max Kullback-Leibler divergence: capacity, F (x)=xlogx.

We start with the following setting.
Let L1

+(Ω) :={f ∈L1(Ω),f ≥0} f1,... ,fn ∈L1
+(Ω) with n≥2, and p∈∆, where

∆ :={(p1,p2,... ,pn)∈Rn,pi ≥0,
∑n

i=1pi =1}. Also let <p,f >:=
∑n

i=1pifi,. We de-
fine a functional

Mp(f1,...,fn) :=

∫

Ω

n∑

i=1

pifi log
fi

<p,f >
dµ, (4.22)

and the “capacity” functional

M(f1,...,fn) :=max
p∈∆

Mp(f1,...,fn). (4.23)

Finally let p∗ be the maximizer of Mp(f).
The reason why we call Mp(f) capacity function is that this quantity is indeed

the capacity of a discrete memoryless channel, whose stochastic matrix is given by fi

(See [8]).

Our goal in this subsection is to show that M(f,g)
1
e is a metric.( It is known that

capacity itself is not a metric.) To this end, we will first prove the following statement.
Given any a,b,c∈R+ with a<c<b, and writing m(p;a,b) :=paloga+qb logb−(pa+
qb)log(pa+qb), we have

(m(p;a,b))r ≤ (m(p;a,c))r +(m(p;c,b))r, with r :=min(p,q),q :=1−p. (4.24)

Now we examine the function gr :R+ \{1}. This is related to the derivative of
m(p;a,c)r, that is, for 0<r≤ 1

2 ,

gr(p;x) :=

(
∂m(p;a,c)r

∂c

)

a=x,c=1

= rq log
1

q+px

(
q log

1

q+px
+pxlog

x

q+px

)r−1

.

(4.25)
The proofs of these two lemmas are quite lengthy, so they are given in the appendix.

Lemma 4.6 (Behavior of gr(x)).

1. gr(p;x) has only one discontinuity at x=1.

limx→1∓gr(p;x)=

{
±

√
pq√
2

, if r= 1
2 .

±∞, if r≤ 1
2 .

2. For r=min(p,q), the derivative d
dx

gr(p;x) is positive for x∈R+ \{1}, thus
gr(p;x) increases monotonically.

Lemma 4.7. For positive numbers a,b,c, and 0<p<1, p+q =1, let r(p)=min(p,q).
Then we have

m(p;a,b)r ≤m(p;a,c)r +m(p;c,b)r. (4.26)

Since the maximizer p∗ always lies between 1
e

and 1− 1
e
, we have

m(p;a,b)
1
e ≤m(p;a,c)

1
e +m(p;c,b)

1
e . (4.27)

Theorem 4.8. M(g,k)
1
e ≤M(g,h)

1
e +M(h,k)

1
e .

Proof. By Remark 4.3, we have 1
e
≤p≤1− 1

e
, and using Lemma 4.7 and

Minkowski inequality, we obtain this result.
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4.3. Min-max is distance. The previous section, in particular implies that
the square root of mini-max IS distance of positive numbers is a metric, since −logx∈
F. Here, we will show that it is also a metric in the vector case. Note that the IS
divergence containing a vector with any zero component is infinity, and then obviously
the triangle inequality holds. Let f,g,l,a∈Rn have positive components. Subscript
(·)i will denote their i−th component. Denote MF (f,g) :=

∑n
i=1mF (fi,gi)ai, F (x)=

−logx. In order to verify the triangle inequality for functions,
√

MF (f,g)≤
√

MF (f,l)+
√

MF (g,l), (4.28)

our strategy will be to show that it holds even in the worst case, namely, the case where
the LHS is maximized with RHS fixed. Note that it is easy to see that mF (x,y)=
mF (x/y,1) for two numbers x>0,y >0, so without loss of generality, we can assume
li :=1 for all i. We will show that in the worst case f,g are both parallel to E :=
(1,1,...,1) so that verifying the triangle inequality is equivalent to proving the triangle
inequality for scalars, which was done in the previous section.

