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OPTIMAL INPUT FLOWS FOR A PDE-ODE MODEL OF SUPPLY
CHAINS∗

CIRO D’APICE† , ROSANNA MANZO‡ , AND BENEDETTO PICCOLI§

Abstract. In this paper we deal with a continuous model for supply chains, consisting of a
PDE for the density of processed parts and an ODE for the queue buffer occupancy. We discuss
the optimal control problem stated as the minimization of the queues and the quadratic difference
between the effective outflow and a desired one. Here the input flow is the control and is assumed
to have uniformly bounded variation. Introducing generalized tangent vectors to piecewise constant
controls, representing shifts of discontinuities, we analyze the dependence of the solution on the
control function. Then existence of an optimal control for the original problem is obtained. Finally
we study the sensitivity of the cost functional J as function of controlled inflow, providing an estimate
of the derivative of J with respect to switching times.
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1. Introduction
The mathematical modeling of supply chains is characterized by (at least) two

different approaches: discrete event simulations, which consider trajectories of indi-
vidual parts, and continuous models, which are based either on ordinary (see [6, 15])
or partial differential equations. To our knowledge, the first continuous model for sup-
ply chains, based on partial differential equations, was introduced by D. Armbruster
et al. (see [1]). The authors, taking the limit on the number of parts and suppliers,
obtained a conservation law for the part density, with flux given by the minimum
between the physical flow and the maximal processing capacity.
It is not easy to define solutions to the model of [1] because of delta waves, thus other
fluid-dynamic models for supply chains have been introduced in [5, 8, 9] and [12]. The
works [5, 8, 9] and [10] deal with a mixed continuum-discrete model consisting of a
system of two conservation laws, one for the density part and one for the processing
rate, and Riemann solvers at fixed nodes. A comprehensive description of such models
can be found in the recent monograph [7].

Here we focus on the model introduced in [12] by Goettlich, Herty, and Klar
(the GHK model), where supply chains are concatenations of suppliers. The latter is
composed of a processor for assembling and construction and a buffer for unprocessed
parts, called a queue. The evolution of parts inside the processor is given by a con-
servation law for the density of parts, ρ(x,t). The dynamics of each queue is given by
an ODE for the queue buffer occupancy q(t).

An important matter for applications is the design of optimal supply chains,
in such a way as to reduce the dead times, to avoid bottlenecks, and to improve
productivity. Several questions can be asked: can we control the maximal processing
rates, or the processing velocities, or the input flow in such way to minimize queues and
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to achieve an expected outflow? In [13] two optimal control problems were considered.
First the problem of determining optimal velocities for each individual processing unit
is addressed for a supply chain consisting of three processors. Then, given a supply
network with a vertex of dispersing type, the distribution rate has been controlled in
such way as to minimize queues.

In this paper, in contrast to [13], our aim is to adjust the input flow in order
to minimize queues and best approximate a desired supply chain outflow. In real
situations, this amounts to regulate production in relation to market demand, and
minimize the cost of inventory, or the goods timing in warehouses. The optimization
is realized by defining a cost functional J which is the weighted sum of two parts. The
first is simply the time integral of the queue buffers’ occupancies, while the second is
the quadratic distance of the outflow from the desired one.

We choose to consider controls having uniformly bounded variation. Such a choice
is justified both by theoretical needs of having good properties of solutions and prac-
tical one for the presence of possible costs for adjusting the supply chain inflow. To
start we need to make sure that the supply chain dynamics are well defined for ev-
ery control with bounded variation. Due to the discontinuous fashion of the ODE
solved by buffers, we can not apply standard functional analysis techniques to study
existence, uniqueness and continuous dependence of solutions from controls.

The equation for buffers is rewritten as a discontinuous control system, where the
control is the outflow of the processor preceding the queue. Then a suitable definition
of solution a là Filippov is given for such a control system. If v is a piecewise constant
control and q the corresponding Filippov solution, then we can prove that q̇ is a
function of bounded variation, whose total variation is estimated in terms of that of
v.

Introducing generalized tangent vectors to a piecewise control representing shifts
of discontinuities, in the spirit of [14], we study the dependence of the solution on the
control function. The results achieved for a single buffer, combined with the analysis
of [14], allow us to define a solution on the whole supply chain for bounded variation
inflows. Finally, we prove existence of an optimal control for the original problem.

To illustrate the richness of the control problem and the difficulty in its solution,
we analyze in detail the simple case of a supply chain with two processors. The
inflow is a control with a unique discontinuity and we provide explicit solutions for
the optimal location of the discontinuity. In practice, we fix two inflow strategies and
determine the optimal switching time among them. We treat also the case in which
the controls are the maximal processing rates or the inflow levels of densities.

Then we study the sensitivity of the cost functional J on the controlled inflow,
again based on the evolution of tangent vectors to the solution (ρ,q). The infinitesimal
displacement of each discontinuity of the control produces a reconfiguration of the
inflow, whose effects are visible both on processors and on queues. Accurate analysis
provides an estimate of the derivative of J with respect to switching times.

This sensitivity analysis is the starting point of a future study of numerical meth-
ods to efficiently deal with the optimal control problem. Our method is based on a
set of shifts solving linear equations, inside processors, and simple dynamic rules for
queues. Therefore, it opens the possibility of a numerical treatment of the optimal
control for continuous supply chain models which should be more convenient than
discretization schemes, e.g. the Godunov scheme. The latter approaches in fact need
to consider adjoint vectors to the whole solution, rendering the numerics delicate.

The outline of the paper is the following. Section 2 describes the model of [12] and
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introduces the control problem. The dynamics of a queue buffer occupancy is analyzed
in Section 3. In particular solutions a là Filippov are introduced, and tangent vectors
for piecewise constant controls and solutions for BV controls are defined. Section 4
is devoted to the existence of an optimal control. Section 5 contains the analytical
expression of optimal controls for the simple case of a chain composed of two arcs and
one node. Despite the simple structure of the chain we can observe that calculations
are very complicated. Section 6 reports the sensitivity analysis for the cost, and the
paper ends with a summary.

