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E-CHARACTERISTIC POLYNOMIALS OF TENSORS∗

AN-MIN LI† , LIQUN QI‡ , AND BIN ZHANG§

Abstract. In this paper, we show that the coefficients of the E-characteristic polynomial of a
tensor are orthonormal invariants of that tensor. When the dimension is 2, some simplified formulas
of the E-characteristic polynomial are presented. A resultant formula for the constant term of the
E-characteristic polynomial is given. We prove that both the set of tensors with infinitely many
eigenpairs and the set of irregular tensors have codimension 2 as subvarieties in the projective space
of tensors. This makes our perturbation method workable. By using the perturbation method and
exploring the difference between E-eigenvalues and eigenpair equivalence classes, we present a simple
formula for the coefficient of the leading term of the E-characteristic polynomial when the dimension
is 2.
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1. Introduction

Eigenvalues of higher order tensors were introduced in 2005 [15, 13] and have
attracted much attention in the literature and found applications in science and en-
gineering. The E-eigenvalues of a tensor were introduced in [15, 17]. E-eigenvalues
are invariant under orthonormal coordinate changes [17]. They have applications
in determining positive definiteness of a multivariate system [15, 19], best rank-one
approximation [15, 18, 19, 24], magnetic resonance imaging [5, 20], spectral hyper-
graph theory [9] and symmetric embedding [21], and possess links with geometry
[1, 2, 3, 4, 16]. The numbers of E-eigenvalues and E-eigenvectors have been studied
in [7, 14].

An n-dimensional mth order hypermatrix A with entries in C is a map from
{1, · · · ,n}m→C. We use notation A=(ai1i2···im) to denote such a hypermatrix.

In physics [11, 22], a tensor is a physical quantity. In geometry, a tensor can be
regarded as a multi-linear function in a Hilbert space; see the discussion in Section 3.
In such applications, in an orthonormal coordinate system, a tensor is expressed by a
hypermatrix. It is important to determine parameters and properties of such a tensor,
which are invariant under orthonormal coordinate changes. In Theorem 1 of Section
3 of this paper, we show that the coefficients of the E-characteristic polynomial of
a tensor are orthonormal invariants of that tensor. For that discussion, we need to
distinguish a tensor A and its hypermatrix A in a coordinate system.

For some other applications, such as determining positive definiteness of a mul-
tivariate system, best rank-one approximation, spectral hypergraph theory, and sym-
metric embedding, there are no coordinate systems involved. People just regard a

∗Received: February 22, 2011; accepted (in revised form): April 13, 2012. Communicated by Shi
Jin.
This work is supported by the Research Grant Council of Hong Kong, Project Numbers: PolyU
501808, 501909, and 502510.

†School of Mathematics, Sichuan University, Chengdu, 610064, P.R. China
(math li@yahoo.com.cn).

‡Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom,
Kowloon, Hong Kong, P.R. China (maqilq@polyu.edu.hk).

§School of Mathematics, Sichuan University, Chengdu, 610064, P.R. China (zhang-
bin@scu.edu.cn).

33



34 E-CHARACTERISTIC POLYNOMIALS

hypermatrix A as a tensor. Hence, in the other parts of this paper, a tensor simply
means a hypermatrix.

For an mth order tensor A and a vector x∈C
n, we define Axm−1 to be the vector

in C
n with its ith component as

(Axm−1)i=

n
∑

i2,···,im=1

aii2···imxi2 · · ·xim .

If λ∈C and x∈C
n satisfy

{

Axm−1=λx,

xTx=1,
(1.1)

then λ is an E-eigenvalue of A and x is an E-eigenvector of A. If A and x are
real, then λ is also real [15]. In this case, λ is called a Z-eigenvalue of A and x is
called a Z-eigenvector of A. Z-eigenvalues play the main role in the above-mentioned
applications. Algorithms for finding Z-eigenvalues were studied in [12, 19].

E-eigenvalues and Z-eigenvalues are invariant under orthonormal coordinate
changes [15]. An even-order real symmetric tensor always has Z-eigenvalues [15].
It is positive definite (semi-definite) if and only if all of its Z-eigenvalues are positive
(nonnegative) [15]. The Z-eigenvalue with the largest absolute value and its corre-
sponding Z-eigenvector form the best rank-one approximation of a real symmetric
tensor [15, 19]. The modifier “E-” stands for Euclidean, as (1.1) implies that the
Euclidean norm of x is 1 if x is real. The modifier “Z-” names after Prof. Shuzi
Zhou, who suggested (1.1) to the author of [15]. Prof. Zhou departed by cancer
in 2009. The name “Z-eigenvalue” has already been used widely in the literature
[1, 2, 3, 4, 5, 7, 9, 12, 14, 15, 16, 17, 18, 19, 20, 23, 24]. Hence, we continue to use
this name.

E-characteristic polynomials were introduced in [15, 17], and discussed in [14, 6].
Until now, there are no other papers containing a discussion on E-characteristic poly-
nomials. We now survey the definitions and properties of E-characteristic polynomials
in [6, 14, 15, 17]

Definition 1.1. Let A=(ai1i2···im) be an n-dimensional mth order tensor. If there
exists x∈C

n \{0} such that
{

Axm−1=0,

xTx=0,
(1.2)

then A is called irregular. Otherwise, A is called regular [15, 17].
When m is even, the E-characteristic polynomial ψA(λ) is defined [15] as

ψA(λ)=Resx

(

Axm−1−λ
(

xTx
)

m−2

2 x

)

=

h(m,n)
∑

j=0

aj(m,n)λ
j , (1.3)

where the second equality is the expansion of the resultant of (1.2) in terms of λ,
h(m,n) is the highest power with generically non-zero coefficient, and aj(m,n)’s are
polynomials in entries of A.

When m is odd, the E-characteristic polynomial ψA(λ) is defined [17] as

ψA(λ)=Res(x,x0)

(

Axm−1−λxm−2
0 x

xTx−x20

)

=

h(m,n)
∑

j=0

aj(m,n)λ
2j , (1.4)



A.-M. LI, L. QI, AND B. ZHANG 35

where 2h(m,n) is the highest power with generically non-zero coefficient.

Lemma 1.2. For a regular tensor, the E-characteristic polynomial can be defined as

Res(x,x0)

(

Axm−1−λxm−2
0 x

xTx−x20

)

,

for all m.

Proof. For a regular tensor and even m, the systems

{

Axm−1−λ(x0)m−2x=0,
xTx−x20=0,

and

Axm−1−λ(xTx)m−2

2 x=0

are equivalent.

