THE ISOMORPHISM BETWEEN MOTIVIC COHOMOLOGY AND K-GROUPS FOR EQUI-CHARACTERISTIC REGULAR LOCAL RINGS

YUKI KATO

(communicated by J.F. Jardine)

Abstract
One of the well-known problems in algebraic K-theory is the comparison of higher Chow groups and K-groups. In this paper, using the motivic complex defined by Voevodsky–Suslin–Friedlander, we prove the comparison theorem for equi-characteristic regular local rings.

1. Introduction
Voevodsky–Suslin–Friedlander [8] defined the motivic cohomology $CH^r_{\text{Zar}}(X,n)$ by using equi-dimensional cycle groups $Z_{\text{equi}}(X \times \Delta^r \times A^r/X \times \Delta^r,0)$ for smooth noetherian schemes X over a field and showed the contravariant functoriality for morphisms of schemes. Friedlander–Suslin [2] proved that $CH^r_{\text{Zar}}(X,n) = CH^r(X,n)$ for smooth quasi-projective schemes X over a field, where $CH^r(X,n)$ is the higher Chow group of X defined by Bloch [1]. For smooth quasi-projective schemes X over a field, Bloch [1] proved that $\bigoplus_{r \geq 0} CH^r(X,n)$ coincides with the n-th algebraic K-group $K_n(X)$ after tensoring with \mathbb{Q}. We use the subscript $-\mathbb{Q}$ to mean $-\otimes_{\mathbb{Z}} \mathbb{Q}$.

In this paper, we consider the motivic cohomology groups $CH^r_{\text{Zar}}(X,n)$ for regular schemes by using an equi-dimensional cycle group [8] and prove that there is an isomorphism between the K-group $K_n(X)$ and the motivic cohomology group $CH^r_{\text{Zar}}(X,n)$ for the spectrum of an arbitrary regular local ring containing a field after tensoring with \mathbb{Q}.

Theorem 1.1. Let R be a regular local ring containing a prime field. Then the cycle class map
$$\text{cl}^{(r)}: K_n(R)^{(r)}_{\mathbb{Q}} \to CH^r_{\text{Zar}}(R,n)_{\mathbb{Q}}$$
is an isomorphism for any $n,r \geq 0$, where $\text{cl}^{(r)}$ is the cycle-class map constructed in Section 3.1 and $K_n(R)^{(r)}_{\mathbb{Q}}$ is the eigenspace of the Adams operation $\Psi^k: K_n(R)_{\mathbb{Q}} \to K_n(R)_{\mathbb{Q}}$ with the eigenvalue k^r for $k = 2, 3, \ldots$.

This theorem is proved by using Popescu’s result [6, Corollary 2.7] that says that any equi-characteristic regular local ring R is a directed inductive limit of smooth
sub-algebras R_{α} over a field F. Since we may assume that F is perfect $R = \lim_{\to} R_{\alpha}$ and $K_n(R) = \lim_{\to} K_n(R_{\alpha})$, we can reduce Theorem 1.1 to the case of a smooth F-algebra R. Then we have to prove that the functor $\text{CH}^r_{\text{Zar}}(-, n)_\mathbb{Q}$ commutes with directed inductive limits of algebras, and this is proved by Proposition 2.2.

Acknowledgements

I would like to express thanks to Professor Masaki Hanamura for his valuable advice. I wish to deeply thank the anonymous referee for very valuable suggestions and comments.

2. Motivic cohomology of equi-dimensional cycles

In this section, we always assume that all schemes are regular noetherian and separated. A morphism $p: X \to S$ of schemes of finite type is said to be *equi-dimensional of dimension r*, if $\dim p^{-1}(p(x)) = r$ for any $x \in X$ and any irreducible component of X dominates an irreducible component of S. In particular, any equi-dimensional morphism of dimension zero is a quasi-finite morphism and dominates an irreducible component.

Let $\mathcal{Z}_{\text{equi}}(X/S, r)$ be the free abelian group generated by closed integral subschemes of X which are equi-dimensional of dimension r over S. We call $\mathcal{Z}_{\text{equi}}(X/S, r)$ the *equi-dimensional cycle group of dimension r*.

