Comparing Commutative and Associative Unbounded Differential Graded Algebras Over \mathbb{Q} from a Homotopical Point of View

Ilias Amrani

(communicated by Brooke Shipley)

Abstract

In this paper we establish a faithfulness result, in a homotopical sense, between a subcategory of the model category of augmented differential graded commutative algebras CDGA and a subcategory of the model category of augmented differential graded algebras DGA over the field of rational numbers \mathbb{Q}.

1. Introduction

It is well known that the forgetful functor from the category of commutative k-algebras to the category of associative k-algebras is fully faithful. We have an analogue result between the category of unbounded differential graded commutative k-algebras dgCAlg_k and the category of unbounded differential graded associative algebras dgAlg_k. The question that we want to explore is the following: Suppose that $k = \mathbb{Q}$; we want to know if it is true that forgetful functor $U : \text{dgCAlg}_k \to \text{dgAlg}_k$ induces a fully faithful functor at the level of homotopy categories

$$\mathbf{R}U : \text{Ho}(\text{dgCAlg}_k) \to \text{Ho}(\text{dgAlg}_k).$$

The answer is no. A nice and easy counterexample was given by Lurie [10]. He has considered $k[x, y]$ the free commutative CDGA in two variables concentrated in degree 0. It follows obviously that

$$\text{Ho}(\text{dgCAlg}_k)(k[x, y], S) \simeq H^0(S) \oplus H^1(S),$$

while

$$\text{Ho}(\text{dgAlg}_k)(k[x, y], S) \simeq H^0(S) \oplus H^0(S) \oplus H^{-1}(S).$$

Something nice happens if we consider the category of augmented CDGA denoted by dgCAlg^*_k and augmented DGA denoted by dgAlg^*_k.
Theorem 1.1 (Theorem 4.1). For any R and S in dgCAlg_k^\ast, the induced map by the forgetful functor

$$\Omega \text{Map}_{\text{dgCAlg}_k^\ast}(R, S) \to \Omega \text{Map}_{\text{dgAlg}_k^\ast}(R, S)$$

has a retract; in particular

$$\pi_i \text{Map}_{\text{dgCAlg}_k^\ast}(R, S) \to \pi_i \text{Map}_{\text{dgAlg}_k^\ast}(R, S)$$

is injective $\forall i > 0$.

Definition 1.2 ($[8, 7]$). Let M be a model category and let a, a' be cofibrant objects and b, b' be fibrant objects. The (derived) mapping space denoted by Map_M is a simplicial set having the following properties:

- $\pi_0 \text{Map}(a, b) \cong \text{Ho}(M)(a, b)$, where $\text{Ho}(M)$ is the homotopy category of M.
- For any weak equivalence $a \to a'$, we have a weak equivalence of simplicial sets $\text{Map}(a', b) \to \text{Map}(a, b)$.
- For any weak equivalence $b \to b'$, we have a weak equivalence of simplicial sets $\text{Map}(a, b) \to \text{Map}(a, b')$.

Remark 1.3. [4, Theorem 2.12] In our work we use only the formal properties of the derived mapping space in a model category. For any Quillen adjunction between model categories

$$M \xrightarrow{G} N$$

and for any cofibrant object $a \in M$ and any fibrant object $c \in N$, we have the following (zig-zag) equivalence of simplicial sets:

$$\text{Map}_N(Ga, c) \sim \text{Map}_M(a, Uc).$$

Let S be a differential graded commutative algebra which is a “loop” of another CDGA algebra A, i.e., $S = \text{Holim}(k \to A \leftarrow k)$, where the homotopy limit is taken in the model category dgCAlg_k. A direct consequence of our theorem is that the right derived functor RU is a faithful functor, i.e., the induced map $\text{Ho}(\text{dgCAlg}_k^\ast)(R, S) \to \text{Ho}(\text{dgAlg}_k^\ast)(R, S)$ is injective.

Interpretation of the result in the derived algebraic geometry

Rationally, any pointed topological X space can be viewed as an augmented (connective) commutative differential graded algebra via its cochain complex $C^\ast(X, \mathbb{Q})$. In the case where X is a simply connected rational space, the cochain complex $C^\ast(X, \mathbb{Q})$ carries all the homotopical information about X, by the Sullivan theorem [6]. Moreover, the bar construction $BC^\ast(X, \mathbb{Q})$ is identified (as E_{∞}-DGA) to $C^\ast(\Omega X, \mathbb{Q})$ and $\Omega C^\ast(X, \mathbb{Q})$ is identified (as E_{∞}-DGA) to $C^\ast(\Sigma X, \mathbb{Q})$; cf. [5]. This interpretation allows us to make the following definition: A generalized rational pointed space is an augmented commutative differential graded \mathbb{Q}-algebra (possibly unbounded). In the same spirit, we define a pointed generalized noncommutative rational space as an augmented differential graded \mathbb{Q}-algebra (possibly unbounded). Let A be any augmented CDGA (resp. DGA); we will call a CDGA (resp. DGA) of the form ΩA an op-suspended CDGA (resp. DGA). Our Theorem 4.1 can be interpreted as follows:
The homotopy category of op-suspended generalized commutative rational spaces is a subcategory of the homotopy category of op-suspended generalized noncommutative rational spaces.

