TRUNCATIONS OF THE RING OF NUMBER-THEORETIC FUNCTIONS

JAN SNELLMAN

(communicated by Winfried Bruns)

Abstract

We study the ring Γ of all functions $\mathbb{N}^+ \to K$, endowed with the usual convolution product. Γ , which we call the ring of number-theoretic functions, is an inverse limit of the "truncations"

$$\Gamma_n = \{ f \in \Gamma | \forall m > n : f(m) = 0 \}.$$

Each Γ_n is a zero-dimensional, finitely generated K-algebra, which may be expressed as the quotient of a finitely generated polynomial ring with a *stable* (after reversing the order of the variables) monomial ideal. Using the description of the free minimal resolution of stable ideals given by Eliahou-Kervaire, and some additional arguments by Aramova-Herzog and Peeva, we give the Poincaré-Betti series for Γ_n .

1. Introduction

Cashwell and Everett [2] studied "the ring of number-theoretic functions"

$$\Gamma = \left\{ f \middle| \mathbb{N}^+ \to K \right\} \tag{1}$$

where \mathbb{N}^+ is the set of positive natural numbers (we denote by \mathbb{N} the set of all natural numbers) and K is a field containing the rational numbers. Γ is endowed with component-wise addition and multiplication with scalars, and with the convolution (or Cauchy) product

$$fg(n) = \sum_{\substack{(a,b) \in (\mathbb{N}^+) \times (\mathbb{N}^+) \\ ab = n}} f(a)g(b)$$
(2)

With these operations, Γ becomes a commutative K-algebra. It is immediate that it is a local domain; less obvious is the fact that it is a unique factorisation domain. Cashwell and Everett proved this in [2] using the isomorphism

$$\Phi: \Gamma \to K[[X]]$$

$$f \mapsto \sum f(n) x_1^{\alpha_1} x_2^{\alpha_2} \cdots$$
(3)

where $X = \{x_1, x_2, x_3, \ldots\}$, K[[X]] is the "large" power series ring of all functions from the free abelian monoid $\mathcal{M} = [X]$ (the free abelian monoid generated by X) to K, and where the summation extends over all $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots \in \mathbb{N}^+$. Here, and henceforth, we denote by p_i the i'th prime number, with $p_1 = 2$, and by \mathcal{P} the set of all prime numbers. That (3) is an isomorphism is immediate from the following isomorphism of commutative monoids, implied by the fundamental theorem of arithmetics:

$$(\mathbb{N}^+,\cdot) \simeq \coprod_{p \in \mathcal{P}} (\mathbb{N},+) \tag{4}$$

The author was supported by grants from Svenska Institutet and Kungliga Vetenskapsakademin, and by grant n. 231801F from Centre International des Etudiants et Stagiaires.

Received 1 November 1999, revised 19 January 2000; published on 31 January 2000.

¹⁹⁹¹ Mathematics Subject Classification: 13Dxx,10.00

Key words and phrases: Ring of number theoretic functions, Poincaré-Betti series, stable monomial ideals © 2000, Jan Snellman. Permission to copy for private use granted.

The following number-theoretic functions are of particular interest (whenever possible, we use the same notation as in [2]):

- 1. The multiplicative unit ϵ given by $\epsilon(1) = 1$, $\epsilon(n) = 0$ for n > 1,
- 2. $\lambda : \mathbb{N}^+ \to \mathbb{N}$ given by $\lambda(1) = 0$, $\lambda(q_1 \cdots q_l) = l$ if q_1, \ldots, q_l are any (not necessarily distinct) prime numbers.
- 3. $\tilde{\lambda}: \mathbb{N}^+ \to \mathbb{N}$ given $\tilde{\lambda}(1) = 0$, $\tilde{\lambda}(p_1^{a_1} \dots p_r^{a_r}) = \sum a_r p_r$.
- 4. The Möbius function $\mu(1) = 1$, $\mu(n) = (-1)^v$ if n is the product of v distinct prime factors, and 0 otherwise,
- 5. For any $i \in \mathbb{N}^+$, $\chi_i(p_i) = 1$, and $\chi_i(m) = 0$ for $m \neq p_i$. Note that under the isomorphism (3), $\Phi(\chi_i) = x_i$.

The topic of this article is the study of the "truncations" Γ_n , where for each $n \in \mathbb{N}^+$,

$$\Gamma_n = \{ f \in \Gamma | m > n \implies f(m) = 0 \}$$
 (5)

With the modified multiplication given by

$$fg(n) = \sum_{\substack{(a,b) \in \{1,\dots,n\} \times \{1,\dots,n\} \\ ab = n}} f(a)g(b)$$
(6)

 Γ_n becomes a K-algebra, isomorphic to Γ/J_n , where J_n is the ideal

$$J_n = \{ f \in \Gamma | \forall m \leqslant n : f(m) = 0 \}.$$

If we define

$$\pi_n: \Gamma \to \Gamma_n \tag{7}$$

$$\pi_n(f)(m) = \begin{cases} f(m) & m \le n \\ 0 & m > n \end{cases}$$
 (8)

then π_n is a K-algebra epimorphism, and J_n is the kernel of π_n . We note furthermore that J_n is generated by monomials in the elements χ_i .