Given two fixed positive numbers Lf ,Lg, we like to maximize MF (f,g) among the
set D :={(f/l,g/l) :MF (f,l)≤Lf ,MF (g,l)≤Lg}, here (f/l)i :=fi/li,(g/l)i :=gi/li.
We form the Lagrangian:

MF (f,g)−µ1MF (f,l)−µ2MF (g,l), (4.29)

with two Lagrange multipliers µ1≥0,µ2≥0, and

MF (f,g)= max
p1+q1=1

n∑

i=1

(p1F (fi)+q1F (gi)−F (p1fi +q1gi))ai, (4.30)

MF (f,l)= max
p2+q2=1

n∑

i=1

(p2F (fi)+q2F (li)−F (p2fi +q2li))ai, (4.31)

MF (g,l)= max
p3+q3=1

n∑

i=1

(p3F (gi)+q3F (li)−F (p3gi +q3li))ai. (4.32)

Since D is a compact set, there exists a maximizer. Now taking variation with respect
to each component of f,g,l, at the maximizer (f,g,l=E), for each i one has

p1(F
′(fi)−F ′(p1fi +q1gi))−µ2q3(F

′(fi)−F ′(p3li +q3fi))=0, (4.33)

q1(F
′(gi)−F ′(p1fi +q1gi))−µ1p2(F

′(gi)−F ′(p2gi +q2li))=0, (4.34)

µ1q2(F
′(li)−F ′(p2gi +q2li))+µ2p3(F

′(li)−F ′(p3li +q3fi))=0. (4.35)

Denoting λ1 :=µ1q2/(µ2p3), λ2 :=µ1p2/q1, and λ3 :=µ2q3/p1, we have λ1≥0,λ2≥
0,λ3≥0, and

(F ′(fi)−F ′(p1fi +q1gi))−λ3(F
′(fi)−F ′(p3li +q3fi))=0, (4.36)

(F ′(gi)−F ′(p1fi +q1gi))−λ2(F
′(gi)−F ′(p2gi +q2li))=0, (4.37)

λ1(F
′(li)−F ′(p2gi +q2li))+(F ′(li)−F ′(p3li +q3fi))=0. (4.38)



P. CHEN, Y. CHEN AND M. RAO 943

Lemma 4.9. Now, in this case F (x)=−logx, and there are at most two solutions to
the equations (4.36)-(4.38), one of which is (fi,gi)=(li,li). Dropping those identical
components, we can assume that the maximizer is f =αfE,g =αgE,l=E, with two
scalars αf 6=1,αg 6=1.

Proof. Obviously fi =gi = li is a trivial solution. Suppose MF (f,l) 6=0, MF (g,l) 6=
0, then there exist other solutions satisfying the system: for each i,

fi−gi

p1fi +q1gi

−λ3

(
fi− li

p3li +q3fi

)
=0, (4.39)

gi−fi

p1fi +q1gi

−λ2

(
gi− li

p2gi +q2li

)
=0, (4.40)

li−fi

p3li +q3fi

+λ1

(
li−gi

p2gi +q2li

)
=0. (4.41)

Note that these three equations must be dependent with λ2/λ1 =λ3, otherwise this
system has only the trivial solution. On the other hand, since (p1,q1) is the maximizer
of MF (f,g), by equation (2.14), we have

n∑

i=1

(logfi− loggi)ai =
n∑

i=1

(
fi−gi

p1fi +q1gi

)
ai. (4.42)

Likewise we have similar equations corresponding to MF (f,l),MF (g,l). Substituting
these in system (4.39)-(4.41), we have

n∑

i=1

(log li− logfi)ai +λ1

n∑

i=1

(log li− loggi)ai =0, (4.43)

and

n∑

i=1

(loggi− logfi)ai +λ2(
n∑

i=1

(log li− loggi)ai =0. (4.44)

Using these two equations, and rewriting loggi− logfi =(log li− logfi)−(log li−
loggi), we can conclude that λ2 =λ1 +1.
Denote x :=gi/li−1, y =fi/li−1. Then the system (4.39)-(4.41) becomes

{
y

1+q3y
+λ1

x
1+p2x

=0,
y−x

1+x+p1(y−x) +λ2
x

1+p2x
=0.