2. DGA, CDGA, and E_∞-DGA

We work in the setting of unbounded differential graded k-modules $dgMod_k$. This is a symmetric monoidal closed model category (k is a commutative ring). We denote the category of (reduced) operads in $dgMod_k$ by Op_k. We follow notations and definitions of [2]; we say that an operad P is admissible if the category of $P-dgAlg_k$ admits a model structure where the fibrations are degree wise surjections and weak equivalences are quasi-isomorphisms. For any map of operads $\phi : P \to Q$ we have an induced adjunction of the corresponding categories of algebras:

$$P - dgAlg_k \overset{\phi_*}{\longrightarrow} Q - dgAlg_k.$$

A Σ-cofibrant operad P is an operad such that $P(n)$ is $k[\Sigma_n]$-cofibrant in $dgMod_k[\Sigma_n]$. Any cofibrant operad P is a Σ-cofibrant operad [2, Proposition 4.3]. We denote the associative operad by Ass and the commutative operad by Com. The operad Ass is an admissible operad and Σ-cofibrant, while the operad Com is not admissible in general. In the rational case, when $k = \mathbb{Q}$ the operad Com is admissible and Σ-cofibrant. More generally any cofibrant operad P is admissible [2, Proposition 4.1, Remark 4.2]. We define a symmetric tensor product of operads by the formulae

$$[P \otimes Q](n) = P(n) \otimes Q(n), \quad \forall n \in \mathbb{N}.$$

Lemma 2.1. Suppose that $\phi : Ass \to P$ is a cofibration of operads. The operad P is admissible and the functor $\phi^* : P - dgAlg_k \to dgAlg_k$ preserves fibrations, weak equivalences, and cofibrations with cofibrant domain in the underlying category $dgMod_k$.

Proof. First of all, the operad P is admissible; indeed we use the cofibrant resolution $r : E_\infty \to Com$ and consider the following pushout in Op_k given by:

$$\begin{array}{ccc}
Ass_\infty & \overset{f}{\longrightarrow} & E_\infty \\
\downarrow{\sim} & & \downarrow{\alpha} \\
Ass & \overset{I}{\longrightarrow} & E' \end{array}$$

where Ass_∞ is a cofibrant replacement of Ass in Op_k and $Ass_\infty \to E_\infty$ is a cofibration which factors $Ass_\infty \to Ass \to Com$. Since the category Op_k is left proper in the sense of [13, Theorem 3], we have that $\alpha : E_\infty \to E'_\infty$ is an equivalence. We denote by I the unit interval in the category $dgMod_k$ which is strictly coassociative [12, p. 503]; i.e., there is a map of operads $Ass \to End^{op}(I)$. Moreover, there is a map of operads $E_\infty \to End^{op}(I)$ which endows I with the structure of E_∞-coalgebra [2, Remark 4.2]. Since I is a strict coalgebra (in particular an Ass_∞-coalgebra), the operad map $Ass_\infty \to$
$\text{End}^{op}(I)$ factors through Ass; i.e., we have two compatible maps of operads:

$$
\begin{align*}
\begin{array}{c}
\text{Ass}_\infty \xrightarrow{f} E_\infty \\
\downarrow \sim \\
\text{Ass} \xrightarrow{\Delta} \text{Ass} \otimes \text{Ass}
\end{array}
\end{align*}
$$

By the universality of the pushout, we have a map of operads $E'_\infty \to \text{End}^{op}(I)$. This means that the unit interval I has a structure of E'_∞-coalgebra [2, p. 4]. Moreover, we have a commutative diagram in Op_k given by

$$
\begin{align*}
\begin{array}{c}
\text{Ass} \xrightarrow{\Delta} \text{Ass} \otimes \text{Ass} \xrightarrow{\phi \otimes f} P \otimes E'_\infty \\
\downarrow \phi \\
P \xrightarrow{id} P \otimes \text{Com} = P
\end{array}
\end{align*}
$$

where the operad map $r : E'_\infty \to \text{Com}$ is obtained by the universal property of the pushout (1) and the diagonal map $\Delta : \text{Ass} \to \text{Ass} \otimes \text{Ass}$ is induced by the diagonals $\Sigma_n \to \Sigma_n \times \Sigma_n$; therefore the commutativity of the diagram is a consequence of the co-unit property of the diagonal map Δ and universal choice of r. Hence, the map $P \otimes E'_\infty \to P$ admits a section. It implies by [2, Proposition 4.1] that P is admissible and Σ-cofibrant. Since all objects in $P - \text{dgAlg}_k$ are fibrant and ϕ^* is a right Quillen adjoint, it preserves fibrations and weak equivalences.

