TRUNCATIONS OF THE RING OF NUMBER-THEORETIC FUNCTIONS

JAN SNELLMAN

(communicated by Winfried Bruns)

Abstract

We study the ring Γ of all functions $\mathbb{N}^+ \to K$, endowed with the usual convolution product. Γ, which we call the ring of number-theoretic functions, is an inverse limit of the “truncations”

$$\Gamma_n = \{ f \in \Gamma | \forall m > n : f(m) = 0 \}.$$

Each Γ_n is a zero-dimensional, finitely generated K-algebra, which may be expressed as the quotient of a finitely generated polynomial ring with a stable (after reversing the order of the variables) monomial ideal. Using the description of the free minimal resolution of stable ideals given by Eliahou-Kervaire, and some additional arguments by Aramova-Herzog and Peeva, we give the Poincaré-Betti series for Γ_n.

1. Introduction

Cashwell and Everett [2] studied “the ring of number-theoretic functions”

$$\Gamma = \{ f|\mathbb{N}^+ \to K \}$$ (1)

where \mathbb{N}^+ is the set of positive natural numbers (we denote by \mathbb{N} the set of all natural numbers) and K is a field containing the rational numbers. Γ is endowed with component-wise addition and multiplication with scalars, and with the convolution (or Cauchy) product

$$fg(n) = \sum_{(a,b) \in (\mathbb{N}^+)^2} f(a)g(b)$$ (2)

With these operations, Γ becomes a commutative K-algebra. It is immediate that it is a local domain; less obvious is the fact that it is a unique factorisation domain. Cashwell and Everett proved this in [2] using the isomorphism

$$\Phi : \Gamma \to K[[X]]$$

$$f \mapsto \sum f(n)x_1^{a_1}x_2^{a_2}\cdots$$ (3)

where $X = \{ x_1, x_2, x_3, \ldots \}$, $K[[X]]$ is the “large” power series ring of all functions from the free abelian monoid $M = [X]$ (the free abelian monoid generated by X) to K, and where the summation extends over all $n = p_1^{a_1}p_2^{a_2}\cdots \in \mathbb{N}^+$. Here, and henceforth, we denote by p_i the i'th prime number, with $p_1 = 2$, and by \mathcal{P} the set of all prime numbers. That (3) is an isomorphism is immediate from the following isomorphism of commutative monoids, implied by the fundamental theorem of arithmetics:

$$\mathbb{N}^+ \cong \coprod_{p \in \mathcal{P}} (\mathbb{N}, +)$$ (4)

The author was supported by grants from Svenska Institutet and Kungliga Vetenskapsakademien, and by grant n. 231801F from Centre International des Etudiants et Stagiaires.

Received 1 November 1999, revised 19 January 2000; published on 31 January 2000.

1991 Mathematics Subject Classification: 13Dxx,10.00

Key words and phrases: Ring of number theoretic functions, Poincaré-Betti series, stable monomial ideals

© 2000, Jan Snellman. Permission to copy for private use granted.
The following number-theoretic functions are of particular interest (whenever possible, we use the same notation as in [2]):

1. The multiplicative unit \(e \) given by \(e(1) = 1, e(n) = 0 \) for \(n > 1 \),

2. \(\lambda : \mathbb{N}^+ \to \mathbb{N} \) given by \(\lambda(1) = 0, \lambda(q_1 \cdots q_l) = l \) if \(q_1, \ldots, q_l \) are any (not necessarily distinct) prime numbers.

3. \(\lambda : \mathbb{N}^+ \to \mathbb{N} \) given \(\lambda(1) = 0, \lambda(p_1^{a_1} \cdots p_r^{a_r}) = \sum a_r p_r \).

4. The Möbius function \(\mu(1) = 1, \mu(n) = (-1)^v \) if \(n \) is the product of \(v \) distinct prime factors, and 0 otherwise,

5. For any \(i \in \mathbb{N}^+, \chi_i(p_i) = 1, \) and \(\chi_i(m) = 0 \) for \(m \neq p_i \). Note that under the isomorphism (3), \(\Phi(\chi_i) = x_i \).