2. An optimal control problem for the GHK model of supply chains
The GHK model of supply chain consists of connected suppliers which process

parts. Further, each supplier is composed of a processor for assembling parts and
construction and a queue for unprocessed parts. Formally we have the following
definition.

Definition 2.1. A supply chain consists of a finite sequence of consecutive processors
Ij, j∈J ={1, . . . ,N} and queues in front of each processor, except the first. Thus the
supply chain is given by a graph G=(V,J ) with arcs representing processors and
vertices, in V={2, . . . ,N}, representing queues. Each processor is parametrized by a
bounded closed interval Ij=[aj ,bj ], with bj−1=aj ,j=2, ...,N (see figure 2.1).

jq

1jI jI

1j ja b

1jL jL

Fig. 2.1. Supply chain structure.

Each processor is characterized by a maximal part density ρmaxj , a maximal pro-
cessing rate µj , a length Lj= bj−aj , and processing time Tj . The quantity Vj=Lj/Tj
is thus the processing velocity. The dynamics of the j-th processor is given by the
initial-boundary value problem for the conservation law

∂tρj (x,t)+∂xmin{µj ,Vjρj (x,t)}=0, ∀x∈ [aj ,bj ] , t∈R
+, (2.1)

ρj (x,0)=ρj,0 (x) , ρj (aj ,t)=
f incj (t)

Vj
, (2.2)

where ρj ∈ [0,ρmaxj ] is the unknown function, representing the density of parts, while

the initial datum ρj,0 and the inflow f incj (t) are given. Notice that (2.1)-(2.2) should
be interpreted in the weak generalized sense; see [11].

For the first arc of the supply chain, we assume that the inflow is assigned by a
control function f inc1 (t)=u(t)∈ [0,µ1].

Each queue buffer occupancy is modeled as a time-dependent function t→ qj(t),
satisfying the following equation:

q̇j(t)=fj−1 (ρj−1 (bj−1,t))−f incj (t), j=2, ...,N, (2.3)
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where the first term is defined by the trace of ρj−1 (which is assumed to be of bounded
variation on the x variable), while the second is defined by:

f incj (t)=

{
min{fj−1 (ρj−1 (bj−1,t)) ,µj} if qj (t)=0,
µj if qj (t)>0.

(2.4)

This allows for the following interpretation: we process as many parts as possible.
If the outgoing buffer is empty, then we process all incoming parts but at most µj ,
otherwise we can always process at rate µj .
Finally, the supply chain model is a coupled control system of partial and ordinary
differential equations given by





∂tρj (x,t)+∂xmin{µj ,Vjρj (x,t)}=0 j=1, ...,N,
q̇j(t)=fj−1 (ρj−1 (bj−1,t))−f incj (t) j=2, ...,N,
ρj (x,0)=ρj,0 (x) j=1, ...,N,

ρj (aj ,t)=
finc
j (t)

Vj
j=1, ...,N,

qj (0)= qj,0 j=2, ...,N,
f inc1 (t)=u(t)

(2.5)

where f incj (t) is given by (2.4) for j=2, ...,N .

2.1. The optimal control problem. In this subsection we introduce an
optimal control problem for the model (2.5).

Fix a time horizon [0,T ], and define the cost functional:

J(u)=
n∑

j=1

∫ T

0

α1(t)qj(t)dt+

∫ T

0

α2(t) [VN ·ρN (bN ,t))−ψ(t)]2dt=̇J1(u)+J2(u),

(2.6)
where α1,α2∈L1

(
(0,T ), [0,+∞)

)
are weight functions, (ρj ,qj) is the solution to (2.5)

for the control u, VN ·ρN (bN ,t) represents the outflow of the supply chain (assuming
the density level is below µN ), while ψ(t)∈L∞

(
(0,T ), [0,+∞)

)
is a pre-assigned flow.

Given C>0, we aim to analyze the minimization problem

min
u∈UC

J(u), (2.7)

where UC ={u : [0,T ]→ [0,µ1] : u measurable, T.V.(u)≤C} (with T.V. indicating the
total variation), and ρj , qj are subject to the dynamics (2.5). In other words, we want
to minimize queues and the distance between the effective outflow and the pre-assigned
ones ψ(t), using the supply chain input u as control.

To start we need to make sure that the dynamics (2.3) are well defined for every
control with bounded variation. The definition of a solution for initial data with
bounded variation is already provided in [14]. In the next section we treat in detail
the dependence on the control variable.

3. The queue dynamics for bounded variation inputs
We now focus on the dynamics of a queue buffer occupancy. Interpreting the first

term in (2.3) as an input and dropping the index, we rewrite the dynamics as:

q̇=ϕ(q,v), v∈ [0, v̄], (3.1)

where v̄ >0, v is thought of as a control, and

ϕ(q,v)=

{
v−min{v,µ} if q=0,
v−µ if q>0.

(3.2)
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Notice that ϕ is discontinuous in the variable q. Due to this fact, the definition of a
solution and the dependence on the control variable v is not trivial. From now on we
consider the interesting case v̄ >µ.

Remark 3.1. Due to the discontinuous fashion of ϕ we can not apply most of
the known techniques to study existence, uniqueness, and continuous dependence of
solutions. First of all we need to provide a suitable definition of solution. Moreover,
if the control v is an L1 function, we can not, in general, ensure existence of solutions.

We define a solution to (3.1)-(3.2) a la Filippov as follows. First we extend the
function ϕ for negative values of q by setting:

ϕ(q,v)=ϕ(0,v) if q<0.