To describe the main idea of this paper, we need a few additional definitions. First, for any $n \in \mathbb{N}^+$ we denote by $r(n) \in \mathbb{N}$ the largest integer such that $p_{r(n)} \leq n$. In other words, r(n) is the number of prime numbers $\leq n$ (this number is often denoted $\pi(n)$). Secondly, for a monomial $m = x_1^{\alpha_1} \cdots x_w^{\alpha_w}$, we define the support Supp(m) as the set of positive integers i such that $\alpha_i > 0$. We define $\max(m)$ and $\min(m)$ as the maximal and minimal elements in the support of m.

Definition 1.1. A monomial ideal $I \subset K[x_1, \ldots, x_r]$ is said to be *strongly stable* if whenever m is a monomial such that $x_j m \in I$, then $x_i m \in I$ for all $i \leq j$. If this condition holds at least for all $i \leq j = \max(m)$ then I is said to be *stable*.

We can now state our main theorem:

Theorem 1.2. Let $n \in \mathbb{N}^+$ and r = r(n). Then the following holds:

- (I) $\Gamma_n \simeq \frac{K[x_1,...,x_r]}{I_n}$, where I_n is a strongly stable monomial ideal, with respect to the reverse order of the variables.
- (II) Γ_n is artinian, with $\dim_K(\Gamma_n) = n$. Furthermore, if it is given the natural grading with $|\chi_i| = 1$, then its Hilbert series is $\sum_i d_i t^i$ where d_i is the number of $w \leq n$ with $\lambda(w) = i$.
- (III) There is a 1-1 bijection between the minimal monomial generators of I_n of minimal support v, and the solutions in non-negative integers to the equation

$$\log n - \log p_v < \sum_{i=v}^r b_i \log p_i \leqslant \log n \tag{9}$$

(IV) If we denote by $C_{n,v}$ the number of such solutions, then the Poincaré-Betti series of the free minimal resolution of K as a cyclic module over Γ_n is the following rational function:

$$P(\operatorname{Tor}_{*}^{\Gamma_{n}}(K,K),t) = \frac{(1+t)^{r}}{1-t^{2}\left(\sum_{i=1}^{r}(1+t)^{(i-1)}C_{n,r-i+1}\right)}$$
(10)

We will show this result, and also give the graded Poincaré-Betti series. For this, we define the number $C_{n,v,d}$ which counts the number of minimal generators of I_n of minimal support v and total degree d. We determine some elementary properties of the numbers $C_{n,v,d}$ and $C_{n,v}$.

2. The ring of number-theoretic functions and its truncations

2.1. Norms, degrees, and multiplicativity

For a monomial $\mathcal{M} \ni m = x_1^{a_1} \dots x_n^{a_n}$ we define the weight of m as $w(m) = p_1^{a_1} \dots p_n^{a_n}$ (we put w(1) = 1). Hence w gives a bijection between \mathcal{M} and \mathbb{N}^+ . Furthermore, we can define a term order on \mathcal{M} by m > m' iff w(m) > w(m'). If we define the initial monomial in (f) of $f \in K[[X]]$ as the monomial in (f) minimal with respect to (f), then in (f) is easily seen to correspond to the norm f(x) of a number-theoretic function f(x), defined as the smallest f(x) such that f(x) defined as the smallest f(x) observed in f(x), the norm is multiplicative: f(x) and f(x) and f(x) and f(x) and f(x).

Cashwell and Everett also define the degree $D(\alpha)$ to mean the smallest d such that there exists an n with $\lambda(n)=d$ and $\alpha(n)\neq 0$. This corresponds the smallest total degree of a monomial in $\operatorname{Supp}(f)$. Furthermore, the norm $M(\alpha)$, defined as the smallest integer n with $\lambda(n)=D(\alpha), \alpha(n)\neq 0$, corresponds to the initial monomial of f under the term order obtained by refining the total degree partial order with the term order >.