Or
{

y+(p2 +q3λ1)xy+λ1x=0,
y+x(λ2−1)+x2(λ2−p2−p1λ2)+xy(p1λ2 +p2)=0.

Subtracting the first equation from the second, we have

{
y+(p2 +q3λ1)xy+λ1x=0,
x=0, or y(p1λ2−q3λ1)+x(q1λ2−p2)+(λ2−λ1−1)=0.

In the case where x=0, we have (x,y)=(0,0), and fi =gi = li, i.e., the trivial
solution.
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In the second case, using the result λ2 =λ1 +1, we see that this describes a line
through the origin. Note that the first equation represents one branch of hyperbolic
curve passing through the origin, and a straight line can intersect this curve at most
twice. Clearly one of the intersections is (0,0).

Therefore, only two solutions exist for the system (4.36)–(4.38), and one of them
is (fi,gi,li)=(1,1,1).

Theorem 4.10. Given positive vectors f,g,l,a∈Rn, denote

IS(f,g) := max
p+q=1

n∑

i=1

(−plog(fi)−q log(gi)+log(pfi +qgi))ai. (4.45)

Based on the previous lemma, we have the triangle inequality:
√

IS(f,g)≤√
IS(f,l)+

√
IS(l,g).

Appendix A. Proof of necessary condition. This necessary condition in fact
comes from the leading coefficient of Taylor’s expansion.

Consider the special case of three numbers z−a,z,z+b, with a>0,b>0 and close
to zero, where a,b satisfy y :=Bf (z−a,z)=Bf (z+b,z)=mf (z−a,z+b). Without
loss of generality, we may assume f(z)=0,f(z−a)=f(z+b)=y≥0, and f ′(z)=0.
Otherwise, replace f(x) by f(x)−f(z)−(x−z)f ′(z). Here we will derive a relation
between a and b, of the type a=k1b+k2b

2 +O(b3) for some constants k1,k2 to be
determined. Since f(z−a)=f(z+b)=y, taking Taylor’s expansion around z, we
have

f ′′

2
a2− f ′′′

6
a3 +O(a4)=

f ′′

2
b2 +

f ′′′

6
b3 +O(b4)=y. (A.1)

(Hereafter f ′′,f ′′′,f ′′′′ refer to f ′′(z),f ′′′(z),f ′′′′(z).) By comparing the coefficients of

b2,b3 in equation (A.1), we have k1 =1 and k2 = f ′′′

3f ′′ , thus we have a= b+ f ′′′

3f ′′ b
2 +

O(b3).
Assume the triangle inequality holds for z−a,z,z+b:

√
mf (z,z+b)+

√
mf (z−a,z)≥

√
mf (z−a,z+b). (A.2)

Now let z+c,z+d be the centers of mf (z,z−a) and mf (z,z+b). Then we have

−af ′(z−c)=f(z−a)−f(z)=f(z−a)=y, bf ′(z+d)=f(z+b)=y,

and the triangle inequality (A.2) can be rewritten as

√
c

a
f(z−a)−f(z−c)+

√
d

b
f(z+b)−f(z+d)≥√

y. (A.3)

i.e.,
√

c

a
− f(z−c)

f(z−a)
+

√
d

b
− f(z+d)

f(z+b)
−1≥0. (A.4)

Next, we write each term of equation (A.4) in terms of the variable b. Consider the

Taylor’s expansion of f ′(z+d)= f(z+b)
b

around z. We can express d in terms of b:

d=
1

2
b+

f ′′′

24f ′′ b
2 +

1

48

(
f ′′′′

f ′′ −
(

f ′′′

f ′′

)2
)

b3 +O(b4). (A.5)
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Moreover,

f(z+d)

f(z+b)
=

d2f ′′+d3f ′′′/3+d4f ′′′′/12

b2f ′′+b3f ′′′/3+b4f ′′′′/12
+O( higher order terms)

=
1

4
+

b2

48

(
1

12

(
f ′′′

f ′′

)2

+

(
f ′′′′

f ′′ −
(

f ′′′

f ′′

)2
)

+

(
1

2

(
f ′′′

f ′′

)2

− 3

4

f ′′′′

f ′′

)
+

)
+O(b3).