As customary for discontinuous dynamics we introduce the multifunction:

Φ(q)=
⋂

δ>0

⋂

meas(N )=0

{ϕ(p,v) :p∈ q+δB \N ,v∈ [0, v̄]}, (3.3)

where meas indicates the Lebesgue measure and B the closed ball of radius 1. There-
fore we get:

Φ(q)=

{
[−µ,v̄−µ] q>0,
[0, v̄−µ] q≤0.

(3.4)

Definition 3.1. A Filippov solution to (3.1) is an absolutely continuous function
q : [0,T ]→R, satisfying for almost every t:

q̇(t)∈Φ(q(t)).

We easily get

Proposition 3.2. For every q0≥0 each Filippov solution to (3.1), with initial condi-
tion q(0)= q0, satisfies q(t)≥0 for every t. Moreover there exists a measurable control
v : [0,T ]→ [0, v̄] such that (3.1) holds true for almost every t.

Proof. If q<0, then w≥0 for every w∈Φ(q). Therefore {q : q≥0} is invariant
for the differential inclusion q̇∈Φ(q), and this proves the first part of the Proposition.
The second part follows from Theorem 3.1.1 on page 36 of [4].

We now provide an estimate for Filippov solutions. The latter is similar to those
obtained in [14]:

Proposition 3.3. Let v be a piecewise constant control and q the corresponding
Filippov solution. Then q̇ is a function of bounded variation and:

T.V.(q̇)≤2T.V.(v)+µ.

Proof. A change at time t̄ in q̇ may occur in two cases (not mutually exclusive):
1) t̄ is a discontinuity point of v;

2) at t̄ the queue empties, i.e. for some δ>0 it holds that q is strictly positive
on ]t̄−δ, t̄[ and vanishes on ]t̄, t̄+δ[.
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We treat case 1) and case 2) assuming they do not happen at the same time. If
both happen at the same time it is enough to combine the estimates.

In case 1) we have three sub-cases:

a) there exists δ such that q vanishes on ]t̄−δ, t̄+δ[;
b) there exists δ such that q vanishes on ]t̄−δ, t̄[ and is strictly positive on ]t̄, t̄+δ[.
c) there exists δ such that q is strictly positive on ]t̄−δ, t̄+δ[.
Define v±=v(t̄±) and q̇±= q̇(t̄±). In case a), we have v−,v+≤µ and q̇±=0,

then |q̇+− q̇−|=0< |v+−v−|. If b) occurs, then v−≤µ<v+ and q̇−=0<q̇+=v+−µ.
Thus |q̇+− q̇−|=v+−µ≤v+−v−. In case c), we have |q̇+− q̇−|= |(v+−µ)−(v−−
µ)|= |v+−v−|.

Let us now pass to case 2). Consider all times si, 0<s1<...<sk, where 2) occurs.
By assumption v is continuous at si, i=1, . . . ,k. We have v(s1)<µ, −µ≤ q̇(s1−)<
0 and q̇(s1+)=0. Then |q̇(s1+)− q̇(s1−)|≤µ. Consider now si with i>1. Then
there exist t1,t2∈]si−1,si[, t1<t2, such that v(t1)≥µ and v(t2)=v(si)<µ. Moreover
q̇(si−)=v(t2)−µ<0 and q̇(si+)=0. Then |q̇(si+)− q̇(si−)|≤ |v(t2)−v(t1)|.

Now the variation of q̇ due to case 1) is bounded by T.V.(v), while that due to
case 2) is bounded by T.V.(v)+µ, thus we conclude.

3.1. Piecewise constant control and tangent vectors. It is easy to see
that (3.1) admits a unique solution for every piecewise constant control v. Our aim
is now to introduce generalized tangent vectors, in the spirit of [14], to study the
dependence of the solution on the control function.

Definition 3.4. Let v : [0,T ]→ [0, v̄] be a piecewise constant control and ti, i=
1, . . . ,Mv, be the ordered discontinuity points of v. A tangent vector to v is a vector
ξ=(ξ1, . . . ,ξMv

)∈R
Mv representing shifts of discontinuities. The norm of the tangent

vector is defined as:

‖ξ‖=
Mv∑

i=1

|ξi| · |v(ti+)−v(ti−)| .

Assume for simplicity that t1>0, tMv
<T , and set t0=0, ξ0=0, tMv+1=T ,

ξMv+1=0. Then given a tangent vector ξ to v, for every ε sufficiently small we
define the infinitesimal displacement as:

vε=

Mv∑

i=0

χ[ti+εξi,ti+1+εξi+1[v(ti+), (3.5)

where χ is the indicator function. In other words vε is obtained from v by shifting
the discontinuity points of εξ.

We now want to estimate the change in the dynamics of q for an infinitesimal
displacement as in (3.5). For this purpose we consider the Cauchy problem:

q̇=ϕ(v,q), q(0)=0. (3.6)

Let q, respectively qε, be the solution to (3.6) for the control v, respectively vε. Then
we define:

η(t)= lim
ε→0

q(t)−qε(t)
ε

.
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Lemma 3.5. Consider a piecewise constant control v and a tangent vector ξ. Then

|η(t)|≤‖ξ‖ for every t∈ [0,T ].

Proof. Notice that η(0)=0. A change of η may occur only at times t such that:
i) t is a discontinuity point ti for v;

ii) t is such that q(s)=0 for s in a right neighborhood of t and q(s)>0 for s in
a left neighborhood of t.

Consider case i). Assume first q̇(t±)=v(t±)−µ, then simply |η(t+)−η(t−)|≤
|ξi||v(t+)−v(t−)|. Otherwise q(t)=0 and v(t+)≤µ or v(t−)≤µ (not mutually exclu-
sive). If both v(t−)≤µ and v(t+)≤µ then η(t+)=0. Otherwise v(t−)≤µ<v(t+),
then |η(t+)−η(t−)|≤ |ξi||v(t+)−µ|≤ |ξi||v(t+)−v(t−)|.
In case ii) we have η(t+)=0, thus we conclude.