Let X be an S-scheme of finite type. According to [8, Chapter 2, Theorem 3.3.1, Lemma 3.3.6 and Corollary 3.4.3], for any morphism of regular noetherian schemes $f: T \to S$, we have a homomorphism $f^*: \mathcal{Z}_{\text{equi}}(X/S, r) \to \mathcal{Z}_{\text{equi}}(X \times_S T/T, r)$ and $\mathcal{Z}_{\text{equi}}(X \times_S -/-, r)$ is a contravariant functor for morphisms of regular noetherian schemes. Furthermore, the functor $\mathcal{Z}_{\text{equi}}(X \times_S -/-, r)$ is an étale-sheaf [2, p. 816] on S, hence this is a Zariski-sheaf on S. We define the motivic cohomology $\text{CH}^r_{\text{Zar}}(X, n)$ for finite dimensional regular noetherian schemes X:

Definition 2.1. Let X be a regular noetherian scheme of finite dimension. Write $\Delta^n = \text{Spec} \mathbb{Z}[t_0, \ldots, t_n]/(t_0 + \cdots + t_n - 1)$. Then $X \times \Delta^\bullet$ is a regular, noetherian cosimplicial scheme in the usual sense, and $\mathcal{Z}_{\text{equi}}(- \times \Delta^\bullet \times \mathbb{A}^r/ - \times \Delta^\bullet, 0)$ is a simplicial sheaf on X. We define the motivic cohomology to be the Zariski-hypercohomology:

$$\text{CH}^r_{\text{Zar}}(X, n) = \mathbb{H}^{-n}_{\text{Zar}}(X, \mathcal{Z}_{\text{equi}}(- \times \Delta^\bullet \times \mathbb{A}^r/ - \times \Delta^\bullet, 0)).$$

Let $(T_\alpha, f_{\alpha\beta})$ be a directed inverse system of smooth schemes over a regular noetherian scheme S with a directed ordered index set I, where each transition map $f_{\alpha\beta}: T_\beta \to T_\alpha$ is affine and dominant ($\beta \geq \alpha$). Assume that $T = \lim_{\to} T_\alpha$ is regular and noetherian. Then we have the following:

Proposition 2.2. Let X be a scheme of finite type over T and assume that there exists a scheme X_0 of finite type over S such that $X = X_0 \times_S T$. Then the canonical morphism of Zariski sheaves on T

$$\lim_{\to} f_\alpha^* \mathcal{Z}_{\text{equi}}(X_\alpha \times_{T_\alpha} -/-, 0)_{\mathbb{Q}} \to \mathcal{Z}_{\text{equi}}(X \times_T -/-, 0)_{\mathbb{Q}}$$

is an isomorphism, where $f_\alpha: X \to X_\alpha = X_0 \times_S T_\alpha$ denotes the canonical morphism
induced by $T \to T_\alpha$ and $f_\alpha^* \mathcal{Z}_{\text{equi}}(X_\alpha \times_{T_\alpha} -/\alpha, 0)_\mathbb{Q}$ is the inverse image of the Zariski sheaf $\mathcal{Z}_{\text{equi}}(X_\alpha \times_{T_\alpha} -/\alpha, 0)_\mathbb{Q}$ on T_α.

Proof. Let T_α be the category of Zariski-open subschemes of T_α. Note that the family of inverse images
\[
\{ f_\alpha^{-1}(U_\alpha) \mid U_\alpha \in T_\alpha, f_\alpha^{-1}(U_\alpha) = U_\beta \text{ for } \beta \geq \alpha, \alpha \in I \}
\]
is an open basis of $X \times_T U$. We prove that the canonical morphism
\[
\lim_{\beta \geq \alpha} \mathcal{Z}_{\text{equi}}(X_\beta \times_S U_\beta/U_\beta, 0)_\mathbb{Q} \to \mathcal{Z}_{\text{equi}}(X \times_S U/U, 0)_\mathbb{Q}
\]
is bijective. The injectivity is obvious. We prove its surjectivity. Let $[W] \in \mathcal{Z}_{\text{equi}}(X \times_T U/U, 0)_\mathbb{Q}$ be the cycle of an integral scheme $W \subset X \times_T U$. Since $W \to U$ is quasi-finite, there exists an index γ and a closed integral subscheme $W_\gamma \subset X_\gamma \times_T U_\gamma$ such that $W = W_\gamma \times_U U$ and each $W' \times_T T_\gamma' \to U_\gamma \times_T T_\gamma$ is quasi-finite for $\gamma' \geq \gamma$ by [4, Theorem 8.10.5]. Since $W \to U$ and $U \to U_\gamma$ are dominant, $W_\gamma \to U_\gamma$ is dominant. Hence the cycle $[W_\gamma]$ is in $\mathcal{Z}_{\text{equi}}(X_\gamma/U_\gamma, 0)$. By [8, Chapter 2, Lemma 3.3.6], $f_\gamma[W_\gamma]$ is a formal linear combination of irreducible components of $W = W_\gamma \times_U U$. Furthermore, for a composition $Z \xrightarrow{g} Y \xrightarrow{f} X$ of morphisms of X-schemes, one has $(g \circ f)^* = f^* \circ g^*$ if f^*, g^* and $(g \circ f)^*$ are defined.