The topic of this article is the study of the “truncations” \(\Gamma_n \), where for each \(n \in \mathbb{N}^+ \),

\[
\Gamma_n = \{ f \in \Gamma | m > n \implies f(m) = 0 \}
\]

With the modified multiplication given by

\[
fg(n) = \sum_{(a,b) \in \{1, \ldots, n\} \times \{1, \ldots, n\}} f(a)g(b)
\]

\(\Gamma_n \) becomes a \(K \)-algebra, isomorphic to \(\Gamma/J_n \), where \(J_n \) is the ideal

\[
J_n = \{ f \in \Gamma | \forall m \leq n : f(m) = 0 \}.
\]

If we define

\[
\pi_n : \Gamma \to \Gamma_n
\]

\[
\pi_n(f)(m) = \begin{cases} f(m) & m \leq n \\ 0 & m > n \end{cases}
\]

then \(\pi_n \) is a \(K \)-algebra epimorphism, and \(J_n \) is the kernel of \(\pi_n \). We note furthermore that \(J_n \) is generated by monomials in the elements \(\chi_i \).

To describe the main idea of this paper, we need a few additional definitions. First, for any \(n \in \mathbb{N}^+ \) we denote by \(r(n) \in \mathbb{N} \) the largest integer such that \(p_{r(n)} \leq n \). In other words, \(r(n) \) is the number of prime numbers \(\leq n \) (this number is often denoted \(\pi(n) \)). Secondly, for a monomial \(m = x_1^{\alpha_1} \cdots x_w^{\alpha_w} \), we define the support \(\text{Supp}(m) \) as the set of positive integers \(i \) such that \(\alpha_i > 0 \). We define \(\max(m) \) and \(\min(m) \) as the maximal and minimal elements in the support of \(m \).

Definition 1.1. A monomial ideal \(I \subset K[x_1, \ldots, x_r] \) is said to be strongly stable if whenever \(m \) is a monomial such that \(x_j m \in I \), then \(x_j m \in I \) for all \(i \leq j = \max(m) \) then \(I \) is said to be stable.

We can now state our main theorem:

Theorem 1.2. Let \(n \in \mathbb{N}^+ \) and \(r = r(n) \). Then the following holds:

1. \(\Gamma_n \cong \frac{K[x_1, \ldots, x_r]}{I_n} \), where \(I_n \) is a strongly stable monomial ideal, with respect to the reverse order of the variables.

2. \(\Gamma_n \) is artinian, with \(\dim_K(\Gamma_n) = n \). Furthermore, if it is given the natural grading with \(|\chi_i| = 1 \), then its Hilbert series is \(\sum_i d_i t^i \) where \(d_i \) is the number of \(w \leq n \) with \(\lambda(w) = i \).

3. There is a 1-1 bijection between the minimal monomial generators of \(I_n \) of minimal support \(v \), and the solutions in non-negative integers to the equation

\[
\log n - \log p_v < \sum_{i=v} b_i \log p_i \leq \log n
\]
Lemma 2.1.

If we denote by $C_{n,v}$ the number of such solutions, then the Poincaré-Betti series of the free minimal resolution of K as a cyclic module over Γ_n is the following rational function:

$$P(\text{Tor}^{\Gamma_n}_*(K, K), t) = \frac{(1 + t)^r}{1 - t^2 (\sum_{i=1}^r (1 + t)^{(i-1)C_{n,r-i+1}})}$$ (10)

We will show this result, and also give the graded Poincaré-Betti series. For this, we define the number $C_{n,v,d}$ which counts the number of minimal generators of I_n of minimal support v and total degree d. We determine some elementary properties of the numbers $C_{n,v,d}$ and $C_{n,v}$.

2. The ring of number-theoretic functions and its truncations

2.1. Norms, degrees, and multiplicativity

For a monomial $M \ni m = x_1^{a_1} \ldots x_n^{a_n}$ we define the weight of m as $w(m) = p_1^{a_1} \ldots p_n^{a_n}$ (we put $w(1) = 1$). Hence w gives a bijection between M and \mathbb{N}^+. Furthermore, we can define a term order on M by $m > m'$ iff $w(m) > w(m')$. If we define the initial monomial $\text{in}(f)$ of $f \in K[[X]]$ as the monomial in $\text{Supp}(f)$ minimal with respect to $>$, then $\text{in}(f)$ is easily seen to correspond to the norm $N(\alpha)$ of a number-theoretic function α, defined as the smallest n such that $\alpha(n) \neq 0$. Here, we must use w and Φ to identify M and \mathbb{N}^+ and $K[[X]]$ and Γ. As observed in [2], the norm is multiplicative: $N(\alpha \beta) = N(\alpha)N(\beta)$.