We now use tangent vectors to define a distance (see [3]). A curve of piecewise
constant functions θ→vθ, θ∈ [0,1], with the same number of jumps, say at the points
xθ1<...<x

θ
M , admits a tangent vector if the following numbers are well defined

ξθβ=̇ lim
h→0

xθ+hβ −xθβ
h

, β=1, ...,M.

Every path γ :θ→vθ admitting a smooth tangent vector is called regular and its
L1-length is defined as:

‖γ‖L1 =

M∑

β=1

1∫

0

∣∣vθ(xβ+)−vθ(xβ−)
∣∣∣∣ξθβ

∣∣dθ=
∫ 1

0

‖ξθ‖dθ. (3.7)

Similarly we can define the length for finite concatenations of such paths. Now,
given two piecewise constant functions v and v′, call Ω(v,v′) the family of all finite
concatenations of regular paths γ : [0,1]→γ(t) with γ(0)=v, γ(1)=v′. The Finsler
distance d between v and v′ is defined by

d(v,v′)=̇inf {‖γ‖L1 ,γ∈Ω(v,v′)} .

To define d on all L1, for given v,v′∈L1 we set

d(v,v′)= inf {‖γ‖L1 +‖v− ṽ‖L1 +‖v′− ṽ′‖L1 :

ṽ, ṽ′ piecewise constant functions, γ∈Ω(ṽ, ṽ′)} .

It is easy to check that this distance coincides with the standard distance of L1.

Remark 3.2. Notice that the path θ→vθ is not differentiable with respect
to the usual differential structure of L1; in fact if ξθβ 6=0, as h→0 the ratio[
vθ+h(x)−vθ(x)

]
/h does not converge to any limit in L1, but, formally, to a sum

of Dirac deltas.
To estimate the dependence of solutions on the control we use the distance d. More
precisely, we determine the effect of tangent vectors over solutions, which in turn will
provide an estimate of the dependence in terms of the L1 distance.

We are now ready to prove the Lipschitz continuous dependence of solutions from
controls:



1232 OPTIMAL INPUT FLOWS FOR A PDE-ODE MODEL OF SUPPLY CHAINS

Proposition 3.6. Let v, ṽ, be piecewise constant controls and q, q̃ the corresponding
solutions to (3.6). Then:

‖q− q̃‖C0 ≤‖v− ṽ‖L1 .

Proof. Let v, ṽ, be piecewise constant controls, γ :θ→vθ, θ∈ [0,1], a path such
that v0=v, v1= ṽ, and ξθ the infinitesimal displacement of discontinuities. Define
θ→ qθ, θ∈ [0,1], as the path of solutions to (3.6) joining q0= q to q1= q̃. Denoting

η(t,θ)= lim
ε→0

qθ+ε(t)−qθ(t)
ε

, from Lemma (3.5) we get

‖q− q̃‖C0 =sup
t

∣

∣q
0(t)−q

1(t)
∣

∣=sup
t

∣

∣

∣

∣

∫ 1

0

η(t,θ)dθ

∣

∣

∣

∣

≤ sup
t

∫ 1

0

|η(t,θ)|dθ≤

∫ 1

0

‖ξθ‖dθ=L(γ).

Taking the infimum over all γ gives

‖q− q̃‖C0 ≤ inf
γ
L(γ)=d(v,ṽ)=‖v− ṽ‖L1 .

3.2. Solutions for bounded variation controls. Now we define solutions
for controls with bounded variation. Fix a control v of bounded variation and let vn
be a sequence of piecewise constant controls such that:

‖v−vn‖L1 →0, T.V.(vn)≤T.V.(v). (3.8)

Using Proposition 3.6, we immediately have:

‖q−qn‖C0 ≤‖v−vn‖L1 →0, (3.9)

for a unique q, candidate solution to (3.6) for v, and qn the solution to (3.6) for vn.

Definition 3.7. Given a control v of bounded variation, let vn be a sequence of
piecewise constant controls such that (3.8) holds true. Then the solution to (3.6) for
v is defined as the limit of qn, solutions to (3.6) for controls vn.

We now note that the solution is well defined.

Proposition 3.8. Let v be a control of bounded variation and vn, v
′
n be two sequences

of piecewise constant controls such that (3.8) holds true. If qn, respectively q
′
n, are

solutions to (3.6) for controls vn, respectively v
′
n, then ‖qn−q′n‖C0 →0.

The proof follows immediately from Proposition 3.6. Moreover we have the fol-
lowing:

Proposition 3.9. Let v be a control of bounded variation and q the solution to
(3.6) as in Definition 3.7. Then q is Lipschitz continuous with Lipschitz constant
bounded by min{v̄−µ,µ}. Moreover q is a solution to (3.6) in the sense of Filippov
(see Definition 3.1) for some control w.

Proof. Let vn be a sequence of piecewise constant controls as in Definition 3.7,
qn solutions to (3.6) for controls vn, and q the limit of qn. The function q is Lipschtitz
continuous since qn are equi-Lipschitz functions.

Now we prove that q is a solution to (3.6) in the sense of Filippov, thus we
conclude using Proposition 3.2. Notice that Φ is an upper semicontinuous map from
R to closed convex subsets of R, and qn and q̇n are measurable functions. We have
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that qn converges uniformly to q, since (3.9) holds. Now thanks to Proposition 3.3,
up to a subsequence, by Helly’s Theorem we have that q̇n converges a.e. and by the
Lebesgue dominated convergence Theorem q̇n converges strongly in L1. Thus we can
apply the Convergence Theorem in [2] (Theorem 1 on page 60), obtaining that q is a
solution to (3.6) in the sense of Filippov.

We can now prove that q satisfies the equality (3.6) for v at almost every time t.
Therefore it is also a solution in the sense of Caratheodory (see [4]) for v.