According to Theorem 4 of [17], any E-eigenvalue λ of A must be a root of ψA(λ);
if A is regular, then a complex number λ is an E-eigenvalue of A if and only if it is a
root of ψA(λ). It was proved in [14] that when m is even,

h(m,n)=
(m−1)n−1

m−2
=

n−1
∑

i=0

(m−1)i. (1.5)

Definition (1.1) is not a strict extension of the classical definition for eigenvalues of
a square matrix, as it excludes complex eigenvalues whose eigenvectors satisfy xTx=0
but x 6=0 [17]. Recently, based upon this observation, Cartwright and Sturmfels [6]
introduced equivalence classes of eigenpairs. If λ∈C and x∈C

n \{0} satisfy

Axm−1=λx, (1.6)

then (λ,x) is called an eigenpair of A. Two eigenpairs (λ,x) and (λ′,x′) are considered
to be equivalent if there is a complex number t 6=0 such that λ′= tm−2λ and x′= tx.
Cartwright and Sturmfels proved that (1.5) is true for allm when counting the number
of generalized eigenpairs without any normalization restriction [6].

An important property of a second-order tensor is that not only its eigenvalues
but also the coefficients of its characteristic polynomial are invariants of that tensor.
It was proved in [15, 17] that E-eigenvalues of a higher order tensor are invariants
of that tensor. This implies that the coefficients of the E-characteristic polynomial,
divided by the first nonzero coefficient, are invariants of that tensor; see Theorem 5
of [17]. There was no existing result about the invariance of the coefficients of the
E-characteristic polynomial.

In [6], it was given that

a0(3,2)=
(

Resx
(

Ax2
))2

,

and mentioned in general that a0(m,n) is a power of Resx
(

Axm−1
)

, without specifying
the value of the power or giving a proof. When m=3 and n=2, they also present
the coefficient of the leading term as the negative of the sum of two squares of linear
combinations of the entries of A.
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In this paper, we explore more in this direction. The structure of the paper is as
follows.

Since resultants are main tools to study the E-characteristic polynomials, we
recall some facts about resultants in Section 2. In Section 3, we prove that all the
coefficients of the E-characteristic polynomial are orthonormal invariants of a tensor.
We then show that when m is even, a0(m,n) is Resx(Ax

m−1), and when m is odd, it
is the square of Resx(Ax

m−1).

In Section 4, we give two simplified determinantal formulas for the E-characteristic
polynomial when n=2. In the even case, this is a (2m−2)×(2m−2) determinant.
In the odd case, this is a (3m−4)×(3m−4) determinant. The parameter λ only
appears in the first m rows of the determinants.

We then address the leading coefficients of E-characteristic polynomials. Two sets
of tensors are easy to handle: i) the set of tensors with infinitely many eigenpairs,
and ii) the set of regular tensors. Actually, the E-characteristic polynomials of tensors
in the first set are identically zero, while a complex number is an E-eigenvalue of a
regular tensor if and only if it is a root of the E-characteristic polynomial of that
tensor. For tensors with finitely many eigenpairs, we apply the perturbation method
to approximate them by regular tensors with finitely many eigenpairs. Therefore
we have to make sure that the perturbation is possible. Sections 5 and 6 serve this
purpose. In Sections 5 and 6, we prove that both the set of tensors with infinitely
many eigenpairs and the set of irregular tensors have codimension at least 2 in the
projective space of tensors. Therefore, the union of these two sets has codimension at
least 2 in the projective space of tensors, which makes the approximation of a tensor
on a hypersurface by regular tensors with finitely many eigenpairs possible.

Finally, in Section 7, we introduce the deficit system to explore the difference
between E-eigenvalues and eigenpair equivalence classes of Cartwright and Sturmfels
[6]. Based on this analysis, we show that when n=2, the leading coefficient of the
E-characteristic polynomial is the (m−2

2 )th power of the sum of two squares when m
is even, and the negative of the (m−2)th power of such a sum when m is odd.

2. Resultants

We recall some results for resultants from [8] and [10].

For fixed positive integers d1, · · · ,dn, and each pair (i,α), where i=1, · · ·n and
α=(α1, · · · ,αn)∈Z

n
≥0 with |α|=∑αj =di, we introduce a variable ui,α. We have the

following results about resultants:

Proposition 2.1. There is a unique polynomial Resx=Resd1,···,dn
∈Z[ui,α] with the

following properties:

a. If F1, · · · ,Fn∈C[x1, · · · ,xn] are homogeneous of degrees d1, · · · ,dn, then
the equations F1= · · ·=Fn=0 have a solution in CP

n−1 if and only if
Res(F1, · · · ,Fn)=0, where the notation Res(F1, · · · ,Fn) means Res(ci,α), if

Fi=
∑

|α|=di

ci,αx
α.

b. Res(xd1

1 , · · · ,xdn
n )=1.

c. Res is irreducible in C[ui,α].

Proposition 2.2. Res(F1, · · · ,Fn) is a homogeneous polynomial in the coefficients of
Fi, with degree d1 · · ·di−1di+1 · · ·dn, for i=1, · · · ,n.
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Proposition 2.3. If the Fj’s are homogeneous of degree d, and Gi=
∑

aijFj, where
(aij) is an invertible matrix, then

Res(G1, · · · ,Gn)=det(aij)
dn−1

Res(F1, · · · ,Fn).

Proposition 2.4. If Fj =F
′
jF

′′
j is a product of homogeneous polynomials, then

Res(F1, · · · ,Fj , · · · ,Fn)=Res(F1, · · · ,F ′
j , · · · ,Fn)Res(F1, · · · ,F ′′

j , · · · ,Fn).

For an n-dimensional vector space V (over R or C), let L :V →V be a linear
transformation. L induces a natural map L∗ on functions on V . Fix a basis {e1, · · · ,en}
of V , so that xi(

∑

cjej)= ci defines a linear function xi on V , for i=1, · · ·n. If
the transformation matrix of L under this basis is (aij), then L∗xi=

∑

aijxj . So a
polynomial F in variables x1, · · ·xn is a function on V , and L∗F is a polynomial in
the variables x1, · · ·xn obtained from F by substituting xi with

∑

aijxj .

Corollary 2.5. For an invertible linear transformation L :V →V ,

Res(L∗F1, · · · ,L∗Fn)=det(aij)
d1···dnRes(F1, · · ·Fn).

Proof. Let

Fi=
∑

|α|=di

ui,αx
α.