A multiplicative function is an element $\alpha \in \Gamma$ such that $\alpha(1) = 1$ and $\alpha(ab) = \alpha(a)\alpha(b)$ whenever a and b are relatively prime. Cashwell and Everett observes that a multiplicative function is necessarily a unit in Γ . One can further observe that if α is multiplicative, then $f = \Phi(\alpha)$ can be written

$$f(x_1, x_2, x_3, \dots) = f_1(x_1)f_2(x_2)f_3(x_3)\cdots$$

where each $f_i(x_i) \in K[[x_i]]$ is invertible. In particular, the constant function $\Gamma \ni \nu_0$ with $\nu_0(n) = 1$ for all n, corresponds to

$$\sum_{m \in \mathcal{M}} m = \frac{1}{1 - x_1} \frac{1}{1 - x_2} \frac{1}{1 - x_3} \cdots$$

Since the Möbius function is defined to be the inverse of this function, we get that it corresponds to

$$(1-x_1)(1-x_2)(1-x_3)\cdots = 1 - (\sum_{i=1}^{\infty} x_i) + (\sum_{i< j} x_i x_j) - (\sum_{i< j< k} x_i x_j x_k) + \cdots$$

2.2. Truncations of the ring of number-theoretic functions

Let $n, n' \in \mathbb{N}^+$, n' > n. Then there is a K-algebra epimorphism

$$\varphi_n^{n'}: \Gamma_{n'} \to \Gamma_n$$

$$\varphi_n^{n'}(f)(m) = \begin{cases} f(m) & m \leq n \\ 0 & m > n \end{cases}$$

Hence, the Γ_n 's form an inverse system.

Lemma 2.1. $\underline{\lim} \Gamma_n \simeq \Gamma$.

Proof. Given any $f \in \Gamma$, the sequence $(\pi_1(f), \pi_2(f), \pi_3(f), \dots)$ is coherent. Conversely, given any coherent sequence (g_1, g_2, g_3, \dots) , we can define $g : \mathbb{N} \to K$ by $g(m) = g_i(m)$ where $i \geq m$.

As a side remark, we note that

Lemma 2.2. The decreasing filtration

$$J_1 \supseteq J_2 \supseteq J_3 \supseteq \cdots$$
 (11)

is separated, that is, $\cap_n J_n = (0)$.

Definition 2.3. We define

$$I_n = K[[X]] \{ m \in \mathcal{M} | w(m) > n \},$$
 (12)

that is, as the monomial ideal in K[[X]] generated by all monomials of weight strictly higher than n. We put $A_n = \frac{K[[X]]}{I_n}$.

Proposition 2.4. A K-basis of A_n is given by all monomials of weight $\leq n$. Hence A_n is an artinian algebra, with $\dim_K(A_n) = n$. Putting r = r(n), we have that

$$A_n = \frac{K[[X]]}{I_n} \simeq \frac{K[x_1, \dots, x_r]}{I_n \cap K[x_1, \dots, x_r]}$$
(13)

Proof. As a vector space, $K[[X]] \simeq U \oplus I_n$, where U consists of all functions supported on monomials of weight $\leq n$. It follows that $A_n \simeq U$ as K vector spaces. Of course, there are exactly n monomials of weight $\leq n$. Finally, if s > r then $w(x_s) = p_s > n$, hence $x_s \in I_n$. \square

We will abuse notations and identify I_n and its contraction $I_n \cap K[x_1, \ldots, x_r]$.

Lemma 2.5. $\Gamma_n \simeq A_n$.

Proof. Since A_n has a K-basis is given by all monomials of weight $\leq n$, the two K-algebras are isomorphic as K-vector spaces. The multiplication in A_n is induced from the multiplication in K[[X]], with the extra condition that monomials of weight > n are truncated. This is the same multiplication as in Γ_n .

Proposition 2.6. I_n is a strongly stable ideal, with respect to the reverse order of the variables.

Proof. We must show that if $m \in I_n$, and $x_i \mid m$, then $mx_j/x_i \in I$ for $i \leq j \leq r$. We have that $w(mx_j/x_i) = w(m)p_j/p_i > w(m) > n$.

Part I of the main theorem is now proved.

We give $K[x_1, ..., x_r]$ an \mathbb{N}^2 -grading by giving the variable x_i bi-degree $(1, p_i)$. Since each I_n is bihomogeneous, this grading is inherited by A_n .

Theorem 2.7. The bi-graded Hilbert series of A_n is given by

$$A_n(t, u) = \sum_{i,j} c_{ij} t^i u^j,$$

where c_{ij} is the number of $p_1^{a_1} \dots p_r^{a_r} \leqslant n$ with $\sum a_r = i$ and $\sum a_r p_r = j$. Furthermore,

$$A_n(t,1) = \sum_i d_i t^i$$
$$A_n(1,u) = \sum_i e_j u^j$$

where d_i is the number of $w \leq n$ with $\lambda(w) = i$, and e_i is the number of $w \leq n$ with $\tilde{\lambda}(w) = i$. In particular, the t^1 -coefficient of $A_n(t,1)$ is the number of prime numbers $\leq n$. Homology, Homotopy and Applications, vol. 2, No. 2, 2000

Proof. The monomial
$$x_1^{a_1} \cdots x_n^{a_n}$$
 has bi-degree $(\sum_{i=1}^n a_i, \sum a_i p_i)$.

This establishes part II of the main theorem.