Proposition 3.10. Let v be a control of bounded variation and q the solution to
(3.6) as in Definition 3.7. Then for almost every t it holds:

q̇(t)=ϕ(q(t),v(t)). (3.10)

Proof. Let vn be a sequence of piecewise constant controls as in Definition
3.7. Notice that vn converges in L1 to v, thus in particular it converges almost
everywhere. Since q̇n are of bounded variation, we can assume that q̇n converges to q̇
almost everywhere.

Assume first q(t)=0. Then, up to a measure zero set, we can assume vn(t)→v(t),
q̇n(t), q̇(t) exist, q̇n(t)→ q̇(t), and there exists a sequence sn∈{s : q(s)=0} with sn→ t.
Thus q̇(t)=0. If v(t)≤µ then (3.10) holds true.
Otherwise v(t)>µ, thus for n sufficiently big vn(t)>µ. Then qn satisfies q̇n(t)=
vn(t)−µ. Passing to the limit we get q̇(t)=v(t)−µ, which contradicts q̇(t)=0.

Assume now q(t)>0. We can suppose q>0 and qn>0 in a neighborhood of t
for n sufficiently big. Then it holds true q̇n=vn−µ. Up to a set of measure zero,
qn(t)→ q(t) and vn(t)→v, thus we conclude.

From Proposition 3.6, by passing to the limit over piecewise constant approxima-
tions, we obtain the following:

Proposition 3.11. The map v 7→ q, where v is a control of bounded variation and q
is the solution to (3.6) as in Definition 3.7, is continuous for the norms ‖·‖L1 and
‖·‖C0 . In other words (3.6) is well posed.

4. Existence of an optimal control
In this section we prove existence of an optimal control for the problem (2.5)-

(2.6)-(2.7), using the estimates of previous section.
The Finsler distance d defined for v can be used for the density function ρj , as

elements of L1. Notice that if ρ1,0≤ µ1

V1
, then

ρ1(x,t)=
1

V1
u

(
t− x−a1

V1

)
for x≥a1+V1t.

Thus a shift ξ of a single discontinuity ti in u gives rise to a shift ξ̃ in ρ1 at times
t≥ ti. Moreover, it holds

ξ̃=
ξ

V1
. (4.1)

In the case that ρ1,0 is not bounded by µ1

V1
, the wave velocities may be below V1 and

we get an inequality in (4.1). Therefore the tangent vectors to ρ1 are controlled in
terms of those of u.
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Now, in [14], again using tangent vectors, it was proved that

∑

j

‖ρj(t)− ρ̃j(t)‖L1 +
∑

j

‖qj(t)− q̃j(t)‖C0 ≤
∑

j

‖ρj(0)− ρ̃j(0)‖L1 , (4.2)

where (ρj ,qj), respectively (ρ̃j , q̃j), is the solution to (2.5) for initial data (ρj,0,qj,0), re-
spectively (ρ̃j,0, q̃j,0), and control u(t)≡V1ρ1,0(a1+), respectively ũ(t)≡V1 ρ̃1,0(a1+).
Let us now consider the case of arbitrary controls u and ũ, but solutions having the
same initial data, namely (ρj,0,qj,0)=(ρ̃j,0, q̃j,0). Again we use the metric d for u and
ũ. From (4.1) we easily get that total shifts generated in ρ1 are bounded by 1/V1, the
total shift in the control. Thus, using again the metric d, we get

∑

j

‖ρj(t)− ρ̃j(t)‖L1 +
∑

j

‖qj(t)− q̃j(t)‖C0 ≤ 1

V1
‖u− ũ‖L1 . (4.3)

From these estimates we get the following:

Theorem 4.1. Consider the optimal control problem (2.5)-(2.7). If J is lower semi-
continuous for the L1 norm, then there exists an optimal control.

Proof. Let un be a sequence of piecewise constant controls in UC such
that J(un)→ infu∈UC

J . Then, by Helly’s Theorem, there exists u∈UC such that
‖u−un‖L1 →0. By (4.3) and Proposition 3.10, we get that (ρnj ,q

n
j ), the solution to

(2.5) for un, converges to (ρj ,qj), the solution to (2.5) for u. We conclude by lower
semicontinuity of J .

Corollary 4.2. There exists an optimal control for the problem (2.5)-(2.6)-(2.7).

Proof. By Theorem 4.1, it is enough to prove that the functional J , given
by (2.6), is lower semicontinuous for the L1 norm. We will prove that J is indeed
continuous.
Let un be a sequence of piecewise constant controls converging to a limit u, thus
‖u−un‖L1 →0. Again, by (4.3) and Proposition 3.10, we get that (ρnj ,q

n
j ), the solution

to (2.5) for un, converges to (ρj ,qj), the solution to (2.5) for u. Now, by (4.3), qn→ q
in C0 thus, using α1∈L1, we can apply the Lebesgue dominated convergence theorem
and conclude J1(un)→J1(u). On the other side,

∫ T

0

α2(t)
[
(VN ·ρnN (bN ,t)−ψ(t))2−(VN ·ρN (bN ,t)−ψ(t))2

]
dt

=

∫ T

0

α2(t)
[
V 2
N

(
(ρnN (bN ,t))

2−(ρN (bN ,t))
2
)
+2ψ(t)VN (ρnN (bN ,t)−ρN (bN ,t))

]
dt

≤||2ψ(t)+VN (ρnN (bN ,t)+ρN (bN ,t))||∞ ·
∫ T

0

α2(t) [VN (ρnN (bN ,t)−ρN (bN ,t))]dt.

Now, since ρN ≤ρmaxN and ψ∈L∞, the first term is bounded. Moreover, using (4.3)
and α2∈L1, we apply again the Lebesgue dominated convergence theorem, obtaining
J2(un)→J2(u).

