ERRATUM TO ‘CATEGORY OF A_{∞}-CATEGORIES’

VOLODYMYR LYUBASHENKO

(communicated by Jim Stasheff)

Abstract

The erroneous statement (HHA 5 (2003), no. 1, 1–48) that the collection of unital A_{∞}-categories, all A_{∞}-functors, and all A_{∞}-transformations (resp. equivalence classes of natural A_{∞}-transformations) form a \mathcal{K}-2-category $\mathcal{K}^{A_{\infty}}$ (resp. ordinary 2-category $^*A_{\infty}$) is corrected as follows. All 2-category axioms are satisfied, except that $1_e \cdot f$ does not necessarily equal 1_{ef} for all composable 1-morphisms e, f. The axiom $e \cdot 1_f = 1_{ef}$ does hold. The mistake does not affect results on invertible 2-morphisms and quasi-invertible 1-morphisms in $^*A_{\infty}$.

Let $\mathcal{V} = (V, \otimes, c, 1)$ be a symmetric monoidal category. Besides the notions of a 1-unital 2-unital \mathcal{V}-2-category (Definition A.1) and a 1-unital non-2-unital \mathcal{V}-2-category (a 2-category enriched in \mathcal{V} which has unit 1-morphisms, but does not have unit 2-morphisms) (Definition A.2) the article [Lyu03] should contain the following intermediate notion:

Definition A.3 (1-unital left-2-unital \mathcal{V}-2-category). A 1-unital left-2-unital \mathcal{V}-2-category consists of a 1-unital non-2-unital \mathcal{V}-2-category \mathfrak{A} plus a morphism $1_f : 1 \to \mathfrak{A}(A, B)(f, f)$ for any 1-morphism $f : A \to B$, which is a two-sided unit with respect to vertical composition of 2-morphisms m_2, such that

$$
eq 1_{ef} \quad (1)$$

for all composable 1-morphisms e, f. Moreover, if

$$1_f \cdot k \equiv \left(A \xrightarrow{f} B \xrightarrow{k} C \right) = 1_{fk} \quad (2)$$

for all composable 1-morphisms f, k, such \mathfrak{A} is the same as a 1-unital 2-unital \mathcal{V}-2-category.

Let \mathcal{K} denote the homotopy category of the differential graded category of complexes of k-modules, k being a commutative ring with a unit. Morphisms of \mathcal{K} are chain maps modulo homotopy. It is correctly stated in [Lyu03] that the collection

Received June 10, 2007; published on August 8, 2007.
2000 Mathematics Subject Classification: 18D05, 18D20, 18G55, 57T30.
Key words and phrases: A_{∞}-categories, A_{∞}-functors, A_{∞}-transformations, unit A_{∞}-transformation, 2-category.
Copyright © 2007, International Press. Permission to copy for private use granted.
of all A_∞-categories, all A_∞-functors and all A_∞-transformations (resp. equivalence classes of natural A_∞-transformations) is a 1-unital non-2-unital \mathcal{K}-2-category $\mathcal{K}A_{\infty}$ (resp. 1-unital non-2-unital 2-category A_{∞}). It is correctly stated there that the collection of unital A_∞-categories, unital A_∞-functors and all A_∞-transformations (resp. equivalence classes of natural A_∞-transformations) is a 1-unital 2-unital \mathcal{K}-2-category $\mathcal{K}uA_{\infty}$ (resp. ordinary 2-category A_{∞}^u). However, it is claimed incorrectly in Corollaries 7.11, 7.12 [ibid.] that the latter property holds also for the collection of unital A_∞-categories, all A_∞-functors, and all A_∞-transformations (resp. equivalence classes of natural A_∞-transformations). The correct statement is that the stated collection constitutes a 1-unital left-2-unital \mathcal{K}-2-category $\mathcal{K}uA_{\infty}$ (resp. 1-unital left-2-unital 2-category A_{∞}^u). Fortunately, the notions of an invertible 2-morphism, of a 1-morphism which is an equivalence, etc. make sense in uA_{∞}.

All other results of [Lyu03] which concern uA_{∞} remain valid. For instance, if B, C are unital A_∞-categories, $r: f \to g: B \to C$ is an isomorphism of A_∞-functors and f is unital, then g is unital as well.

The proof of property (1) for all A_∞-functors $e: D \to A$, $f: A \to B$ with unital A_∞-category B consists of the line $e \cdot 1_f = e \cdot (fi_B)s^{-1} = (efi_B)s^{-1} = 1_e f$, where $i_B: id_B \to id_B: B \to B$ is the unit A_∞-transformation. For any A_∞-functor $f: A \to B$ and a unital A_∞-functor $k: B \to C$, property (2) follows from the chain maps

$$
1_f \cdot k = (f^B s^{-1}) \cdot k = (f^B k)s^{-1}: k \to (A_\infty(A, C)(fk, fk), m_1),
$$

$$
1_{fk} = (fk \ell^C)s^{-1}: k \to (A_\infty(A, C)(fk, fk), m_1)
$$

being equal in \mathcal{K}. In fact, these cycles are homologous, since $i^B k \equiv ki^C$ implies $f^B k \equiv fk^C$.

The erroneous statement was also referred to (but not used in any reasoning) after Corollary 5.6 of [LO06]. Other articles on the subject are not influenced by the mistake described here.

References

Volodymyr Lyubashenko lub@imath.kiev.ua http://math.ksu.edu/~lub/

Institute of Mathematics, NASU
3 Tereshchenkivska St.
Kyiv-4, 01601 MSP
Ukraine

This article is available at http://intlpress.com/HHA/v9/n2/a6