Cashwell and Everett also define the degree $D(\alpha)$ to mean the smallest d such that there exists an n with $\lambda(n) = d$ and $\alpha(n) \neq 0$. This corresponds to the smallest total degree of a monomial in $\text{Supp}(f)$. Furthermore, the norm $M(\alpha)$, defined as the smallest integer n with $\lambda(n) = D(\alpha)$, $\alpha(n) \neq 0$, corresponds to the initial monomial of f under the term order obtained by refining the total degree partial order with the term order $>$.

A multiplicative function is an element $\alpha \in \Gamma$ such that $\alpha(1) = 1$ and $\alpha(ab) = \alpha(a)\alpha(b)$ whenever a and b are relatively prime. Cashwell and Everett observe that a multiplicative function is necessarily a unit in Γ. One can further observe that if α is multiplicative, then $f = \Phi(\alpha)$ can be written

$$f(x_1, x_2, x_3, \ldots) = f_1(x_1)f_2(x_2)f_3(x_3)\cdots$$

where each $f_i(x_i) \in K[[x_i]]$ is invertible. In particular, the constant function $\Gamma \ni \nu_0$ with $\nu_0(n) = 1$ for all n, corresponds to

$$\sum_{m \in M} m = \frac{1}{1 - x_1} \frac{1}{1 - x_2} \frac{1}{1 - x_3} \cdots$$

Since the Möbius function is defined to be the inverse of this function, we get that it corresponds to

$$(1 - x_1)(1 - x_2)(1 - x_3)\cdots = 1 - (\sum_{i=1}^\infty x_i) + (\sum_{i<j} x_ix_j) - (\sum_{i<j<k} x_ix_jx_k) + \cdots$$

2.2. Truncations of the ring of number-theoretic functions

Let $n, n' \in \mathbb{N}^+$, $n' > n$. Then there is a K-algebra epimorphism

$$\varphi''_{n'} : \Gamma_{n'} \to \Gamma_n$$

$$\varphi''_{n'}(f)(m) = \begin{cases} f(m) & m \leq n \\ 0 & m > n \end{cases}$$

Hence, the Γ_n’s form an inverse system.

Lemma 2.1. $\lim \Gamma_n \simeq \Gamma$.

Proof. Given any \(f \in \Gamma \), the sequence \((\pi_1(f), \pi_2(f), \pi_3(f), \ldots)\) is coherent. Conversely, given any coherent sequence \((g_1, g_2, g_3, \ldots)\), we can define \(g : \mathbb{N} \to K \) by \(g(m) = g_i(m) \) where \(i \geq m \). □

As a side remark, we note that

Lemma 2.2. The decreasing filtration

\[J_1 \supseteq J_2 \supseteq J_3 \supseteq \cdots \tag{11} \]

is separated, that is, \(\cap_n J_n = (0) \).

Definition 2.3. We define

\[I_n = K[[X]] \{ m \in \mathcal{M} \mid w(m) > n \}, \tag{12} \]

that is, as the monomial ideal in \(K[[X]] \) generated by all monomials of weight strictly higher than \(n \). We put \(A_n = \frac{K[[X]]}{I_n} \).

Proposition 2.4. A \(K \)-basis of \(A_n \) is given by all monomials of weight \(\leq n \). Hence \(A_n \) is an artinian algebra, with \(\dim_K(A_n) = n \). Putting \(r = r(n) \), we have that

\[A_n = \frac{K[[X]]}{I_n} \simeq \frac{K[x_1, \ldots, x_r]}{I_n \cap K[x_1, \ldots, x_r]} \tag{13} \]

Proof. As a vector space, \(K[[X]] \simeq U \oplus I_n \), where \(U \) consists of all functions supported on monomials of weight \(\leq n \). It follows that \(A_n \simeq U \) as \(K \)-vector spaces. Of course, there are exactly \(n \) monomials of weight \(\leq n \). Finally, if \(s > r \) then \(w(x_s) = p_s > n \), hence \(x_s \in I_n \).

We will abuse notations and identify \(I_n \) and its contraction \(I_n \cap K[x_1, \ldots, x_r] \).

Lemma 2.5. \(\Gamma_n \simeq A_n \).

Proof. Since \(A_n \) has a \(K \)-basis is given by all monomials of weight \(\leq n \), the two \(K \)-algebras are isomorphic as \(K \)-vector spaces. The multiplication in \(A_n \) is induced from the multiplication in \(K[[X]] \), with the extra condition that monomials of weight \(> n \) are truncated. This is the same multiplication as in \(\Gamma_n \). □

Proposition 2.6. \(I_n \) is a strongly stable ideal, with respect to the reverse order of the variables.