3. Minimal generators for I_n

Let $n \in \mathbb{N}^+$, and let r = r(n). We have that

$$x_1^{a_1} \dots x_r^{a_r} = m \in I_n \quad \Longleftrightarrow \quad w(m) > n \quad \Longleftrightarrow \quad \prod_{i=1}^r p_i^{a_i} > n.$$
 (14)

We denote by $G(I_n)$ the set of minimal monomial generators of I_n . For $m=x_1^{a_1}\dots x_r^{a_r}$ to be an element of $G(I_n)$ it is necessary and sufficient that $m\in I_n$ and that for $1\leqslant v\leqslant r$, $x_v|m\implies m/x_v\notin I_n$. In other words,

$$1 \leqslant j \leqslant n, \, a_j > 0 \quad \Longrightarrow \quad n < \prod_{i=1}^r p_i^{a_i} \leqslant p_j n. \tag{15}$$

21

Definition 3.1. For n, v, d positive integers, we define:

$$C_n = \#G(I_n) \tag{16}$$

$$C_{n,v} = \# \{ m \in G(I_n) | \min(m) = v \}$$
 (17)

$$C_{n,v,d} = \# \{ m \in G(I_n) | \min(m) = v, |m| = d \}$$
(18)

Theorem 3.2. $C_{n,v}$ is the number of solutions $(b_1,\ldots,b_r) \in \mathbb{N}^r$ to the equation

$$\log n - \log p_v < \sum_{i=v}^r b_i \log p_i \leqslant \log n. \tag{19}$$

Equivalently, $C_{n,v}$ is the number of integers x such that $n/p_v < x \le n$ and such that no prime factors of x are smaller than p_v .

Similarly, $C_{n,v,d}$ is the number of solutions $(b_1,\ldots,b_r)\in\mathbb{N}^r$ to the system of equations

$$\log n - \log p_v < \sum_{i=v}^r b_i \log p_i \leqslant \log n$$

$$\sum_{i=1}^r b_i = d - 1.$$
(20)

or equivalently, $C_{n,v,d}$ is the number of integers x such that $n/p_v < x \le n$ and such that no prime factors of x are smaller than p_v , and with the additional constraint that $\lambda(x) = d$.

Proof. We have that $a_v > 0$, $a_w = 0$ for w < v. Hence equation (15) implies that

$$n < \prod_{j=v}' p_i^{a_i} \leqslant p_v n.$$

Putting $b_v = a_v - 1$, $b_j = a_j$ for j > v we can write this as

$$n < p_v \prod_{i=v}^r p_i^{b_i} \leqslant p_v n \quad \iff \quad n/p_v < \prod_{i=v}^r p_i^{b_i} \leqslant n$$

from which (19) follows by taking logarithms. This implies (20) as well.

We have now proved part III of the main theorem.

Figure 1: The numbers C_n and $C_{n,i}$.

Figure 2: The numbers $C_{n,i,g}$.

n	i = 1	i = 2	3	4	5	6	7	8	9	
2	1									
3	2	1 1								
4 5	$u + 1 \\ u + 2$	1	1							
6	$\begin{array}{c} u + 2 \\ 2 u + 1 \end{array}$	2 2	1							
7	2u + 1 2u + 2	3	2	1	ı					
8	$u^2 + u + 2$	3	2	1						
9	$u^2 + 2u + 2$	u + 2	2	1						
10	$u^2 + 3u + 1$	u + 2	2	1						
11	$u^2 + 3u + 2$	u + 3	3	2	1					
12	$2u^2 + 2u + 2$	u + 3	3	2	1		_			
13	$2u^2 + 2u + 3$	u + 4	4	3	2	1				
14	$2u^2 + 3u + 2$	u+4	4	3	2	1				
15	$2u^2 + 4u + 2$	2u + 3	4	3	2	1				
16	$u^3 + u^2 + 4u + 2$	2u + 3	4	3	2	1		_		
17	$u^3 + u^2 + 4u + 3$	2 u + 4	5	4	3	2	1			
18	$u^3 + 2u^2 + 3u + 3$	2 u + 4	5	4	3	2	1			
19	$u^3 + 2u^2 + 3u + 4$	2u + 5	6	5	4	3	2	1		
20	$u^3 + 3u^2 + 2u + 4$	2u + 5	6	5	4	3	2	1		
21	$u^3 + 3u^2 + 3u + 4$	3 u + 4	6	5	4	3	2	1		
22	$u^3 + 3u^2 + 4u + 3$	3 u + 4	6	5	4	3	2	1		
23	$u^3 + 3u^2 + 4u + 4$	3 u + 5	7	6	5	4	3	2	1	
24	$2u^3 + 2u^2 + 4u + 4$	3 u + 5	7	6	5	4	3	2	1	
25	$2u^3 + 2u^2 + 5u + 4$	4u + 5	u + 6	6	5	4	3	2	1	
26	$2u^3 + 2u^2 + 6u + 3$	4u + 5	u + 6	6	5	4	3	2	1	
27	$2u^{3} + 3u^{2} + 6u + 3$	$u^2 + 3u + 5$	u+6	6	5	4	3	2	1	
28	$2u^3 + 4u^2 + 5u + 3$	$u^2 + 3u + 5$	u + 6	6	5	4	3	2	1	
29	$2u^3 + 4u^2 + 5u + 4$	$u^2 + 3u + 6$	u + 7	7	6	5	4	3	2	1
30	$2u^3 + 5u^2 + 4u + 4$	$u^2 + 3u + 6$	u + 7	7	6	5	4	3	2	1