Then Res(F1, · · · ,Fn) is an irreducible polynomial in the variables ui,α, and by defi-
nition, if we denote

L∗Fi=
∑

|α|=di

vi,αx
α,

then vi,α is a linear combination of u-variables uj,β , and Res(L
∗F1, · · · ,L∗Fn) is ob-

tained by substituting ui,α for vi,α, so it is a polynomial in variables ui,α and of the
same degree as Res(F1, · · · ,Fn).

Since the matrix (aij) is invertible, the system F1= · · ·=Fn=0 has a nontrivial
solution if and only if the system L∗F1= · · ·=L∗Fn=0 has a nontrivial solution,
therefore Res(F1, · · · ,Fn) is a divisor of Res(L∗F1, · · · ,L∗Fn). We already know they
have the same degree, so

Res(L∗F1, · · · ,L∗Fn)= c Res(F1, · · · ,Fn),
where c is a constant.

We can determine this constant by checking the case Fi=x
di

i , i=1, · · · ,n. By
definition,

L∗xi=
∑

j

aijxj .

Now, by Proposition 2.4 and the fact that Res1,···,1 is the standard determinant,

Res(L∗F1, · · · ,L∗Fn)= Res((
∑

a1jxj)
d1 , · · · ,(∑anjxj)

dn)
= Res(

∑

a1jxj ,(
∑

a2jxj)
d2 , · · · ,(∑anjxj)

dn)
×Res((

∑

a1jxj)
d1−1, · · · ,(

∑

anjxj)
dn)

= · · ·
= Res(

∑

a1jxj ,(
∑

a2jxj)
d2 , · · · ,(∑anjxj)

dn)d1

= · · ·
= Res(

∑

a1jxj ,
∑

a2jxj , · · · ,
∑

anjxj)
d1···dn

= det(aij)
d1···dn .
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Hence,

c=det(aij)
d1···dn .

3. Orthonormal invariance of the coefficients

If ψA(λ) is the E-characteristic polynomial (as defined in the introduction), let
ah̄(m,n)(m,n) be the first nonzero coefficient of ψA(λ). Then, for j=0, · · · ,h̄(m,n)−1,
according to the relations between roots and coefficients of a one-variable polynomial,

sh̄(m,n)−j ≡ (−1)h̄(m,n)−jaj(m,n)/ah̄(m,n)(m,n)

is the sum of all possible products of h̄(m,n)−j E-eigenvalues, hence an elementary
symmetric function of the E-eigenvalues.

In the following discussion, we distinguish between a tensor A and its hypermatrix
A in a coordinate system.

Let V be an n-dimensional vector space over R with a Euclidean inner product
<,>. Let A be an mth order covariant tensor on V , that is,

A :V m→R

is a multi-linear function. In particular, a first order covariant tensor is called a
covariant vector, denoted by x. In practice, what we consider are complexified tensors,
i.e., we view them as multiple-linear functions from V m⊗RC→C.

Choose an orthonormal frame E={e1, ...,en} in V , and define

A(ei1 , ...,eim) :=ai1i2···im , x(ei)=xi.

Then (ai1i2···im) (resp. xi) is the hypermatrix of A (resp. x) with respect to the frame
E. If all ai1i2···im , for i1, · · · ,im=1, · · · ,n, are real, then we say that A is real. If all
xi, for i=1, · · · ,n, are real, then we say that x is real.

If we choose another orthonormal frame Ẽ={ẽ1, ..., ẽn}, that is,

ẽi=
∑

Cj
i ej ,

where the matrix (Cj
i )∈O(n) is the transformation matrix, then the hypermatrices

of A and x with respect to ẽ1, ..., ẽn are given by

ãi1i2···im =
∑

Cj1
i1
...Cjm

im
aj1j2···jm , (3.1)

x̃i=
∑

Cj
i xj . (3.2)

Remark 3.1. For a tensor, the hypermatrices with respect to different orthonormal
frames are orthogonally similar.

Remark 3.2. Since we only consider tensors under orthonormal transformations, we
do not distinguish between covariant tensors and contravariant tensors.

For a complex mth order covariant tensor A and a covariant vector x, we can
define a covariant vector Axm−1 by

Axm−1(ei)=

n
∑

i2,···,im=1

A(ei,ei2 , · · · ,eim)x(ei2) · · ·x(eim), (3.3)
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for i=1, · · · ,n, and any orthonormal frame E={e1, ...,en} in V . For any covariant
vector x, define

xTx=

n
∑

i=1

(x(ei))
2
, (3.4)

for any orthonormal frame E={e1, ...,en} in V . By (3.1) and (3.2), we see that the
definitions (3.3) and (3.4) are well-defined, independent of the frame E.

For a complex mth order covariant tensor A , if λ∈C and the non-zero covariant
vector x satisfy

{Axm−1=λx,

xTx=1,

then λ is an E-eigenvalue of A and x is an E-eigenvector of A. By the above discussion,
we see that λ is invariant, i.e., it is independent of the choice of the frame.

We say that a fact or quantity is an orthonormal invariant if it is invariant
under changes of orthonormal frames.

Fix an orthonormal frame E={e1, ...,en} in V , let the hypermatrix A=(ai1i2···im)
(resp. xi) be the hypermatrix of A (resp. x), and let

Fi(x)=

n
∑

i2,···,im=1

aii2···imxi2 · · ·xim .

We use the notation Resx
(

Axm−1
)

to denote Resx (F1, ...,Fn), and ψA(λ) to denote
ψA(λ).

Theorem 3.3. Resx
(

Axm−1
)

is an orthonormal invariant of A. Furthermore, all
the coefficients of ψA(λ) are orthonormal invariants of A.

Proof. We first prove that Resx
(

Axm−1
)

is an orthonormal invariant of A.
If we choose another orthonormal frame ẽ1, ..., ẽn,

ẽi=
∑

Cj
i ej ,

and denote

F̃i(x̃)=
n
∑

i2,···,im=1

ãii2···im x̃i2 · · ·x̃im ,

then by a direct calculation we get

F̃i(x̃)=
∑

Cj
i Fj(x).

So if we let

Gi(x)=
∑

Cj
i Fj(x),

then by Proposition 2.3,

Resx (G1, ...,Gn)=det(C
j
i )

(m−1)n−1

Resx (F1, ...,Fn) .
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Since

F̃i(x̃)=Gi(
∑

j

C1
j x̃j , · · · ,

∑

j

Cn
j x̃j),

by the corollary of Proposition 2.4 we have

Resx̃

(

F̃1, ...,F̃n

)

=det(Cj
i )

(m−1)nResx (G1, ...,Gn) .