Hence,

d

b
− f(z+d)

f(z+b)
=

1

4
+

f ′′′

f ′′

(
b

24

)
− b2

48

(
1

12

(
f ′′′

f ′′

)2

+

(
1

2

(
f ′′′

f ′′

)2

− 3

4

f ′′′′

f ′′

))
+O(b3),

and
√

d

b
− f(z+d)

f(z+b)
=

1

2
+

f ′′′

f ′′

(
b

24

)
− b2

48

(
2

3

(
f ′′′

f ′′

)2

−
(

3

4

f ′′′′

f ′′

))
+O(b3).

Similarly, we have
√

c

a
− f(z−c)

f(z−a)
=

1

2
− a

24

f ′′′

f ′′ −
a2

48

(
2

3

(
f ′′′

f ′′

)2

−
(

3

4

f ′′′′

f ′′

))
+O(a3)

=
1

2
− b

24

f ′′′

f ′′ −
b2

48

(
2

3

(
f ′′′

f ′′

)2

−
(

3

4

f ′′′′

f ′′

))
− b2

72

(
f ′′′

f ′′

)2

+O(b3). (A.6)

Now, equation (A.4) becomes

− b2

24

(
2

3

(
f ′′′

f ′′

)2

−
(

3

4

f ′′′′

f ′′

))
−

(
f ′′′

f ′′

)2
b2

24 ·3

=
b2

24

(
−

(
f ′′′

f ′′

)2

+

(
3

4

f ′′′′

f ′′

))
≥0, as b→0.

Thus we arrive at a necessary condition (A.4):

−4

(
f ′′′

f ′′

)2

+3
f ′′′′

f ′′ ≥0,i.e., 3(logf ′′)′′−((logf ′′)′)2≥0. (A.7)

Proof of Lemma 4.6. The first statement can be verified by Taylor’s Expansion.
Since

{
q log 1

px+q
=−pq(x−1)+ p2q

2 (x−1)2 + ...

pxlog x
q+px

=pq(x−1)+ pq2

2 (x−1)2 + ... ,

then

lim
x→1

gr(p;x)= lim
x→1

−pqr(x−1)+ ...

(pq
2 (x−1)2)1−r

=

{
−

√
pq
2 sgn(x−1), if r= 1

2
−sgn(x−1)∞, if r< 1

2 .

The second statement: differentiating, we have dgr

dx
=pqrm(p;x,1)−2+rf(x). Hence,

d
dx

gr >0 if and only if f >0 , here

f(x) :=(−1+r)log
1

q+px
log

x

q+px
− q

q+px
log

1

q+px
− px

q+px
log

x

q+px
. (A.8)
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Now we observe that the positivity of f(x) ensures the monotonic increasing behavior
of gr(p;x), which then guarantees the triangle inequality.
Differentiating again,

f ′(x)=
q(q(−1+r)+prx)log 1

q+px
−px(qr+p(−1+r)x)log x

q+px

x(q+px)2
. (A.9)

First, since f(1)=0,f ′(1)=0, it suffices to show that if x>1, then f ′(x)>0, and
if x<1, then f ′(x)<0.
There are two cases for r. Suppose p<q, then r=p, and

f ′(x)=
q((−q2 +p2x)log 1

q+px
−p2x(1−x)log x

q+px
)

x(q+px)2
. (A.10)

Now to simplify the numerator of f ′(x), let s= x
q+px

,t= 1
q+px

. Then ps+qt=1,x= s
t
,

and

(−q2 +p2x)log 1
q+px

−p2x(1−x)log x
q+px

q+px

= t
(
−q2 +p2 s

t

)
logt−p2

(
1− s

t

)
slogs

=

(
1

t
−1

)
(pslogs+qt logt)+(p−q)logt

=

{
≥0, if x>1, i.e., t<1<s.
≤0, if x<1, i.e., t>1>s.