Example 3.3. The first few I_n 's are as follows: $I_2 = (x_1^2)$, $I_3 = (x_1^2, x_2^2, x_1x_2)$, $I_4 = (x_1^3, x_2^2, x_1x_2)$, $I_5 = (x_1^3, x_2^2, x_1x_2, x_3^2, x_1x_3, x_2x_3)$.

We tabulate $C_{n,i}$ and $C_{n,i,d}$, the latter in form of the polynomial $u^{-2} \sum_{j} C_{n,i,j} u^{j}$ in the tables 1 and 2.

Theorem 3.4. (1) $C_{n,v} = 0$ for v > r(n)

- (2) $\forall n \in \mathbb{N} : \forall v \leqslant r(n) : C_{n,1+r(n)-v} \geqslant v$,
- (3) $\forall n \in \mathbb{N} : C_n \geqslant \binom{r(n)+1}{2},$
- $(4) \ \forall v \in \mathbb{N} : \exists N : \forall n \geqslant N : C_{n,1+r(n)-v} = v.$
- (5) If n is even, then $C_{n,v} = C_{n-1,v}$ for all v,
- (6) $C_{n,1} = \lceil n/2 \rceil$.

Proof. (1) Obvious.

- (2) and (3) It suffices to show that for any subset $S \subset \{1,\ldots,r\}$ of cardinality 1 or 2, there is an $m \in G(I_n)$ with $\operatorname{Supp}(m) = S$. If $S = \{i\}$ then there is an unique positive integer a such that $p_i^{b-1} \leqslant n < p_i^b$, and $m = x_i^b$ is the desired generator. If $S = \{i,j\}$ with i < j then we claim that there is a positive integer a such that $x_i^a x_j \in G(I_n)$. Namely, choose b such that $p_i^{b-1} \leqslant n < p_i^b$, then since $p_i < p_j$ one has $n < p_i^{b-1} p_j$. Hence $x_i^{b-1} x_j \in I_n$, so it is a multiple of some minimal generator. By the definition of b, this minimal generator must be of the form $x_i^a x_j$ for some a, which establishes the claim.
 - (6) We must show that the number of solutions in \mathbb{N}^r to

$$\frac{n}{2} < \prod_{i=1}^{r} p_i^{b_i} \leqslant n$$

is precisely $\lceil \frac{n}{2} \rceil$. Obviously, any integer $\in (\frac{n}{2}, n]$ fits the bill; there are $\lceil \frac{n}{2} \rceil$ of those.

- (5) The case v=1 follows from (6). Hence, it suffices to show that if v>1, $x \in (\frac{n}{p_v}, n] \cap \mathbb{N}$, and if x has no prime factor $< p_v$, then $x \in (\frac{n-1}{p_v}, n-1] \cap \mathbb{N}$. The only way this can fail to happen is if x=n, but then x is even, and has the prime factor $2=p_1 < p_v$, a contradiction.
- (4) For large enough n, the only integers $x \leq n$ with all prime factors $\geq 1 + r(n) v$ are $p_{1+r(n)-v}, \ldots, p_{r(n)}$. There is v of these, and they are all $> \frac{n}{p_v}$.

Theorem 3.5. 1. $C_{n,v,d} = 0$ for v > r(n), and for d < 2,

- $2. \ \, \forall v \in \mathbb{N}: \, \exists N: \, \forall n \geqslant N: C_{n,1+r(n)-v,2} = v, \, C_{n,1+r(n)-v,d} = 0 \, \, \text{for} \, \, d \neq 2,$
- 3. $\binom{r(n)}{2} = \# \{ m \in \mathbb{N}^+ | m \le n, \lambda(m) = 2 \}.$

Proof. The first and the last assertions are obvious. The second one follows from the proof of (4) in the previous lemma.