5. The case of one node and one discontinuity in the control

Consider a supply chain consisting of two arcs I1, I2 with lengths δ1 and δ2,
maximal processing rates µ1 and µ2, processing velocity for both processors equal to
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1, i.e. V1=V2=1, and a queue q2 in front of I2. We start from an empty chain, hence
the initial datum is ρ1,0=ρ2,0=0. Assume a piecewise constant input profile

u(t)=

{
f̄1 if t∈ [0,t1] ,
f̄2 if t∈ [t1,T ] ,

and a functional (2.6) with α1(t)=α2(t)≡1. Indicate with τ1= δ1+δ2 and τ2= t1+
δ1+δ2 the total time that a ρ wave, which starts at t=0 and t= t1, respectively, takes
to propagate along the entire chain. For simplicity, we choose a constant pre-assigned
output flow ψ̄.
We face the problem of minimizing J first as a function of t1, fixing µ1, µ2, f̄1, and
f̄2; then as a function of t1, µ1, and µ2, fixing f̄1 and f̄2, and finally as a function of
t1, f̄1, and f̄2, fixing µ1 and µ2. Assuming that µ1≥max{f̄1, f̄2}, we distinguish two
cases:

1. f̄1≥ f̄2;
2. f̄1<f̄2;

each of which has three more subcases:

1.a µ2>f̄1>f̄2;
1.b f̄1≥µ2>f̄2;
1.c f̄1>f̄2≥µ2;

2.a f̄1<f̄2≤µ2;
2.b f̄1≤µ2<f̄2;
2.c µ2<f̄1<f̄2.

We analyze in detail Case 1.b. Other cases can be treated in a similar way. As
f̄1≥µ2, the queue increases in [δ1,t1+δ1] and q2(t)=(t−δ1)(f̄1−µ2). Moreover since
f̄2<µ2, the queue decreases for t> t1+δ1 and there exists τ >t1+δ1 such that q2(t)=
0 ∀t≥ τ . In time interval [t1+δ1,τ ] we have q2(t)= t1(f̄1−µ2)+(t− t1−δ1)(f̄2−µ2),

where τ = (f̄2−f̄1)

f̄2−µ2
t1+δ1. Hence, J is given by:

J =

∫ t1+δ1

δ1

(t−δ1)(f̄1−µ2)dt+

∫ τ

t1+δ1

[
t1(f̄1−µ2)+(t− t1−δ1)(f̄2−µ2)

]
dt

+

∫ τ1

0

ψ̄2dt+

∫ τ3

τ1

(
µ2− ψ̄

)2
dt+

∫ T

τ3

(
f̄2− ψ̄

)2
dt

=
t21
2
(f̄1−µ2)+

1

2

[
t1(µ2+ f̄2−2f̄1)+(f̄2−µ2)(δ1−τ)

]
(t1+δ1−τ)

+ψ̄2(δ1+δ2)+
(
µ2− ψ̄

)2
(τ−δ1)+

(
f̄2− ψ̄

)2
(T −τ−δ2),

where τ3= τ+δ2 is the total time spent by a ρ wave, started from x= δ1 at time t= τ,
to propagate along arc I2.
Consider J =J(t1). We have that

∂J1
∂t1

=(f̄1− f̄2)
(µ2− f̄2)(µ2+ f̄2−2ψ̄)− t1(µ2− f̄1)

µ2− f̄2
,

and ∂J1
∂t1

=0 for t1=
(µ2−f̄2)(µ2+f̄2−2ψ̄)

µ2−f̄1
:= t̃1. Observe that t̃1∈ [0,T ] if T (µ2−f̄1)

µ2−f̄2
≤µ2+

f̄2−2ψ̄≤0, or if T≫0 and µ2+ f̄2−2ψ̄≤0.

Assuming f̄2 6= f̄1 6=µ2,
∂2J1
∂t21

= (f̄1−µ2)(f̄1−f̄2)

µ2−f̄2
>0, and we conclude that if t̃1∈

[0,T ], J(t1) has a minimum at t̃1. In the case T≫0 and µ2+ f̄2−2ψ̄ >0, the mini-
mum is attained in t1=0. Moreover, if µ2= f̄1, the functional is minimized for t1=0
if f̄1+ f̄2−2ψ̄ >0, for t1=T otherwise.
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We fix now f̄1 and f̄2, so J =J(t1,µ1,µ2), with t1∈ [0,T ] and f̄1≥µ2>f̄2. The
functional has three inner critical points Pi, i=0,1,2, and two boundary critical points
P3 and P4:

P0=
(
0,µ1,2ψ̄− f̄2

)
, f̄2<ψ̄, ζ≥0,

P1=

(
σ

4
,µ1,

3f̄1+ f̄2−θ
4

)
, 0≤σ≤4T, γ≥0, f̄2<ψ̄,

P2=

(
σ

4
,µ1,

3f̄1+ f̄2+θ

4

)
, 0≤σ≤4T, γ≥0, ζ≤0,

P3=(0,µ1,µ2) ,

P4=

(
T,µ1,

2f̄2+
√
2T (f̄1− f̄2)
2

)
, f̄1− f̄2≥

T

2
,

where θ=
√
(f̄1− f̄2)γ, σ=9f̄1− f̄2−3θ−8ψ̄, ζ= f̄1+ f̄2−2ψ̄, γ=9f̄1+7f̄2−16ψ̄.

From J(P2)−J(P1)=

√
(f̄1−f̄2)3γ3

8 ≥0, and J(P0)=J(P3), we get that the minimum
is reached at one of the points P0, P2, P3, P4.

Finally we analyze J =J(t1, f̄1, f̄2). The functional has two inner critical points
P0=

(
0,ψ̄,ψ̄

)
and P1=

(
2(µ2− ψ̄),ψ̄,ψ̄

)
, ψ̄≤µ2≤ T

2 + ψ̄. Boundary critical points are:

P2=
(
0, f̄1,ψ̄

)
, f̄1≥µ2>ψ̄, P3=

(
T,µ2,ψ̄

)
, ψ̄ <µ2, P4=

(
T −(δ1+δ2),µ2,−µ2+2ψ̄

)
,

ψ̄ <µ2, P5=
(
T,ψ̄,0

)
, ψ̄≥µ2, and P6=(T,µ2,0). As J (P0)=J (P1)=J (P2), J (P3)−

J (P2)=T (µ2− ψ̄)2≥0, and J (P4)−J (P2)=(T −δ1−δ2)(µ2− ψ̄)2≥0, we conclude
that J attains its minimum at P0, P1, P2, or P5, or P6.