Proof. We must show that if \(m \in I_n \), and \(x_i \mid m \), then \(mx_j / x_i \in I \) for \(i \leq j \leq r \). We have that \(w(mx_j / x_i) = w(m) p_j / p_i > w(m) > n \).

Part I of the main theorem is now proved.

We give \(K[x_1, \ldots, x_r] \) an \(\mathbb{N}^2 \)-grading by giving the variable \(x_i \) bi-degree \((1, p_i)\). Since each \(I_n \) is bihomogeneous, this grading is inherited by \(A_n \).

Theorem 2.7. The bi-graded Hilbert series of \(A_n \) is given by

\[A_n(t,u) = \sum_{i,j} c_{i,j} t^i u^j, \]

where \(c_{i,j} \) is the number of \(p_{i,1} \cdots p_{i,r} \leq n \) with \(\sum a_r = i \) and \(\sum a_r p_r = j \). Furthermore,

\[A_n(t,1) = \sum_i d_i t^i \]
\[A_n(1,u) = \sum_j e_j u^j \]

where \(d_i \) is the number of \(w \leq n \) with \(\lambda(w) = i \), and \(e_i \) is the number of \(w \leq n \) with \(\tilde{\lambda}(w) = i \). In particular, the \(t^i \)-coefficient of \(A_n(t,1) \) is the number of prime numbers \(\leq n \).
Proof. The monomial $x_1^{a_1} \cdots x_n^{a_n}$ has bi-degree $(\sum_{i=1}^n a_i, \sum a_ip_i)$.

This establishes part II of the main theorem.

3. Minimal generators for I_n

Let $n \in \mathbb{N}^+$, and let $r = r(n)$. We have that

$$x_1^{a_1} \cdots x_r^{a_r} = m \in I_n \iff w(m) > n \iff \prod_{i=1}^r p_i^{a_i} > n. \quad (14)$$

We denote by $G(I_n)$ the set of minimal monomial generators of I_n. For $m = x_1^{a_1} \cdots x_r^{a_r}$ to be an element of $G(I_n)$ it is necessary and sufficient that $m \in I_n$ and that for $1 \leq v \leq r$,

$$x_v | m \implies m / x_v \notin I_n.$$

In other words,

$$1 \leq j \leq n, a_j > 0 \implies n < \prod_{i=1}^r p_i^{a_i} \leq p_j n. \quad (15)$$

Definition 3.1. For n, v, d positive integers, we define:

$$C_n = \# G(I_n) \quad (16)$$

$$C_{n,v} = \# \{ m \in G(I_n) \mid \min(m) = v \} \quad (17)$$

$$C_{n,v,d} = \# \{ m \in G(I_n) \mid \min(m) = v, |m| = d \} \quad (18)$$

Theorem 3.2. $C_{n,v}$ is the number of solutions $(b_1, \ldots, b_r) \in \mathbb{N}^r$ to the equation

$$\log n - \log p_v < \sum_{i=v}^r b_i \log p_i \leq \log n. \quad (19)$$

Equivalently, $C_{n,v}$ is the number of integers x such that $n/p_v < x \leq n$ and such that no prime factors of x are smaller than p_v.

Similarly, $C_{n,v,d}$ is the number of solutions $(b_1, \ldots, b_r) \in \mathbb{N}^r$ to the system of equations

$$\log n - \log p_v < \sum_{i=v}^r b_i \log p_i \leq \log n$$

$$\sum_{i=1}^r b_i = d - 1. \quad (20)$$

or equivalently, $C_{n,v,d}$ is the number of integers x such that $n/p_v < x \leq n$ and such that no prime factors of x are smaller than p_v, and with the additional constraint that $\lambda(x) = d$.

Proof. We have that $a_v > 0, a_w = 0$ for $w < v$. Hence equation (15) implies that

$$n < \prod_{j=v}^r p_j^{a_j} \leq p_v n.$$

Putting $b_v = a_v - 1, b_j = a_j$ for $j > v$ we can write this as

$$n < p_v \prod_{j=v}^r p_j^{b_i} \leq p_v n \iff n/p_v < \prod_{j=v}^r p_j^{b_i} \leq n$$

from which (19) follows by taking logarithms. This implies (20) as well.

We have now proved part III of the main theorem.
Figure 1: The numbers C_n and $C_{n,i}$.