4. Poincaré series

In [3], a minimal free multi-graded resolution of a I over S is given, where $S = K[x_1, \ldots, x_r]$ is a polynomial ring, and $I \subset (x_1, \ldots, x_r)^2$ is a stable ideal. As a consequence, the following formula for the Poincaré-Betti series is derived:

$$P(\operatorname{Tor}_{*}^{S}(I,K),t) = \sum_{a \in G(I)} (1+t)^{\max(a)-1}$$
(21)

where G(I) is the minimal generating set of I. Since the resolution is multi-graded, (21) can be modified to yield a formula for the graded Poincaré-Betti series (we here consider S as \mathbb{N} -graded, with each variable given weight 1):

$$P(\operatorname{Tor}_{*,*}^{S}(I,K),t,u) = \sum_{a \in G(I)} u^{|a|} (1+t)^{\max(a)-1}$$
(22)

We will use the following variant of this result:

Theorem 4.1 (Eliahou-Kervaire). Let $I \subset (x_1, \ldots, x_r)^2 \subset K[x_1, \ldots, x_r] = S$ be a stable monomial ideal. Put

$$b_{i,d} = \# \{ m \in G(I) | \max(m) = i, |m| = d \}$$
(23)

$$b_i = \# \{ m \in G(I) | \max(m) = i \}$$
 (24)

Then

$$P(\operatorname{Tor}_{*}^{S}(I,K),t) = \sum_{i=1}^{r} b_{i}(1+t)^{(i-1)}$$
(25)

$$P(\operatorname{Tor}_{*,*}^{S}(I,K),t,u) = \sum_{i=1}^{r} \left((1+tu)^{(i-1)} \sum_{j} b_{i,j} u^{j} \right).$$
 (26)

For the Betti-numbers we have that

$$\beta_q = \dim_K \left(\operatorname{Tor}_q^S(I, K) \right) = \sum_{i=1}^r b_i \binom{i-1}{q}. \tag{27}$$

From Proposition 2.6 we have that the ideals I_n are stable after reversing the order of the variables. Hence, replacing max by min, and hence b_i with $C_{n,1+r-i}$, we get:

Corollary 4.2. Let $n \in \mathbb{N}^+$, r = r(n), $S = K[x_1, \ldots, x_r]$. Then

$$P(\operatorname{Tor}_{*}^{S}(I_{n}, K), t) = \sum_{i=1}^{r} C_{n, 1+r-i} (1+t)^{(i-1)}$$
(28)

$$P(\operatorname{Tor}_{*,*}^{S}(I_n, K), t, u) = \sum_{i=1}^{r} (1 + tu)^{(i-1)} \sum_{j} C_{n, 1+r-i, j} u^{j}.$$
(29)

For the Betti-numbers we have that

$$\beta_q = \sum_{i=1}^r C_{n,1+r-i} \binom{i-1}{q}.$$
 (30)

In [6, 1] it is shown that if $S = K[x_1, ..., x_r]$ and I is a stable monomial ideal in S, then S/I is a Golod ring. Hence, from a result of Golod [4] (see also [5]), it follows that

$$P(\operatorname{Tor}_{*}^{S/I}(K,K),t) = \frac{(1+t)^r}{1-t^2P(\operatorname{Tor}^{S}(I,K),t)}$$
(31)

Regarding S as an \mathbb{N} -graded ring, one can show that in fact

$$P(\operatorname{Tor}_{*}^{S/I}(K,K),t,u) = \frac{(1+ut)^{r}}{1-t^{2}P(\operatorname{Tor}_{*}^{S}(I,K),t,u)}$$
(32)

The following theorem is an immediate consequence:

Theorem 4.3 (Herzog-Aramova, Peeva). Let $S = K[x_1, ..., x_r]$, and suppose that I is a stable monomial ideal in S. Put

$$b_{i,d} = \# \{ x \in G(I) | \max(x) = i, |x| = d \}$$

$$b_i = \# \{ x \in G(I) | \max(x) = i \}$$

Then, for R = S/I, we have that

$$P(\operatorname{Tor}_{*}^{R}(K,K),t) = \frac{(1+t)^{r}}{1-t^{2}\sum_{i=1}^{r}(1+t)^{(i-1)}\sum_{i}b_{i}}$$
(33)

$$P(\operatorname{Tor}_{*}^{R}(K,K),t,u) = \frac{(1+t)^{r}}{1-t^{2}\sum_{i=1}^{r}(1+tu)^{(i-1)}\sum_{j}b_{i,j}u^{j}}$$
(34)

Specialising to the case of A_n , we obtain:

Corollary 4.4. Let $n \in \mathbb{N}^+$, and let r = r(n). Regard A_n as a naturally graded K-algebra, with each x_i given weight 1, and regard K as a cyclic A-module. Then

$$P(\operatorname{Tor}_{*}^{A_{n}}(K,K),t) = \frac{(1+t)^{r}}{1-t^{2}\sum_{i=1}^{r}(1+t)^{(i-1)}C_{n,r-i+1}}$$
(35)

$$P(\operatorname{Tor}_{*}^{A_{n}}(K,K),t,u) = \frac{(1+ut)^{r}}{1-t^{2}\left(\sum_{i=1}^{r}\left((1+tu)^{(i-1)}\sum_{j}C_{n,r-i+1,j}u^{j}\right)\right)}$$
(36)

Part IV of the main theorem is now proved.