Suppose p>q, then r= q, and

f ′(x)=
q(−pq+pqx)log 1

q+px
−px(q2−p2x)log x

q+px

x(q+px)2
. (A.11)

Using the same substitution, we have

−
q2(1−x)log 1

q+px
+(q2−p2x)xlog x

q+px

q+px

=−q2
(
1− s

t

)
t logt−

(
q2− p2s

t

)
slogs

=−q
(
1− s

t

)
(pslogs+qt logt)+

(p−q)

t
slogs

=

{
≥0, if x>1, i.e., t<1<s.
≤0, if x<1, i.e., t>1>s.

In the above discussion, we have shown that f ′(x)>0 if x>1, and f ′(x)<0 if
x<1. Hence, from f(1)=0,f ′(1)=0, we conclude that f(x)≥0, and g(x) increases
monotonically except for the jump at x=1.

Proof of Lemma 4.7. Without loss of generality, assume a<b. Since the
triangle inequality holds in the cases where a<b<c and c<a<b, we only need to
show

m(p;a,b)r ≤m(p;a,c)r +m(p;c,b)r,where a<c<b. (A.12)
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To this end, we claim the right-hand side is concave in c. First, differentiate the
right-hand side (denoted by RHS) with respect to c. We claim that its derivative
decreases as c increases.
Indeed,

∂

∂c
RHS =

rq log c
ap+cq

m(p;a,c)1−r
+

rp log c
cp+bq

m(p;c,b)1−r
=

rq log 1
ap
c

+q

(cm(p; a
c
,1))1−r

+
rp log 1

p+ bq
c

(cm(q; b
c
,1))1−r

, (A.13)

i.e.,

c1−r ∂RHS

∂c
=

rq log 1
ap
c

+q

(m(p; a
c
,1))1−r

+
rp log 1

bq
c

+p

(m(q; b
c
,1))1−r

. (A.14)

Using the definition of g in the previous lemma,

gr(p;x) := rq log
1

q+px

(
q log

1

q+px
+pxlog

x

q+px

)r−1

, (A.15)

and denoting x :=a/c,x<1,β := b
a

>1, (then β ·x= b/c, x∈ ( 1
β
,1),βx∈ (1,β)), then we

have that

c1−r ∂RHS

∂c
=gr(p;x)+gr(q;βx). (A.16)

Since gr(p;x) is nonzero with a jump at x=1, and its derivative is nonnegative. If
r< 1

2 , then

{
RHS→+∞ as x→1−,

RHS→−∞ as x→ 1
β

+
,

and if r= 1
2 , then

{
RHS→+

√
pq
2 as x→1−,

RHS→−
√

pq
2 as x→ 1

β

+
.

By Lemma 4.6 we know that gr(p;x)+gr(q;βx) is monotonically increasing as x in-
creases from 1

β
to 1, thus it has at most one sign change between x= 1

β
and x=1.

Note as c decreases, x increases. When the sign change happens, the derivative
c1−r ∂RHS

∂c
goes from negative to positive as x goes from 1

β
to 1, (i.e., c decreases from

b to a). Also ∂RHS
∂c

<0 at c= b, and ∂RHS
∂c

>0 at c=a, which implies that there is one
and only one sign change in c∈ [a,b], which is a maximizer, not a minimizer. Thus,
RHS has two local minima at c=a and c= b.

Finally, when c=a, or c= b, then m(p;a,c)r +m(p;c,b)r becomes m(p;a,b)r. So
we have established the inequality.

By Lemma 2.3, clearly we have the second statement.
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