<table>
<thead>
<tr>
<th>k</th>
<th>n</th>
<th>$i = 1$</th>
<th>$i = 2$</th>
<th>$i = 3$</th>
<th>$i = 4$</th>
<th>$i = 5$</th>
<th>$i = 6$</th>
<th>$i = 7$</th>
<th>$i = 8$</th>
<th>$i = 9$</th>
<th>$i = 10$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>7</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>8</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>9</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>11</td>
<td>11</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>12</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>13</td>
<td>13</td>
<td>7</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>14</td>
<td>14</td>
<td>7</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>15</td>
<td>15</td>
<td>8</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>16</td>
<td>16</td>
<td>8</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>17</td>
<td>17</td>
<td>9</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>18</td>
<td>18</td>
<td>9</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>19</td>
<td>19</td>
<td>10</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>20</td>
<td>20</td>
<td>10</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>21</td>
<td>21</td>
<td>11</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>20</td>
<td>22</td>
<td>22</td>
<td>11</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Figure 2: The numbers $C_{n,i,g}$.

<table>
<thead>
<tr>
<th>n</th>
<th>$i = 1$</th>
<th>$i = 2$</th>
<th>$i = 3$</th>
<th>$i = 4$</th>
<th>$i = 5$</th>
<th>$i = 6$</th>
<th>$i = 7$</th>
<th>$i = 8$</th>
<th>$i = 9$</th>
<th>$i = 10$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>$u + 1$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>$u + 2$</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>$2u + 1$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>$2u + 2$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>$u^2 + u + 2$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>$u^2 + 2u + 2$</td>
<td>$u + 2$</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>$u^2 + 3u + 3 + u + 3$</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>$u^2 + 3u + 3 + u + 3$</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>$u^2 + 3u + 3 + u + 3$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>$2u^2 + 2u + 2 + u + 3$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>$2u^2 + 3u + 3 + u + 3$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>$2u^2 + 3u + 3 + u + 3$</td>
<td>$u + 4$</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>$2u^2 + 4u + 4 + u + 3$</td>
<td>$u + 4$</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>$u^3 + u^2 + 4u + 4 + u + 3$</td>
<td>$u + 4$</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>$u^3 + u^2 + 4u + 4 + u + 3$</td>
<td>$u + 4$</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>$u^3 + 2u^2 + 3u + 3 + u + 3$</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>$u^3 + 2u^2 + 3u + 3 + u + 3$</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>$u^3 + 2u^2 + 3u + 3 + u + 3$</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>21</td>
<td>$u^3 + 2u^2 + 3u + 3 + u + 3$</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>$u^3 + 2u^2 + 3u + 3 + u + 3$</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>23</td>
<td>$u^3 + 2u^2 + 3u + 3 + u + 3$</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>$u^3 + 2u^2 + 3u + 3 + u + 3$</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>25</td>
<td>$u^3 + 2u^2 + 3u + 3 + u + 3$</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>26</td>
<td>$u^3 + 2u^2 + 3u + 3 + u + 3$</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>$u^3 + 2u^2 + 3u + 3 + u + 3$</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>28</td>
<td>$u^3 + 2u^2 + 3u + 3 + u + 3$</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>29</td>
<td>$u^3 + 2u^2 + 3u + 3 + u + 3$</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>30</td>
<td>$u^3 + 2u^2 + 3u + 3 + u + 3$</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
Example 3.3. The first few \(I_n \)'s are as follows: \(I_2 = (x_1^2) \), \(I_3 = (x_1^2, x_2^2, x_1x_2) \), \(I_4 = (x_1^3, x_2^2, x_1x_2) \), \(I_5 = (x_1^3, x_2^2, x_1x_2, x_3^2, x_1x_3, x_2x_3) \).

We tabulate \(C_{n,i} \) and \(C_{n,i,d} \), the latter in form of the polynomial \(u^{-2} \sum_j C_{n,i,j}u^j \) in the tables 1 and 2.

Theorem 3.4. (1) \(C_{n,v} = 0 \) for \(v > r(n) \)
(2) \(\forall n \in \mathbb{N} \) : \(\forall v \leq r(n) : C_{n,1+r(n)−v} \geq v \),
(3) \(\forall n \in \mathbb{N} : C_n \geq \left(\frac{r(n)+1}{2}\right) \),
(4) \(\forall v \in \mathbb{N} : \exists N : \forall n \geq N : C_{n,1+r(n)−v} = v \).
(5) If \(n \) is even, then \(C_{n,v} = C_{n-1,v} \) for all \(v \),
(6) \(C_{n,1} = \lfloor n/2 \rfloor \).