3. The proof of main theorem

3.1. The cycle class maps

In this section, we assume that all schemes are noetherian and separated. Let $\mathcal{CP}(X)$ be the category of bounded complexes of big vector bundles on X. Let F be a family of closed subschemes of X and $\mathcal{CP}^F(X)$ the full subcategory of $\mathcal{CP}(X)$ consisting of complexes acyclic outside of $\bigcup_{W \in F} W$. We make $\mathcal{CP}^F(X)$ into a Waldhausen category by cofibrations and weak equivalences to be degree-wise split monomorphisms and quasi-isomorphisms, respectively. (See [7] and [9].)

Assume further that $f: Y \to X$ is a morphism of schemes and F' is a family of closed subschemes of Y. The functor f^* takes $\mathcal{CP}^F(X)$ to $\mathcal{CP}^{F'}(Y)$ provided that $f^{-1}(W) \subset \bigcup_{W' \in F} W'$ for all $W \in F$. Furthermore, for a composition $Z \xrightarrow{g} Y \xrightarrow{f} X$ of morphisms of X-schemes, one has $(g \circ f)^* = f^* \circ g^*$ if f^*, g^* and $(g \circ f)^*$ are defined.

Let S be a regular noetherian scheme. For any regular noetherian schemes X, $S \mathcal{CP}^{S,S}(X)$ denotes the Waldhausen’s S-construction (cf. [9]) of $\mathcal{CP}^{S,S}(X) := \mathcal{CP}(X \times_S S)/(X \times S)$ with the family of supports $\mathcal{Q}_X(X \times_S S)$ consisting of all closed subschemes quasi-finite over X. Further, $K_n^{S,S}(X)$ denotes the n-th K-group of $\mathcal{CP}^{S,S}(X)$.

For any abelian group A, $B_\bullet(A)$ denotes the classifying space of A. For any small category \mathcal{C}, $N_\bullet(\mathcal{C})$ denotes the nerve of \mathcal{C}. If $S = \kappa^r$, we define a map $\text{cl}_0: B_\bullet(K_0^{\kappa^r,N}(X)) \to B_\bullet(\mathcal{Z}_{\text{equi}}(X \times \kappa^r/X, 0))$ of simplicial sets by the formula
\[
\text{cl}_0(F) = \sum_{W \subset X \times \kappa^r} \text{length}(F_W)[W],
\]
where the sum is over all closed integral subschemes W of $X \times \mathbb{A}^r$ which are quasi-finite and dominant over a component of X. We consider the composition

$$\cl' : N_\bullet wS_\bullet \mathcal{CP}^{\mathbb{A}^r}(X) \to B_\bullet (K_0^{\mathbb{A}^r}(X)) \xrightarrow{B_\bullet (\cl'_0)} B_\bullet (Z_{\text{equi}}(X \times \mathbb{A}^r/X, 0)),$$

where $wS_\bullet \mathcal{CP}^{\mathbb{A}^r}(X)$ is the subcategory of weak-equivalences in $S_\bullet \mathcal{CP}^{\mathbb{A}^r}(X)$, and $wS_\bullet \mathcal{CP}^{\mathbb{A}^r}(X) \to (K_0^{\mathbb{A}^r}(X))^n$ is the canonical map of bisimplicial sets. (See [7, Section 1].)