Since det(Cj
i )=±1, (m−1)n−1m is even, we have

Resx̃

(

F̃1, ...,F̃n

)

=Resx (F1, ...,Fn) .

By the same method we can prove that when m is even, Resx
(

Axm−1

−λ
(

xTx
)

m−2

2 x
)

is an orthonormal invariant, and when m is odd,

Res(x,x0)

(

Ax
m−1−λx

m−2

0
x

x
T
x−x2

0

)

is orthonormal invariant.

Because of this theorem, we need not strictly distinguish between a tensor and
its corresponding hypermatrix in further discussion.

Lemma 3.4. For a hypermatrix A, Resx
(

Axm−1
)

is an irreducible polynomial in the
entries of A (viewed as variables).

Proof. Any index α=(α1, · · · ,αn) with |α|=m−1 defines a subset Sα of
{1, · · · ,n}m−1:

Sα={(i2, · · · ,im) | among i2, · · · ,im, αj of them are equal to j, for j=1, · · · ,n}.

Obviously,

Sα∩Sβ =φ, for any α 6=β,

∪αSα={1, · · · ,n}m−1.

For the system Axm−1=0, if we denote the equations by

Fi=
∑

ciαx
α,

i=1, · · · ,n, then

ciα=
∑

(i2,···,im)∈Sα

aii2,···,im .

Assume Resx
(

Axm−1
)

=P (ciα)=f(ai1···im)g(ai1···im). Let us fix a function

φ :{α | α=(α1, · · · ,αn), |α|=m−1}→{1, · · · ,n}m−1,

such that φ(α)∈Sα. We can choose entries of A such that for every ciα the only
nonzero entry is aiφ(α). Then Resx

(

Axm−1
)

is an irreducible polynomial in the vari-
ables corresponding to these nonzero entries. Hence,

P (aiφ(α))=f(aiφ(α))g(aiφ(α)).
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Since P is irreducible, one of f(aiφ(α)) or g(aiφ(α)), say g(aiφ(α)), has to be of degree
0 and the degree of the other is equal to the degree of P . Then g(ai1···im) has degree
0 because P (ai1···im) has the same degree as P (ciα). Therefore Resx

(

Axm−1
)

is
irreducible.

We now give a general formula for a0(m,n).

Theorem 3.5. When m is even, we have

a0(m,n)=Resx
(

Axm−1
)

. (3.5)

When m is odd, we have

a0(m,n)=
(

Resx
(

Axm−1
))2

. (3.6)

Proof. When m is even, by (1.3) we have

a0(m,n)=ψA(0)=Resx
(

Axm−1
)

.

This proves (3.5).

When m is odd, by (1.4) we have

a0(m,n)=ψA(0)=Res(x,x0)

(

Axm−1

xTx−x20

)

.

To prove (3.6), it suffices now to prove

Res(x,x0)

(

Axm−1

xTx−x20

)

=
(

Resx
(

Axm−1
))2

. (3.7)

We first show that
(

Resx
(

Axm−1
))2

has the correct degree. Denote
(

Axm−1
)

i
by

Fi(x) for i=1· · ·n. Since xTx−x20 has degree 2, by Proposition 2.2 Res(x,x0)

(

Axm−1

xT x−x2
0

)

is a homogeneous polynomial in the coefficients of Fi(x), for any i, with degree 2(m−
1)n−1. Obviously, for any i,

(

Resx
(

Axm−1
))2

is a homogeneous polynomial in the

coefficients of Fi(x), with degree 2(m−1)n−1. This shows that
(

Resx
(

Axm−1
))2

has
the correct degree.

Next we prove that the system

{

Axm−1=0,

xTx=x20,
(3.8)

has a nonzero solution if and only if Resx
(

Axm−1
)

=0. Let (x,x0) be a nonzero
solution of (3.8). Since A is regular, x0 6=0. By the last equation of (3.8), x 6=0. Then
x is a nonzero solution of

Axm−1=0. (3.9)

Thus, Resx
(

Axm−1
)

=0. On the other hand, suppose that Resx
(

Axm−1
)

=0. Then
(3.9) has a nonzero solution x. Let x20=x

Tx. Then (x,x0) is a nonzero solution
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of (3.8). Therefore Res(x,x0)

(

Axm−1

xT x−x2
0

)

=0 and Resx
(

Axm−1
)

=0 define the same

varieties. By the irreducibility of Resx
(

Axm−1
)

, we know

Res(x,x0)

(

Axm−1

xTx−x20

)

=
(

Resx
(

Axm−1
))k

.

Then by degree, we know k=2. This proves (3.7).

This shows the importance of Resx
(

Axm−1
)

. When m=2, it is the determinant
of the square matrix A in the classical sense. Hence, it is a genuine extension of the
determinant of a square matrix, and deserves to be studied further.

Before ending this section, we give a proposition on the degree of the coefficients
of ψA(λ) as polynomials in the entries of A.

When m is even, we may see that

Axm−1−λ
(

xTx
)

m−2

2 x=0 (3.10)

is a system of homogeneous polynomials in x. Every equation of (3.10) has the
same degree m−1. Thus, by Proposition 2.2, ψA(λ) is a homogeneous polynomial
in the entries of A and λ, with degree n(m−1)n−1. Hence, in (1.3), aj(m,n) is a
homogeneous polynomial in the entries of A, with degree n(m−1)n−1−j. When m
is odd, the first m equations of

{

Axm−1=λxm−2
0 x,

xTx=x20
(3.11)

have the same degree m−1, while the coefficients of last equation of (3.11) are either
1 or −1. Thus, by Proposition 2.2, ψA(λ) is a homogeneous polynomial in the entries
of A and λ, with degree 2n(m−1)n−1. Hence, in (1.4), aj(m,n) is a homogeneous
polynomial in the entries of A, with degree 2n(m−1)n−1−2j. We now have the
following proposition.

Proposition 3.6. In (1.3), aj(m,n) is a homogeneous polynomial in the entries of A,
with degree n(m−1)n−1−j. In particular, ah(m,n)(m,n) is a homogeneous polynomial

in the entries of A, with degree n(m−1)n−1− (m−1)n−1
m−2 .

In (1.4), aj(m,n) is a homogeneous polynomial in the entries of A, with degree
2n(m−1)n−1−2j. In particular, ah(m,n)(m,n) is a homogeneous polynomial in the

entries of A, with degree 2n(m−1)n−1− 2(m−1)n−2
m−2 .