Proof. (1) Obvious.
(2) and (3) It suffices to show that for any subset \(S \subset \{1, \ldots, r\} \) of cardinality 1 or 2, there is an \(m \in G(I_n) \) with \(\text{Supp}(m) = S \). If \(S = \{i\} \) then there is an unique positive integer \(a \) such that \(p_i^{b_1} \leq n < p_i^{b_1} \), and \(m = x_i^a \) is the desired generator. If \(S = \{i, j\} \) with \(i < j \) then we claim that there is a positive integer \(a \) such that \(x_i^ax_j \in G(I_n) \). Namely, choose \(b \) such that \(p_i^{b_1} \leq n < p_i^{b_1} \), then since \(p_i < p_j \), one has \(n < p_i^{b_1}p_j \). Hence \(x_i^{b_1}x_j \in I_n \), so it is a multiple of some minimal generator. By the definition of \(b \), this minimal generator must be of the form \(x_i^ax_j \) for some \(a \), which establishes the claim.

(6) We must show that the number of solutions in \(\mathbb{N}^r \) to

\[
\frac{n}{2} < \prod_{i=1}^{r} p_i^{b_i} \leq n
\]

is precisely \(\lceil \frac{n}{2} \rceil \). Obviously, any integer \(\in (\frac{n}{2}, n] \) fits the bill; there are \(\lceil \frac{n}{2} \rceil \) of those.

(5) The case \(v = 1 \) follows from (6). Hence, it suffices to show that if \(v > 1 \), \(x \in (\frac{n}{p_v}, n] \cap \mathbb{N} \), and if \(x \) has no prime factor \(< p_v \), then \(x \in (\frac{n}{p_v}, n-1] \cap \mathbb{N} \). The only way this can fail to happen is if \(x = n \), but then \(x \) is even, and has the prime factor \(2 = p_1 < p_v \), a contradiction.

(4) For large enough \(n \), the only integers \(x < n \) with all prime factors \(\geq 1 + r(n) - v \) are \(p_1, p_2, \ldots, p_{r(n)} \). There is \(v \) of these, and they are all \(> \frac{n}{p_v} \).

\[
\text{Theorem 3.5.} \quad 1. \quad C_{n,v,d} = 0 \quad \text{for} \quad v > r(n), \quad \text{and} \quad d < 2,
2. \quad \forall v \in \mathbb{N} : \exists N : \forall n \geq N : C_{n,1+r(n)−v,2} = v, \quad C_{n,1+r(n)−v,d} = 0 \quad \text{for} \quad d \neq 2,
3. \quad \binom{r(n)}{v} = \# \left\{ m \in \mathbb{N}^+ \mid n \leq m, \lambda(m) = 2 \right\}.
\]

Proof. The first and the last assertions are obvious. The second one follows from the proof of (4) in the previous lemma.

4. Poincaré series

In [3], a minimal free multi-graded resolution of a \(I \) over \(S \) is given, where \(S = K[x_1, \ldots, x_r] \) is a polynomial ring, and \(I \subset (x_1, \ldots, x_r)^2 \) is a stable ideal. As a consequence, the following formula for the Poincaré-Betti series is derived:

\[
P(\text{Tor}^S_r(I, K), t) = \sum_{a \in G(I)} (1 + t)^{\max(a)-1}
\]

(21)

where \(G(I) \) is the minimal generating set of \(I \). Since the resolution is multi-graded, (21) can be modified to yield a formula for the graded Poincaré-Betti series (we here consider \(S \) as \(\mathbb{N} \)-graded, with each variable given weight 1):

\[
P(\text{Tor}^S_r(I, K), t, u) = \sum_{a \in G(I)} u^{\left| a \right|} (1 + t)^{\max(a)-1}
\]

(22)
We will use the following variant of this result:

Theorem 4.1 (Eliahou-Kervaire). Let $I \subset (x_1, \ldots, x_r)^2 \subset K[x_1, \ldots, x_r] = S$ be a stable monomial ideal. Put

\[
b_{i,d} = \# \{ m \in G(I) | \max(m) = i, |m| = d \}
\]

(23)

\[
b_i = \# \{ m \in G(I) | \max(m) = i \}
\]

(24)

Then

\[
P(\text{Tor}_*^S(I, K), t) = \sum_{i=1}^r b_i (1 + t)^{i-1}
\]

(25)

\[
P(\text{Tor}_*^S(I, K), t, u) = \sum_{i=1}^r \left((1 + tu)^{(i-1)} \sum_j b_iu^j \right).
\]

(26)

For the Betti-numbers we have that

\[
\beta_q = \dim_K (\text{Tor}_q^S(I, K)) = \sum_{i=1}^r b_i \binom{i-1}{q}.
\]