Example 4.5. We consider the case n = 5, then r = r(n) = 3, so $S = K[x_1, x_2, x_3]$ and $I = I_5 = (x_1^3, x_1x_2, x_1x_3, x_2^2, x_2x_3, x_3^2)$. We get that $C_{5,1} = 3$, $C_{5,2} = 2$, $C_{5,3} = 1$. According to our formulas¹ we have

$$P_I^S(t) = 1 + 2(1+t) + 3(1+t)^2 = 6 + 8t + 3t^2$$

$$P_K^{S/I} = \frac{(1+t)^r}{1 - t^2 P_I^S(t)} = \frac{1}{1 - 3t}$$

When we consider the grading by total degree, we have that $C_{5,1,2} = 2$, $C_{5,1,3} = 1$, $C_{5,2,2} = 2$, $C_{5,3,2} = 1$. Hence, our formulas yield

$$\begin{split} P_I^S(t,u) &= u^2 + 2u^2(1+t) + (2u^2 + u^3)(1+t)^2 \\ &= 5u^2 + u^3 + (6u^2 + 2u^3)t + \left(2u^2 + u^3\right)t^2 \\ P_K^{S/I}(t,u) &= -\frac{1+tu}{u^3t^2 + 2t^2u^2 + 2tu - 1} \end{split}$$

We list the first few Poincaré-Betti series $P(\operatorname{Tor}_*^{A_n}(K,K),t,u)$ in table 3.

Conjecture 4.6. $P(\operatorname{Tor}_*^{A_n}(K,K),t) = -\frac{(1+t)^{\ell_1(n)}}{q_n(t)}, \ q_n(t) = \sum_{i=0}^{\ell_2(n)} h_i(n)t^i, \ with$

- 1. $q_n(-1) \neq 0$,
- 2. $\ell_1(n)$ is the number of odd primes p such that $p^2 \leq n$,
- 3. $\ell_2(n) = \ell_1(n) + 1$,
- 4. $h_0(n) = -1$,
- 5. $h_1(n) = r(n) \ell_1(n)$,
- 6. $h_{\ell_2(n)}(n) = C_{n,1} = \lceil n/2 \rceil$.

5. Acknowledgements

I am indebted to Johan Andersson for suggesting the idea of studying the homological properties of the truncations Γ_n . I thank the referee for suggesting a simplified proof of parts of Theorem 3.4.

¹Here, we have used the abbreviation $P_I^S(t) = P(\operatorname{Tor}_*^S(I,K),t)$, we will also write $P_K^{S/I}(t) = P(\operatorname{Tor}_*^{S/I}(K,K),t)$ et cetera.