4. E-characteristic polynomials when n=2
We now derive some simplified forms for ψA(λ) in the case that n=2.
Let bj =

∑

{a1i2···im : exactly j−1 of i2, · · · ,im are 2} for j=1, · · · ,m, and cj =
∑{a2i2···im : exactly j−1 of i2, · · · ,im are 2} for j=1, · · · ,m. For j=1, · · · ,m−1, let
dj = bj−cj+1, and let dm= bm.

For an N×N matrix M =(mij), just like {m11,m22, · · · ,mNN} is its diagonal,
we call {m1,2k+1,m2,2k+2, · · · ,mN−2k,N} the kth even upper sub-diagonal of M for
positive k such that 2k+1≤N .

We now discuss the case that m is even.

Theorem 4.1. Suppose that m=2k+2 and n=2, where k≥0. Let

b̄2j+1= b2j+1−
(

k

j

)

λ and c̄2j+2= c2j+2−
(

k

j

)

λ,
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for j=0, · · · ,k. Then for a regular A, ψA(λ) is the determinant of the following
(2m−2)×(2m−2) matrix:

M1=





































b̄1 b2 b̄3 · · · b̄m−1 bm 0 0 · · · 0
0 b̄1 b2 · · · bm−2 b̄m−1 bm 0 · · · 0
· · · · · · · · · · · · · ·
...

...
...
. . .

...
...

...
...

. . .
...

0 0 0 · · · b̄1 b2 b̄3 b4 · · · bm
0 0 0 · · · c1 c̄2 c3 c̄4 · · · c̄m

−c1 d1 d2 · · · dm−2 dm−1 bm 0 · · · 0
0 −c1 d1 · · · dm−3 dm−2 dm−1 bm · · · 0
...

...
...
. . .

...
...

...
...

. . .
...

0 0 0 · · · d1 d2 d3 d4 · · · bm





































. (4.1)

Here, the first m−1 entries of the diagonal and the first m−2
2 even upper sub-diagonals

of M1 are b̄1, b̄3, · · · , b̄m−1, while the mth entries of the diagonal and the first m−2
2 even

upper sub-diagonals of M1 are c̄2, c̄4, · · · , c̄m. They are linear factors of λ.

Proof. Consider

F (x,λ)≡





(

Axm−1
)

1
−λ
(

xTx
)

m−2

2 x1

x2 (Axm−1)1−x1 (Axm−1)2



=0. (4.2)

Since A is regular, any nonzero solution of (3.10) is a nonzero solution of (4.2). This
implies that ψA(λ) is a factor of ResxF (x,λ). On the other hand, the only possible ad-
ditional nonzero solution of (4.2) satisfies x1=0 and

(

Axm−1
)

1
=0. Since

(

Axm−1
)

1
=

∑m

i=1 bix
m−i
1 xi−1

2 , x1=0, x2 6=0, and
(

Axm−1
)

1
=0 imply that bm=a12···2=0. There-

fore, we conclude that

ResxF (x,λ)= bmψA(λ). (4.3)

Now, we have

F (x,λ)=





∑k

j=0

[

b̄2j+1x
m−2j−1
1 x2j2 +b2j+2x

m−2j−2
1 x2j+1

2

]

−c1xm1 +
∑m−1

i=1 dix
m−i
1 xi2+dmx

m
2





By the Sylvester formula [8, 10], ResxF (x,λ) is the determinant of the following
(2m−1)×(2m−1) matrix:









































b̄1 b2 b̄3 · · · b̄m−1 bm 0 0 · · · 0 0
0 b̄1 b2 · · · bm−2 b̄m−1 bm 0 · · · 0 0
· · · · · · · · · · · · · · ·
...

...
...
. . .

...
...

...
...

. . .
...

...
0 0 0 · · · b̄1 b2 b̄3 b4 · · · bm 0
0 0 0 · · · 0 b̄1 b2 b̄3 · · · b̄m−1 bm

−c1 d1 d2 · · · dm−2 dm−1 bm 0 · · · 0 0
0 −c1 d1 · · · dm−3 dm−2 dm−1 bm · · · 0 0
...

...
...
. . .

...
...

...
...

. . .
...

...
0 0 0 · · · d1 d2 d3 d4 · · · bm 0
0 0 0 · · · −c1 d1 d2 d3 · · · dm−1 bm









































.
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As elementary row and column operations preserve the value of the determinant,
we may subtract the last row from the mth row in the above matrix. Then all the
elements of the last column of the matrix are zero except the bottom element, which
is bm. Then we may delete the last column and the last row, and extract bm from the
determinant. Then we see that ResxF (x,λ)= bmdet(M1). Comparing with (4.3), we
have ψA(λ)= det(M1). The proof is complete.

The merit of M1 is that only the first m entries of the diagonal and the first m−2
2

even upper sub-diagonals of M1 contain linear factors of λ, i.e., those b̄i and c̄i. By
some elementary column operations, we may eliminate λ in the terms other than b̄1
and c̄2.

When m=4 and n=2, we have h(4,2)=4, and

ah(4,2)=4(4,2)=(b1−c2−b3+c4)2+(c1+b2−c3−b4)2

=(a1111+a2222−a1221−a1212−a1122−a2211−a2121−a2112)2

+(a1211+a1121+a1112+a2111−a1222−a2221−a2212−a2122)2 .

We now discuss the case where m is odd. Let e1= b1c1, e2= b1c2+
b2c1, e3= b1c3+b2c2+b3c1, · · · , em= b1cm+b2cm−1+ · · ·+bmc1, em+1= b2cm+ · · ·+
bmc2, · · · , e2m−1= bmcm.

Theorem 4.2. Suppose that m=k+2 and n=2, where k≥1 is odd. Let

ē2j = e2j−
(

k

j

)

λ2,

for j=1, · · · ,m−1. Let f̄i= ēi+b1di+1 for i=2,4, · · · ,m−1; fi= ei+b1di+1 for i=
3,5, · · · ,m−2; fi= ei−cmdi−m+1 for i=m,m+2, · · · ,2m−3; f̄i= ēi−cmdi−m+1 for
i=m+1,m+3, · · · ,2m−2. Then ψA(λ) is the determinant of the following (3m−
4)×(3m−4) matrix:

M2=





































f̄2 f3 · · · f̄m−1 em · · · ē2m−2 e2m−1 · · · 0
e1 ē2 · · · em−2 ēm−1 · · · e2m−3 ē2m−2 · · · 0
...