(27)

From Proposition 2.6 we have that the ideals I_n are stable after reversing the order of the variables. Hence, replacing max by min, and hence b_i with $C_{n,1+r-i}$, we get:

Corollary 4.2. Let $n \in \mathbb{N}^+$, $r = r(n)$, $S = K[x_1, \ldots, x_r]$. Then

\[
P(\text{Tor}_*^S(I_n, K), t) = \sum_{i=1}^r C_{n,1+r-i}(1 + t)^{i-1}
\]

(28)

\[
P(\text{Tor}_*^S(I_n, K), t, u) = \sum_{i=1}^r (1 + tu)^{(i-1)} \sum_j C_{n,1+r-i,j}u^j.
\]

(29)

For the Betti-numbers we have that

\[
\beta_q = \sum_{i=1}^r C_{n,1+r-i} \binom{i-1}{q}.
\]

(30)

In [6, 1] it is shown that if $S = K[x_1, \ldots, x_r]$ and I is a stable monomial ideal in S, then S/I is a Golod ring. Hence, from a result of Golod [4] (see also [5]), it follows that

\[
P(\text{Tor}_*^{S/I}(K, K), t) = \frac{(1 + t)^r}{1 - t^2 P(\text{Tor}_*^S(I, K), t)}
\]

(31)

Regarding S as an \mathbb{N}-graded ring, one can show that in fact

\[
P(\text{Tor}_*^{S/I}(K, K), t, u) = \frac{(1 + ut)^r}{1 - t^2 P(\text{Tor}_*^S(I, K), t, u)}
\]

(32)

The following theorem is an immediate consequence:

Theorem 4.3 (Herzog-Aramova, Peeva). Let $S = K[x_1, \ldots, x_r]$, and suppose that I is a stable monomial ideal in S. Put

\[
b_{i,d} = \# \{ x \in G(I) | \max(x) = i, |x| = d \}
\]

\[
b_i = \# \{ x \in G(I) | \max(x) = i \}
\]
Then, for $R = S/I$, we have that

$$P(\text{Tor}_i^R(K, K), t) = \frac{(1 + t)^r}{1 - t^2 \sum_{i=1}^r (1 + t)^{(i-1)} \sum_j b_i}$$

(33)

$$P(\text{Tor}_i^R(K, K), t, u) = \frac{(1 + t)^r}{1 - t^2 \sum_{i=1}^r (1 + tu)^{(i-1)} \sum_j b_{i,j}u^j}$$

(34)

Specialising to the case of A_n, we obtain:

Corollary 4.4. Let $n \in \mathbb{N}^+$, and let $r = r(n)$. Regard A_n as a naturally graded K-algebra, with each x_i given weight 1, and regard K as a cyclic A-module. Then

$$P(\text{Tor}_i^{A_n}(K, K), t) = \frac{(1 + t)^r}{1 - t^2 \sum_{i=1}^r (1 + t)^{(i-1)} C_{n,r-i+1}}$$

(35)

$$P(\text{Tor}_i^{A_n}(K, K), t, u) = \frac{(1 + ut)^r}{1 - t^2 \left(\sum_{i=1}^r \left((1 + tu)^{(i-1)} \sum_j C_{n,r-i+1,j}u^j \right) \right)}$$

(36)

Part IV of the main theorem is now proved.

Example 4.5. We consider the case $n = 5$, then $r = r(n) = 3$, so $S = K[x_1, x_2, x_3]$ and $I = I_5 = (x_1^2, x_1x_2, x_1x_3, x_2^2, x_2x_3, x_3^2)$. We get that $C_{5,1} = 3$, $C_{5,2} = 2$, $C_{5,3} = 1$. According to our formulas\(^1\) we have

$$P_I^S(t) = 1 + 2(1 + t) + 3(1 + t)^2 = 6 + 8t + 3t^2$$

$$P_K^{S/I} = \frac{(1 + t)^r}{1 - t^2 P_I^S(t)} = \frac{1}{1 - 3t}$$

When we consider the grading by total degree, we have that $C_{5,1,2} = 2$, $C_{5,1,3} = 1$, $C_{5,2,2} = 2$, $C_{5,3,2} = 1$. Hence, our formulas yield

$$P_I^S(t, u) = u^2 + 2u^2(1 + t) + (2u^2 + u^3)(1 + t)^2$$

$$= 5u^2 + u^3 + (6u^2 + 2u^3)t + (2u^2 + u^3)t^2$$

$$P_K^{S/I}(t, u) = -\frac{1 + tu}{u^3t^2 + 2t^2u^2 + 2tu - 1}$$

We list the first few Poincaré-Betti series $P(\text{Tor}_i^{A_n}(K, K), t, u)$ in table 3.