We report in table 5.1 the value of the optimal switching time t1 for all the cases,
with:

t̄1 :=
(µ2− f̄2)

(
µ2+ f̄2−2ψ̄

)

µ2− f̄1
, (5.1)

t̃1 :=
(ρ̄2−µ2)(T −δ1)
ρ̄1+ ρ̄2−2µ2

, (5.2)

t̂1 :=
(T −δ1)(µ2− f̄2)+

(
f̄1−µ2

)(
µ2+ f̄1−2ψ̄

)

µ2− f̄2
. (5.3)

Remark 5.1. This simple example motivates the need of numerical methods to
address general problems. The main idea is to use Upwind-Euler methods to construct
numerical solutions to the PDE-ODE model, and to find the optimal switching times
of the inflow (of piecewise constant type) numerically be means of a steepest descent
algorithm. The derivative of J with respect to switching times is computed through
the evolution of generalized tangent vectors to the control and to the solution of the
supply chain model.

A preliminary sensitivity analysis is performed in next section.

6. Sensitivity analysis for the cost
Here we illustrate a technique to determine the sensitivity of the functional J

on the control u. Let u : [0,T ]→ [0,µ1] be a piecewise constant control and ti, i=
1, . . . ,Mu, be the ordered discontinuity points. Indicate by ξ∈R

Mu a vector tangent
to u. The infinitesimal displacement of each discontinuity produces a reconfiguration
of the control u and thus changes in the system, whose effects are visible both on
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Case Subcases optimal t1

1.a: µ2>ρ̄1>ρ̄2
ρ̄1+ ρ̄2−2ϕ̄≥0
ρ̄1+ ρ̄2−2ϕ̄<0

t1=0
t1=T

1.b: ρ̄1≥µ2>ρ̄2

T >>0, µ2 6= ρ̄1, µ2+ ρ̄2−2ϕ̄≤0
T >>0, µ2+ ρ̄2−2ϕ̄>0
T >>0, µ2= ρ̄1, ρ̄1+ ρ̄2−2ϕ̄≤0

t1= t1
t1=0
t1=T

1.c: ρ̄1>ρ̄2≥µ2 / t1= t̃1

2.a: ρ̄1<ρ̄2≤µ2
ρ̄1+ ρ̄2−2ϕ̄≤0
ρ̄1+ ρ̄2−2ϕ̄>0,

t1=0
t1=T

2.b: ρ̄1≤µ2<ρ̄2
T >>0, (µ2− ρ̄1)(µ2+ ρ̄1−2ϕ̄)≥
(µ2− ρ̄2)(T −δ1) t1= t̂1

2.c: µ2<ρ̄1<ρ̄2 / t1= t̃1

Table 5.1. Optimal t1 values for the cost functional J. The values of t̄1, t̃1, and t̂1 are given,
respectively, in equations (5.1), (5.2), and (5.3).

processors and on queues. In fact, every shift ξ generates shifts on the densities and
shifts on the queues, which spread along the whole supply chain.
Since u is piecewise constant, the solution (ρj ,qj) to (2.5) is such that ρj is piecewise
constant and qj is piecewise linear. A tangent vector to the solution (ρj ,qj) is given
by:

(αξj ,ηj),

where αξj are the shifts of the discontinuities of ρj , indexed by α, while ηj is the shift
of the queue buffer occupancy qj . The norm of a tangent vector is given by:

‖(αξj ,ηj)‖=
∑

j,i

|αξj ||∆αρj |+
∑

j

|ηj |.

From now on, to simplify computations, we assume

(H) Vj =1 for every j∈J ,
and analyze in detail the evolution of the tangent vectors (αξj ,ηj). A single shift can
generate many shifts on the densities and on the queues. The queues remain constant
and change only at those times at which one of the following interactions occur:

a) interaction of a density wave with a queue;

b) emptying of the queue.

Let t̄ be the interaction time. Use the letters + and − to indicate quantities
before and after t̄, respectively. So, we indicate with ρ−j and ρ+j the densities on
the processor Ij before and after an interaction occurs. We analyze the evolution of
vectors αξj and αηj in cases a) and b) separately. Since, by (H), Vj=1 by a slight
abuse of notation, we will compare densities ρ±j with maximal production rates µj .

Consider first case a) and distinguish two sub-cases:

a.1) qj(t̄)=0;

a.2) qj(t̄)>0.

In case a.1) we get ρ−j−1<µj . Then for some δ>0 it holds that qj(t)=0 and

q̇j(t)=0 in ]t̄−δ, t̄[ , from which we get f incj =ρ−j−1, i.e the incoming and outgoing
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Fig. 6.1. ρ
+
j−1<ρ

−
j−1 (left) and ρ

+
j−1>µj (right): the non shifted wave is represented by a

continuous line, while the shifted one is represented by a dashed line.

flux are equal before the interaction. To determine the evolution after t̄ we examine
two cases:

a.1.1) ρ+j−1<ρ
−
j−1<µj ;

a.1.2) ρ+j−1>µj .

In case a.1.1) the queue qj remains empty. Then for some δ>0, qj(t)=0 also in
]t̄, t̄+δ[ and ρ+j−1= ρ+j . A wave (ρ+j ,ρ

−
j ) is produced on arc Ij . The shifts have the

same values both on arc Ij−1 and on arc Ij , i.e.
αξj−1 = αξj . Since qj(t)=0 in a left

and right neighborhood of t̄ it follows that kη−j =0= kη+j .