...
. . .

...
...

. . .
...

...
. . .

...
0 0 · · · ē2 e3 · · · f̄m−1 fm · · · f̄2m−2

−c1 d1 · · · dm−1 bm · · · 0 0 · · · 0
0 −c1 · · · dm−2 dm−1 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

...
. . .

...
· · · · · · · · · · · · · · · ·
0 0 · · · 0 0 · · · d2 d3 · · · 0
0 0 · · · 0 0 · · · d1 d2 · · · bm





































. (4.4)

Here, the first m−2 entries of the first row and the last m−2 entries of the mth row
are somewhat different from the other entries of the first m rows, with ei or ēi being
replaced by fi or f̄i.

Proof. Consider

G(x,λ)≡





(

Axm−1
)

1

(

Axm−1
)

2
−λ2

(

xTx
)

2m−4

2 x1x2

x2 (Axm−1)1−x1 (Axm−1)2



=0. (4.5)
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Similar to the proof of Theorem 4.1, we may conclude that

ResxG(x,λ)= bmc1ψA(λ). (4.6)

Now, we have

G(x,λ)=

(

∑m−1
j=0 e2j+1x

2m−2j−2
1 x2j2 +

∑m−1
j=1 ē2jx

2m−2j−1
1 x2j−1

2

−c1xm1 +
∑m−1

i=1 dix
m−i
1 xi2+dmx

m
2

)

.

By the Sylvester formula [8, 10], ResxG(x,λ) is the determinant of the following
(3m−2)×(3m−2) matrix:













































e1 ē2 e3 · · · ēm−1 em · · · ē2m−2 e2m−1 · · · 0 0
0 e1 ē2 · · · em−2 ēm−1 · · · e2m−3 ē2m−2 · · · 0 0
...

...
...

. . .
...

...
. . .

...
...

. . .
...

...
0 0 0 · · · ē2 e3 · · · ēm−1 em · · · ē2m−2 e2m−1

−c1 d1 d2 · · · bm 0 · · · 0 0 · · · 0 0
0 −c1 d1 · · · dm−1 bm · · · 0 0 · · · 0 0
0 0 −c1 · · · dm−2 dm−1 · · · 0 0 · · · 0 0
...

...
...

. . .
...

...
. . .

...
...

. . .
...

...
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 0 0 · · · d2 d3 · · · 0 0
0 0 0 · · · 0 0 · · · d1 d2 · · · bm 0
0 0 0 · · · 0 0 · · · −c1 d1 · · · dm−1 bm













































.

Note that e1= b1c1 and e2m−1= bmcm. Thus, as elementary row and column opera-
tions preserve the value of the determinant, we may eliminate e1 in the first column
with a multiple of the (m+1)th row, and eliminate e2m−1 in the last column with a
multiple of the last row. Then we may delete the first column, the last column, the
(m+1)th row and the last row, and extract bmc1 from the determinant. We see that
ResxG(x,λ)= bmc1det(M2). Comparing with (4.6), we have ψA(λ)= det(M2). The
proof is complete.

The merit ofM2 is that only the first m entries of the diagonal and the first m−2
even upper sub-diagonals of M2 contain linear factors of λ2, i.e., those ēi and f̄i. By
some elementary column operations, we may eliminate λ in the terms other than f̄2
and ē2.

When m=3 and n=2, in [6], it was given that

ah(3,2)=3(3,2)=−(−a111+a122+a212+a221)2−(a112+a121+a211−a222)2 .

If we use bi and ci to write this, then we have

ah(3,2)=3(3,2)=−(b1−c2−b3)2−(c1+b2−c3)2.

We see that in the form using bi and ci, ah(3,2)(3,2) and ah(4,2)(4,2) are very similar.
Let Pm and Qm be the sum of the firstm terms of the following two series respectively:

b1−c2−b3+c4+b5−c6−b7+c8+b9−c10−···

and

c1+b2−c3−b4+c5+b6−c7−b8+c9+b10−··· ,
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where the signs of these terms are cyclically changed with the cycle four. Then, we
may write

ah(3,2)(3,2)=−(P 2
3 +Q

2
3)

and

ah(4,2)(4,2)=P
2
4 +Q

2
4.

Using Theorem 4.1, we find via computation that

ah(6,2)(6,2)=(P 2
6 +Q

2
6)

2.

It seems that there are formulas for ah(m,2)(m,2) via P 2
m+Q2

m for all m≥2. Later
we will show that this is true.

5. A bound on the codimension of the variety of tensors with infinitely

many eigenpairs

For positive integers d1,d2, · · · ,dn, let P be the complex projective space corre-
sponding to the homogeneous coordinate ring

C[uiα | |α|=α0+ · · ·+αn=di,i=1, · · ·n].

Now for a system of homogeneous polynomial equations: F1=F2= · · ·=Fn=0
where F1,F2, · · · ,Fn are homogeneous polynomials of positive degrees d1,d2, · · · ,dn in
the variables x0,x1, · · · ,xn,

Fi=
∑

|α|=di

ciαx
α.

Then modulo obvious scalar multiplication of systems, there is a one-to-one corre-
spondence between such systems and points in P.

For such a system, the solution set in CP
n has dimension ≥n−n=0. For systems

corresponding to generic points in P, the solution sets have dimension 0, i.e. they have
only finitely many solutions in CP

n.
Let X⊂P be the set of points whose corresponding systems have infinitely many

solutions in CP
n, i.e.,

X={([ci,α]) | F1= · · ·=Fn=0 has infinitely many solutions in CP
n}.

Obviously codimX̄≥1 in P, where X̄ is the Zariski closure of X.
Let us analyze the subset X in more detail. We will use a kind of hidden variable

argument similar to [8], and we must proceed carefully in order to apply results on
resultants, because the systems should have n homogeneous equations in n variables
or n inhomogeneous equations in n−1 variables.