Conjecture 4.6. $P(\text{Tor}_i^{A_n}(K, K), t) = -\frac{(1 + t)^{\ell_1(n)}}{q_n(t)} \cdot q_n(t) = \sum_{i=0}^{\ell_2(n)} h_i(n)t^i$, with

1. $q_n(-1) \neq 0$,
2. $\ell_1(n)$ is the number of odd primes p such that $p^2 \leq n$,
3. $\ell_2(n) = \ell_1(n) + 1$,
4. $h_0(n) = -1$,
5. $h_1(n) = r(n) - \ell_1(n)$,
6. $h_{\ell_2(n)}(n) = C_{n,1} = [n/2]$.

5. Acknowledgements

I am indebted to Johan Andersson for suggesting the idea of studying the homological properties of the truncations Γ_n. I thank the referee for suggesting a simplified proof of parts of Theorem 3.4.

\(^1\)Here, we have used the abbreviation $P_I^S(t) = P(\text{Tor}_i^S(I, K), t)$, we will also write $P_K^{S/I}(t) = P(\text{Tor}_i^{S/I}(K, K), t)$ et cetera.
\[\begin{array}{c|c|c}
 n & \text{Graded} & \text{Non-graded} \\
 \hline
 2 & -(tu - 1)^{-1} & -(t - 1)^{-1} \\
 3 & -(2tu - 1)^{-1} & -(2t - 1)^{-1} \\
 4 & -(u^3 + u)^{t+1}u^{-1} & -(2t - 1)^{-1} \\
 5 & -(u^3 + u)^{t+2}u^{-1} & -(3t - 1)^{-1} \\
 6 & -(2u^3 + u)^{t+2}u^{-1} & -(3t - 1)^{-1} \\
 7 & -(u^3 + 2u)^{t+3}u^{-1} & -(4t - 1)^{-1} \\
 8 & -(u^3 + 2u)^{t+3}u^{-1} & -(4t - 1)^{-1} \\
 9 & -(u^3 + u)^{t+4}u^{-1} & -(4t - 1)^{-1} \\
 10 & -(u^3 + u)^{t+4}u^{-1} & -(4t - 1)^{-1} \\
 11 & -(u^3 + u)^{t+5}u^{-1} & -(4t - 1)^{-1} \\
 12 & -(u^3 + u)^{t+5}u^{-1} & -(4t - 1)^{-1} \\
 13 & -(u^3 + u)^{t+5}u^{-1} & -(4t - 1)^{-1} \\
 14 & -(u^3 + u)^{t+5}u^{-1} & -(4t - 1)^{-1} \\
 15 & -(u^3 + u)^{t+5}u^{-1} & -(4t - 1)^{-1} \\
 16 & -(u^3 + u)^{t+5}u^{-1} & -(4t - 1)^{-1} \\
 17 & -(u^3 + u)^{t+5}u^{-1} & -(4t - 1)^{-1} \\
 18 & -(u^3 + u)^{t+5}u^{-1} & -(4t - 1)^{-1} \\
 19 & -(u^3 + u)^{t+5}u^{-1} & -(4t - 1)^{-1} \\
 20 & -(u^3 + u)^{t+5}u^{-1} & -(4t - 1)^{-1} \\
 21 & -(u^3 + u)^{t+5}u^{-1} & -(4t - 1)^{-1} \\
 22 & -(u^3 + u)^{t+5}u^{-1} & -(4t - 1)^{-1} \\
 23 & -(u^3 + u)^{t+5}u^{-1} & -(4t - 1)^{-1} \\
 24 & -(u^3 + u)^{t+5}u^{-1} & -(4t - 1)^{-1} \\
 25 & -(u^3 + u)^{t+5}u^{-1} & -(4t - 1)^{-1} \\
 \end{array} \]

Figure 3: Graded and non-graded Poincaré-Betti series of the minimal free resolution of \(K \) over \(A_n \).
References

This article may be accessed via WWW at http://www.rmi.acnet.ge/hha/ or by anonymous ftp at ftp://ftp.rmi.acnet.ge/pub/hha/volumes/2000/n2/n2.(dvi,ps,dvi.gz,ps.gz)

Jan Snellman jans@matematik.su.se

School of Informatics
University of Wales
Dean Street, Bangor
Gwynedd LL57 1UT
Wales
UK