For any morphism $f : Y \to X$ of regular noetherian schemes, $f^* : K_0^{\mathbb{A}^r}(X) \to K_0^{\mathbb{A}^r}(Y)$ coincides with the map $F \mapsto \sum_{i>0} (-1)^i \mathbb{L}_if^*(F)$, where each \mathbb{L}_if^* is the i-th left derived functor of the inverse image f^*. Using [8, Theorem 3.3.1 and Lemma 3.5.9], we have that the map $B_\bullet (\cl'_0)$ is functorial for any morphism of regular noetherian schemes by the direct calculation. Hence \cl' is functorial for any regular noetherian schemes. In particular, \cl' commutes with all coface maps and codegeneracy maps of the regular noetherian cosimplicial scheme $X \times \Delta^r$. Thus we obtain the map

$$\cl' : N_\bullet wS_\bullet \mathcal{CP}^{\mathbb{A}^r}(X \times \Delta^r) \to B_\bullet (K_0^{\mathbb{A}^r}(X \times \Delta^r)) \xrightarrow{B_\bullet (\cl'_0)} B_\bullet (Z_{\text{equi}}(X \times \Delta^r \times \mathbb{A}^r/X \times \Delta^r, 0))$$

called the cycle-class map. Here $B_\bullet (A_\bullet)$ is the classifying space of a simplicial abelian group A_\bullet, and $B_\bullet (A_\bullet)$ is a bisimplicial set.

3.2. Friedlander–Suslin’s spectral sequence

In this section, we consider the case where X is smooth over a field F. Let $K_n^{\mathbb{A}^r}(X \times \Delta^r)$ denote the $n + 1$-th homotopy group of the diagonal of a 3-fold simplicial set $N_\bullet wS_\bullet \mathcal{CP}^{\mathbb{A}^r}(X \times \Delta^r)$. In the case that X is a smooth scheme over a field, Friedlander–Suslin [2] proved that there exists a strongly convergent spectral sequence:

$$E_2^{pq} = \text{CH}_{\text{Zar}}^{-q}(X, -p - q) \Rightarrow K_{-p-q}(X)$$

by an exact couple $(D_2^{p,q}, E_2^{p,q}, i, j, k)$ defined by the following:

$$D_2^{p,q} = K_2^{\mathbb{A}^r,-q+1}(X \times \Delta^r), \quad E_2^{p,q} = \text{CH}_{\text{Zar}}^{-q}(X, -p - q),$$

where j is the cycle-class map. (See [2, Section 13].) We have that Friedlander–Suslin’s spectral sequence admits Adams operations:

Proposition 3.1 (cf. [3, Theorem 7]). Let X be a smooth scheme over a field F. Then the spectral sequence

$$E_2^{pq} = \text{CH}_{\text{Zar}}^{-q}(X, -p - q) \Rightarrow K_{-p-q}(X)$$

admits Adams operations Ψ^k with the following properties:

1. The Ψ^k are natural in Sm_F.

2. The $\Psi^k : K_n^{\mathbb{A}^r}(X \times \Delta^r) \to K_n^{\mathbb{A}^r}(X \times \Delta^r)$ are compatible with the Adams operations Ψ^k on $K_*(X) = K_*^{\mathbb{A}^0}(X)$.

3. On the E_2-term $\text{CH}_{\text{Zar}}^{-q}(X, -p - q)$, Ψ^k acts by multiplication by k^{-q}.

Proof. The proof is similar to [3, Theorem 7].
Corollary 3.2. Let X be a smooth scheme over a field F. The cycle-class map $\text{cl}^r : K^r_n(X \times \Delta^r) \to CH^r_{\text{Zar}}(X, n) \mathbb{Q}$ induces an isomorphism $\text{cl}^{(r)} : K^n_n(X) \mathbb{Q} \to CH^r_{\text{Zar}}(X, n) \mathbb{Q}$ for any $n, r \geq 0$.

3.3. The proof of Theorem 1.1

By Popescu’s result [6, Corollary 2.7], there exist a prime field F and a directed inductive system $(R_\alpha, \psi_{\beta \alpha})$ of smooth F-algebras of R such that its inductive limit is R. Since each $\psi_{\beta \alpha} : \text{Spec } R_\beta \to \text{Spec } R_\alpha$ is affine, we have that $\lim_{\longleftarrow} CH^r_{\text{Zar}}(R_\alpha, n) \mathbb{Q} = CH^r_{\text{Zar}}(R, n) \mathbb{Q}$ follows from [5, Theorem 5.7] and Proposition 2.2. By the functoriality of cycle-class maps and Corollary 3.2, we obtain

$$K^n_n(R) \mathbb{Q} = \lim_{\longleftarrow} K^n_n(R_\alpha) \mathbb{Q} = \lim_{\longleftarrow} CH^r_{\text{Zar}}(R_\alpha, n) \mathbb{Q} = CH^r_{\text{Zar}}(R, n) \mathbb{Q}. $$

References

Yuki Kato
ykato.math@gmail.com

Mathematical Institute, Tohoku University, Aoba, Sendai 980-8578 Japan