Fix a general system F1=F2= · · ·=Fn=0,

Fi=
∑

|α|=di

uiαx
α,

where α=(α0,α1, · · · ,αn).
For 0≤s 6= t≤n, we introduce a set of variables yj , j=0, · · · , ŝ, · · · ,n (more precise

notation would be ys,tj ). Then in Fi, i=1, · · · ,n, we replace xj by yj for j 6=s, and
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replace xs by xs

xt
yt. Thus we write Fi as a homogeneous polynomial of degree di in

yj , j 6=s with coefficients in C[xs

xt
]:

∑

|β|=di

fs,ti,β

(xs
xt

)

yβ ,

β=(β0, · · · ,β̂s, · · · ,βn), and we denote it by F s,t
i . The set of multi-indices α for

x-variables with αs=0 is in one-to-one correspondence with multi-indices β for y-
variables. Obviously

fs,ti,β

(xs
xt

)

=
∑

αj=βj ,j 6=s,t,αs+αt=βt

ui,α

(xs
xt

)αs

. (5.1)

Let us make this treatment clear by an example. For the homogeneous polynomial
F =x20x1+x0x

2
1+x1x

2
2+x

2
1x2, if we take s=0, t=1, then we obtain the homogeneous

polynomial [(x0

x1
)2+ x0

x1
]y31+y1y

2
2+y

2
1y2 after the replacement.

The system F s,t
1 = · · ·=F s,t

n =0 is a system with n homogeneous equations in n-
variables, so the resultant Ress,t=Res(F s,t

1 , · · · ,F s,t
n ) is a polynomial in variables fs,ti,β ,

thus a polynomial in Z[ui,α,i=1, · · ·n, xs

xt
].

Lemma 5.1. If the system F1=F2= · · ·=Fn=0 has a solution (a0,a1, · · · ,an) with
at 6=0, then for any s 6= t, as

at
is a solution of Res(F s,t

1 , · · · ,F s,t
n )=0.

Proof. The system
∑

|α|=di
fs,ti,α(

as

at
)yα=0, i=1, · · · ,n has a non-trivial solution

(ai

at
)i6=s, so

as

at
is a solution of Res(F s,t

1 , · · · ,F s,t
n )=0.

Lemma 5.2. For any (ci,α)∈X, at least one of the polynomials Ress,t(ci,α,
xs

xt
) van-

ished identically.

Proof. Otherwise, a solution (a1, · · · ,an) of the system F1=F2= · · ·=Fn=0
must satisfy Ress,t(ci,α,

as

at
)=0 for any t with at 6=0 and s 6= t; hence, there can be at

most finitely many solutions.

Theorem 5.1. The Zariski closure X̄ of X has codimension at least 2 in P if n≥2.

Proof. For 0≤s 6= t≤n, let

Xs,t=

{

[ci,α] | Ress,t
(

ci,α,
xs
xt

)

≡0

}

.

Obviously X̄⊂∪Xs,t, so if we can prove that every Xs,t has codimension at least 2,
then so does X̄.

As a polynomial in the variable xs

xt
with coefficients in Z[ui,α,i=1, · · ·n], the con-

stant term of Ress,t(ui,α,
xs

xt
) is the resultant for the reduced system of our general

system by letting xs=0, which is a general system in n variables yj , j 6=s. We de-
note the constant term by Res(ui,α,αs=0), which by formula (5.1) is an irreducible
polynomial in the variables ui,α (with αs=0),

Now let us consider the coefficient of the linear term in Ress,t(ui,α,
xs

xt
). Notice

by formula (5.1) that if we take the degree xs

xt
to be 0, then Ress,t(ui,α,

xs

xt
) is a

homogeneous polynomial.
For the coefficient of the linear term, again by formula (5.1) every monomial is a

monomial in variables ui,α with αs=0 times a variable ui,α where αs=1, and hence
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has lower degree in the variables ui,α with αs=0, and it has the same degree as
the constant term, so it is coprime with constant term (since the constant term is
irreducible).

Inside P (dim(P)≥2 if n≥2), the subvariety defined by the constant term and
the coefficient of the linear term cannot be the zero set of a single polynomial, so must
have codimension ≥2. The subvariety Xs,t is contained in this variety, so Xs,t has
codimension at least 2.

Up to a common scalar multiplication, the set of hypermatrices is in one-to-one
correspondence with points in CP

nm−1.

Theorem 5.3. In the space CP
nm−1, the set of hypermatrices with infinitely many

eigenpairs has codimension at least 2 (n≥2).

Proof. Let A be an mth order hypermatrix. Then by an argument similar to
that in Theorem 5.1, the subset of hypermatrices A for which Axm−1=0 has infinitely
many solutions is contained in a subvariety (we denote it by X0) which is defined by
two coprime polynomials, and X0 has codimension ≥2, i.e., the closure of the subset
for which 0 is an eigenvalue in infinitely many eigenpairs only is a codimension ≥2
subvariety.

Now, the system

Axm−1=λx

it has infinitely many solutions with λ 6=0 if and only if

Axm−1=xm−2
0 x

has infinitely many solutions with x0 6=0.
For s=1, · · ·n, we introduce the variable y=0, · · · , ŷs, · · · ,yn, and rewrite the sys-

tem Axm−1=xm−2
0 x as follows: replace xj by yj for j 6=s, and replace xs by xs

x0
y0, so

that we have a new system F s
1 =F

s
2 = · · ·=F s

n=0, which is obtained from Axm−1=0
by replacing xj by yj for j 6=s and xs 7→ xs

x0
y0, and by a translation of coefficients,

with an extra term −ym−2
0 yi for i 6=s and −xs

x0
ym−1
0 for i=s.

The resultant Ress
(

ai1···in ,
xs

xt

)

of the system F s
1 =F

s
2 = · · ·=F s

n=0 is a polyno-

mial in Z[ai1i2···in ,
xs

x0
]: let

Xs=

{

[A] | Ress
(

ai1···in ,
xs
xt

)

≡0

}

⊂CP
nm−1.

Then by an argument similar to that in the proof of Theorem 5.1, the set of A for
which Axm−1=xm−2

0 x has infinitely many solutions with x0 6=0 is a subset of ∪n
s=1X

s,
and Xs has codimension at least 2.

Thus, the set of hypermatrices with infinitely many eigenpairs is a subset of the
subvariety X0∪n

s=1X
s. Hence its closure has codimension ≥2.

6. A bound on the codimension of the variety of irregular tensors

Let

X={[A]|A is irregular}⊂CP
nm−1.
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Theorem 6.1. The Zariski closure X̄ of X has codimension at least 2.

Proof. For a tensor A, let

Fi=
∑

aii2···imxi2 · · ·xim .

Then A is irregular if and only if

F1=F2= · · ·=Fn=x
Tx=0

has a solution in CP
n−1, since this is a system with n+1 homogeneous equations in

n variables.
Now assume A is irregular; then for any i=1, · · · ,n, the system

F1=F2= · · ·= F̂i= · · ·=Fn=x
Tx=0

has a nontrivial solution, and therefore the resultant ∆i of this system is 0.
For a hypermatrix A with only nontrivial entries ajj···jj =1, the system

F1=F2= · · ·= F̂i= · · ·=Fn=x
Tx=0

is
{

xm−1
j =0,j=1, · · · , î, · · · ,n,
xTx=0,

and has no solution in CP
n−1, so ∆i 6≡0.