In case a.1.2) since qj(t)>0, for t> t̄, then f incj =µj and q̇j(t)=ρ
+
j−1−µj>0, or

the queue increases. A wave (µj ,ρ
−
j ) is produced on arc Ij . As in the previous case

αξj−1=
αξj , as figure 6.1 shows. Moreover αη−j =0 and αη+j = αξ(ρ+j−1−µj).

In case a.2), for t< t̄, with t sufficiently close to t̄, we have that qj(t)>0, so
f incj =µj and q̇j(t)=ρ

−
j−1−µj . For t> t̄ the queue is still not empty, so f incj =µj and

q̇j(t)=ρ
+
j−1−µj . Notice that µj is the outgoing flux both for t< t̄ and t> t̄, so no

wave is produced on Ij and αξj=0. A shift for the queue qj is produced: αη+j =
αξ(ρ−j−1−ρ+j−1).

Consider now case b), i.e. the emptying of a queue. The queue is decreasing
until it becomes zero at t̄, i.e. qj(t̄)=0. For t< t̄, qj(t)>0 and q̇j(t)<0. So f incj =µj
and q̇j(t)=ρ

−
j−1−µj . For t> t̄, with t sufficiently close to t̄, qj(t)=0 and f incj =

min{ρ−j−1,µj}=ρ−j−1. We get αη+j =0, αξj−1=0 and αξj=−
αη−

j

ρ−
j−1

−µj
.

Using the above notation, let us indicate by αξj the shift of a generic discontinuity
of ρj and by αρ+j , respectively

αρ−j , the value of ρj on the right, respectively left, of the
discontinuity. Then, summarizing the above estimates and recalling the hypothesis
(H), we get:

∑

j

∑

α

|αξj ||αρ+j − αρ−j |+
∑

j

|ηj(t)|≤
∑

i

|ξi||u(ti+)−u(ti−)|.

We can now estimate the infinitesimal changes in the functional values caused by
tangent vectors to the controls u. Define Y1 to be the infinitesimal change in J1, then
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we easily get:

Y1=
∑

j

∫ t

0

ηj(t)dt. (6.1)

Similarly set Y2 be the infinitesimal change in J2. Using notation above, let us indicate
by αξN the shift to a generic discontinuity of ρN and by αρ+N , respectively αρ−N , the
value of ρN on the right, respectively left, of the discontinuity. Then

Y2=
∑

α

αξN

[(
αρ+N

)2−
(
αρ−N

)2−2ψ
(
αρ+N − αρ−N

)]

=
∑

α

αξN∆(αρN )
(
αρ+N + αρ−N −2ψ

)
, (6.2)

where ∆(αρN )= αρ+N − αρ−N . Finally, from (6.1) and (6.2), we get the following:

Proposition 6.1. Assume (H) and consider a piecewise constant control u. Let us
indicate by ξi the shift of the discontinuity of u at time ti and by ∂J1

∂ti
, respectively

∂J2
∂ti

, the variation of J1, respectively J2, occurring because of the shift ξi. Then:

∂J1
∂ti

≤T |u(ti+)−u(ti−)|, (6.3)

∂J2
∂ti

≤2max{‖ψ‖∞,µN}|u(ti+)−u(ti−)|. (6.4)

Remark 6.1. In Case 1.b of Section 5, since f̄1≥µ2>f̄2 we get:

∂J1
∂t1

=(µ2+ f̄2−2f̄1)

(
1

2
+ t1

f̄1−µ2

µ2− f̄2

)
≤ (f̄1+ f̄2−2f̄1)

(
1

2
+ t1

f̄1−µ2

µ2− f̄2

)

=(f̄2− f̄1)
(
1

2
+ t1

f̄1−µ2

µ2− f̄2

)
≤T

∣∣f̄1− f̄2
∣∣ ,

and

∂J2
∂t1

=(f̄1− f̄2)(µ2+ f̄2−2ψ̄)<2(f̄1− f̄2)(µ2− ψ̄).

If µ2≥ ψ̄ then

∂J2
∂t1

<2(f̄1− f̄2)µ2=2(f̄1− f̄2)max{ψ̄,µN},

otherwise µ2− ψ̄≤0, so ∂J1
∂t1

is non positive and (6.4) is again satisfied. Note that in

the case µ2<ψ̄ the supply chain outflow cannot approximate the desired one. Indeed
this means that the desired outflow is bigger than the maximal processing rate on the
last arc of the supply.

Remark 6.2. Notice that we can not in general expect lower bounds in Proposition
6.1. Indeed, assume that a discontinuity in the control occurs at a time t̄ very close
to the optimization horizon T . If T − t̄< (b1−a1)/V1 then a change in t̄ will not effect
the first queue and the rest of the supply chain. Therefore, we get ∂J/∂t̄=0.

On the other side, if T − t̄> (b1−a1)/V1, then a change in J1 of order T − t̄−(b1−
a1)/V1 occurs if q2 is not empty.
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Summary. In this paper the question of adjusting the input flow to a supply
chain, in order to minimize queues and approximate a desired supply chain outflow,
is addressed. The problem is formulated by means of a cost functional J, consisting in
a weighted sum of the time integral of queue buffers occupancies and of the quadratic
distance of the outflow from the desired one.

The input flow is chosen as a control of uniform bounded variation. The continu-
ous dependence of the solution on the control is then proved. The latter is achieved by
introducing generalized tangent vectors to piecewise constant controls, representing
shifts of discontinuities.

A solution on the whole supply chain for bounded variation inflows is defined by
combining the result for a single buffer with the analysis of [14]. Finally, the existence
of an optimal control for the original problem is proved and a sensitivity analysis is
provided for the cost functional J on the controlled inflow.

The future aim is to develop suitable numerics for the optimal control problem,
starting from the sensitivity analysis of J .

Acknowledgment. The authors wish to thank the anonymous referees for many
suggestions to improve the paper.
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