n	Graded	Non-graded
2	$-(tu-1)^{-1}$	$-(t-1)^{-1}$
3	$-\left(2tu-1\right) ^{-1}$	$-(2t-1)^{-1}$
4	$-rac{1+tu}{(u^3+u^2)t^2+tu-1}$	$-(2t-1)^{-1}$
5	$-rac{1+tu}{(u^3+2u^2)t^2+2tu-1}$	$-(3t-1)^{-1}$
6	$-rac{1+tu}{(2u^3+u^2)t^2+2tu-1}$	$-(3t-1)^{-1}$
7	$-\frac{1+tu}{}$	$-(4t-1)^{-1}$
8	$ \begin{array}{c} - (2 u^3 + 2 u^2)t^2 + 3 tu - 1 \\ - 1 + tu \end{array} $	$-(4t-1)^{-1}$
_	$-\frac{(u^4+u^3+2u^2)t^2+3tu-1}{1+2tu+t^2u^2}$	1+t
9	$(u^5+2u^4+2u^3)t^3+(u^4+3u^3+4u^2)t^2+2tu-1$	$-\frac{1}{5t^2+3t-1}$
10	$-\frac{1+2tu+t^2u^2}{(u^5+3u^4+u^3)t^3+(u^4+4u^3+3u^2)t^2+2tu-1}$	$-rac{1+t}{5t^2+3t-1}$
11	$-\frac{1+2tu+t^2u^2}{(u^5+3u^4+2u^3)t^3+(u^4+4u^3+5u^2)t^2+3tu-1}$	$-rac{1+t}{6t^2+4t-1}$
12	$-\frac{1+2tu+t^2u^2}{(2u^5+2u^4+2u^3)t^3+(2u^4+3u^3+5u^2)t^2+3tu-1}$	$-\frac{1+t}{6t^2+4t-1}$
13	$-\frac{\frac{1+2tu+t^2u^2}{(2u^5+2u^4+3u^3)t^3+(2u^4+3u^3+7u^2)t^2+4tu-1}}{$	$-\frac{1+t}{7t^2+5t-1}$
14	$-\frac{\frac{1+2tu+t^2u^2}{(2u^5+3u^4+2u^3)t^3+(2u^4+4u^3+6u^2)t^2+4tu-1}}{$	$-\frac{1+t}{7t^2+5t-1}$
15	$-\frac{(2 u^5 + 3 u^4 + 2 u^5) v^5 + (2 u^4 + 4 u^5 + 6 u^5) v^4 + 4 v u - 1}{(2 u^5 + 4 u^4 + 2 u^3) t^3 + (2 u^4 + 6 u^3 + 5 u^2) t^2 + 4 t u - 1}$	$-\frac{1+t}{8t^2+5t-1}$
16	$1+2tu+t^2u^2$	$-rac{8t^2+5t-1}{8t^2+5t-1}$
	$(u^6+u^5+4u^4+2u^3)t^3+(u^5+u^4+6u^3+5u^2)t^2+4tu-1$	1+t
17	$-\frac{1+2tu+t^2u^2}{(u^6+u^5+4u^4+3u^3)t^3+(u^5+u^4+6u^3+7u^2)t^2+5tu-1}$	$-\frac{1}{9t^2+6t-1}$
18	$-\frac{\frac{1+2tu+t^2u^2}{(u^6+2u^5+3u^4+3u^3)t^3+(u^5+2u^4+5u^3+7u^2)t^2+5tu-1}}{$	$-\frac{1+t}{9t^2+6t-1}$
19	$-\frac{1+2tu+t^2u^2}{(u^6+2u^5+3u^4+4u^3)t^3+(u^5+2u^4+5u^3+9u^2)t^2+6tu-1}$	$-rac{1+t}{10t^2+7t-1}$
20	$-\frac{1+2tu+t^2u^2}{(u^6+3u^5+2u^4+4u^3)t^3+(u^5+3u^4+4u^3+9u^2)t^2+6tu-1}$	$-\frac{1+t}{10t^2+7t-1}$
21	$-\frac{(1+tu)^2}{t^3u^6+3u^5t^3+t^2u^5+3t^3u^4+3u^4t^2+4t^3u^3+6t^2u^3+8t^2u^2+6tu-1}$	$-\frac{1+t}{11t^2+7t-1}$
22	$(1+tu)^2$	1+t
23	$-\frac{t^3u^6+3u^5t^3+t^2u^5+4t^3u^4+3u^4t^2+3t^3u^3+7t^2u^3+7t^2u^2+6tu-1}{(1+tu)^2}$	$-\frac{11t^2+7t-1}{11t^2+7t-1} \\ -\frac{1+t}{12t^2+8t-1}$
$\begin{vmatrix} 23 \\ 24 \end{vmatrix}$	$-\frac{1}{t^3u^6+3u^5t^3+t^2u^5+4t^3u^4+3u^4t^2+4t^3u^3+7t^2u^3+9t^2u^2+7tu-1}{(1+tu)^2}$	$-\frac{12t^2+8t-1}{1+t}$
	$-\frac{1}{2}t^{3}u^{6}+2u^{5}t^{3}+2t^{2}u^{5}+4t^{3}u^{4}+2u^{4}t^{2}+4t^{3}u^{3}+7t^{2}u^{3}+9t^{2}u^{2}+7tu-1}{(1+tu)^{3}}$	$-\frac{12t^2+8t-1}{(1+t)^2}$
25	$-rac{(1+vu)}{q(t,u)}$	$-\frac{(1+t)}{13t^3+22t^2+7t-1}$

Figure 3: Graded and non-graded Poincaré-Betti series of the minimal free resolution of K over A_n .

References

- [1] Annetta Aramova and Jürgen Herzog. Koszul Cycles and Eliahou-Kervaire Type Resolutions. *Journal of Algebra*, 181(2):347–370, 1996.
- [2] E. D. Cashwell and C. J. Everett. The ring of number-theorethic functions. *Pacific Journal of Mathematics*, 9:975–985, 1959.
- [3] S. Eliahou and M. Kervaire. Minimal resolutions of some monomial ideals. *J. Algebra*, 129:1–25, 1990.
- [4] E. S. Golod. On the homology of some local rings. Soviet Math. Dokl., 3:745–749, 1962.
- [5] T. Gulliksen and G. Levin. *Homology of Local Rings*, volume 20 of *Queen's Papers in Pure and Applied Mathematics*. 1969.
- [6] Irena Peeva. 0-Borel Fixed Ideals. Journal of Algebra, 184(3):945–984, 1996.

This article may be accessed via WWW at http://www.rmi.acnet.ge/hha/or by anonymous ftp at ftp://ftp.rmi.acnet.ge/pub/hha/volumes/2000/n2/n2.(dvi,ps,dvi.gz,ps.gz)

Jan Snellman jans@matematik.su.se

School of Informatics University of Wales Dean Street, Bangor Gwynedd LL57 1UT Wales UK