Notice for the resultant ∆i, the variables aii2···in are missing, so the greatest
common divisor of ∆1, · · · ,∆n is 1. i.e, any component of the subvariety of CPnm−1

defined by

∆1= · · ·=∆n=0

cannot be defined by a single polynomial. Hence any component of the subvariety
∆1= · · ·=∆n=0 has codimension ≥2.

Now we have the conclusion because

X̄⊂{∆1= · · ·=∆n=0}.

7. The leading coefficient

We now study the properties of the leading coefficient ah(m,n)(m,n) by explor-
ing the differences between the definitions of E-eigenvalues and eigenpair equivalence
classes. We see that besides those eigenpair equivalence classes which correspond to
E-eigenvalues, all of the other eigenpair equivalence classes correspond to nonzero
solutions of

{

Axm−1=λx,

xTx=0.
(7.1)

We call (7.1) the deficit system of A.
Now we investigate the leading coefficient for the characteristic polynomials for

tensors when n=2.
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Lemma 7.1. For a regular tensor, the leading coefficient of its characteristic polyno-
mial is 0 if and only if the system

{

Axm−1=λx,
xTx=0

has a nontrivial solution.

Proof. Consider the inhomogeneous system
{

Axm−1=λx,
xTx=1.

This system has no solution at ∞ because of regularity.
If we consider λ as a constant and homogenize the system with respect to x0, we

have the following system:

{

Axm−1−λxm−2
0 x=0,

xTx−x20=0.

The resultant for this homogeneous system (the E-characteristic polynomial) has the
exact information of multiplicity of eigenpairs, i.e., it is a constant times [8]

Π(λi,xi)(λ−λi)m(λi,xi),

where the product is over distinct eigenpairs {(λi,xi)}, andm(λi,xi) is its multiplicity.
Therefore, if the leading term is 0, there is some eigenpair missing, which must

be a solution of
{

Axm−1=λx,
xTx=0.

On the other hand, if the leading term is not 0, the deficit system cannot have a
nontrivial solution, otherwise A will have more eigenpairs than expected.

Lemma 7.2. For a regular tensor, the system
{

Axm−1=λx,
xTx=0

has a nontrivial solution if and only if

P 2
m+Q2

m=0,

where Pm and Qm are the sum of the first m terms of the following two series respec-
tively:

b1−c2−b3+c4+b5−c6−b7+c8+b9−c10−···

and

c1+b2−c3−b4+c5+b6−c7−b8+c9+b10−··· ,

where the signs of these terms are cyclically changed with the cycle four, and bj =
∑

{a1i2···im : exactly j−1 of i2, · · · ,im are 2} for j=1, · · · ,m, and cj =
∑

{a2i2···im :
exactly j−1 of i2, · · · ,im are 2} for j=1, · · · ,m.
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Proof. Since n=2, if the deficit system (7.1) has a nontrivial solution, then all
the nontrivial solutions of the deficit system (7.1) are nonzero multiples of (1,

√
−1)

or (1,−
√
−1). Therefore, there are at most two eigenpair equivalence classes corre-

sponding to nonzero solutions of the deficit system (7.1) when n=2. Note that when
n=2, Axm−1=λx can be written as

{

∑m

i=1 bix
m−i
1 xi−1

2 =λx1,
∑m

i=1 cix
m−i
1 xi−1

2 =λx2.
(7.2)

Substituting (1,
√
−1) to (7.2), we have

{

∑m

i=1 bi
(√

−1
)i−1

= λ,
∑m

i=1 ci
(√

−1
)i−1

= λ
√
−1.

Eliminating λ (λ 6=0 by regularity), we have

m
∑

i=1

bi
(√

−1
)i−1

+
m
∑

i=1

ci
(√

−1
)i
=0.

By the definitions of Pm and Qm, we have Pm=−Qm

√
−1. Similarly, substituting

(1,
√
−1) to (7.2) and eliminating λ, we have Pm=Qm

√
−1. These imply P 2

m+Q2
m=0.

On the other hand, if P 2
m+Q2

m=0, by a similar but reverse argument, we see
that (1,

√
−1) or (1,−

√
−1) is a nontrivial solution of the deficit system (7.1). This

completes the proof.

Theorem 7.3. If A has only finitely many equivalence classes of eigenpairs, then the
leading coefficient ah(m,2)(m,2)=0 if and only if

P 2
m+Q2

m=0.

Proof. First, if A has only finitely many equivalence classes of eigenpairs, then
its characteristic polynomial cannot be identically 0.

Let us consider the following subvarieties of CP
2m−1: X={ah(m,2)(m,2)=

0}, and Y ={P 2
m+Q2

m=0}, which both have codimension 1. Let Z1=
{[A]| A has infinitely many eigenpairs}, and Z2={[A]| A is irregular}. Then both
Z1 and Z2 have codimension ≥2. So X− Z̄1− Z̄2 and Y − Z̄1− Z̄2 are not empty.

By Lemmas 7.1 and 7.2, X− Z̄1− Z̄2⊂Y and Y − Z̄1− Z̄2⊂X, so that by taking
closure we haveX⊂Y and Y ⊂X. This implies thatX=Y and the conclusion follows.

Theorem 7.4. If A has only finitely many equivalence classes of eigenpairs, then the
leading coefficient ah(m,2)(m,2) is

(P 2
m+Q2

m)
m−2

2

for even m, and

−(P 2
m+Q2

m)m−2

for odd m.
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Proof. Let W ={[B]|P 2
m+Q2

m=0}. W can be written as a union of two irre-
ducible varieties

W =W1

⋃

W2,

where

W1={[B]|Pm+
√
−1Qm=0},

W2={[B]|Pm−
√
−1Qm=0}.

Since Pm+
√
−1Qm and Pm−

√
−1Qm are irreducible, by Theorem 7.3

ah(m,2)(m,2)=(Pm+
√
−1Qm)k(Pm−

√
−1Qm)sC,

where C is a constant. Since ah(m,2)(m,2)∈Z[ai1···im ], k must be equal to s. Then
by checking the degree, we see that our results hold up to a scaling constant. By
checking an example such as a1···1=a2···2=1 but all the other entries of A are zero,
we have the results.
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