Since P is an admissible operad, we have a Quillen adjunction

$$
\text{dgAlg}_k \xrightarrow{\phi} P - \text{dgAlg}_k,
$$

where the functor ϕ^* is identified to the forgetful functor. Moreover, the model structure on $P - \text{dgAlg}_k$ is the transferred model structure from the cofibrantly generated model structure dgAlg_k via the adjunction ϕ, ϕ^*. Suppose that $f : A \to B$ is a cofibration in $P - \text{dgAlg}_k$ such that A is cofibrant in dgMod_k. We factor this map as a cofibration followed by a trivial fibration

$$
A \xrightarrow{i} P \xrightarrow{p} B
$$

in the category dgAlg_k; therefore i is a cofibration [14, Proposition 2.3 (3)] (Toën’s initial argument is for cofibrant objects, but it works for cofibrations, i.e., the forgetful functor $\text{dgAlg}_k \to \text{dgMod}_k$ preserves cofibrations) and p is obviously a trivial fibration in dgMod_k. By [11, Lemma 4.1.16], we have an induced map of endomorphism operads of diagrams [11, Section 4.1.1]:

$$
\text{End}_{\{A \to P \to B\}} \to \text{End}_{\{A \to B\}}
$$
which is a trivial fibration of operads since \(p\) is a trivial fibration. Notice that Rezk’s arguments are performed in the category of simplicial \(k\)-modules and are formally transposable in the context of differential graded \(k\)-modules. By definition of our endomorphism operads of diagrams, we have the following commutative diagram in \(\mathcal{O}p_k\):

\[
\begin{array}{ccc}
\text{Ass} & \longrightarrow & \text{End}_{\{A \to P \to B\}} \\
\downarrow & & \downarrow \sim \\
\longrightarrow & \longrightarrow & \text{End}_{\{A \to B\}}
\end{array}
\]

where the first horizontal map of operads translates the fact that \(A \to P \to B\) are maps in \(\text{dgAlg}_k\); respectively, the second horizontal map translates the fact that \(A \to B\) is a map of \(P\)-algebra. Since \(\mathcal{O}p_k\) is a model category, it implies that we have a lifting map of operads \(P \to \text{End}_{\{A \to P \to B\}}\); hence \(i\) and \(p\) are maps of \(P - \text{dgAlg}_k\). Therefore, we consider the following commutative square in the category \(P - \text{dgAlg}_k\):

\[
\begin{array}{ccc}
A & \longrightarrow & P \\
\downarrow f & & \downarrow p \\
B & \longrightarrow & B
\end{array}
\]

The lifting map \(r\) exists since \(P - \text{dgAlg}_k\) is a model category. We conclude that \(p \circ r = \text{id}\) and \(r \circ f = i\), which means that \(f\) is a retract of \(i\); hence \(f\) is a cofibration in \(\text{dgAlg}_k\).

Remark 2.2. With the same notation as in Lemma 2.1 if \(A\) is a cofibrant object in \(P - \text{dgAlg}_k\) then \(A\) is a cofibrant object in \(\text{dgMod}_k\). Indeed \(k \to A\) is a cofibration in \(P - \text{dgAlg}_k\); by the previous lemma \(k \to A\) is a cofibration in \(\text{dgAlg}_k\). Therefore, \(k \to A\) is a cofibration in \(\text{dgMod}_k\).

3. Suspension in CDGA and DGA

We denote the operad \(E'_\infty\) of the previous section by \(E_\infty\), and \(k = \mathbb{Q}\).

3.1. \(E_\infty\)-DGA

We have a map of operads \(\text{Ass} \to \text{Com}\), which we factor as cofibration followed by a trivial fibration:

\[
\begin{array}{ccc}
\text{Ass} & \longrightarrow & E_\infty \\
\longrightarrow & \longrightarrow & \sim \text{Com}
\end{array}
\]

As a consequence, we have the following Quillen adjunctions:

\[
\text{dgAlg}_k \xrightarrow{\text{Ab}_U} E_\infty \text{dgAlg}_k \xrightarrow{\text{str}} U' \text{dgCAAlg}_k.
\]

These adjunctions have the following properties:

- The functors \(U'\) and \(U \circ U'\) are the forgetful functors; they are fully faithful (cf. Propositions 3.3 and 3.2).
The functors \(str, U' \) form a Quillen equivalence since \(k = \mathbb{Q} \) (cf. [9], Corollary 1.5, Part II). The functor \(str \) is the strictification functor.

The functors \(Ab_\infty, U \) form a Quillen pair.

The composition \(str \circ Ab_\infty \) is the abelianization functor \(Ab : \text{dgAlg}_k \to \text{dgCAlg}_k \).

The functors \(str \) and \(Ab \) are idempotent functors (cf. Propositions 3.3 and 3.2). The model categories \(\text{dgCAlg}_k^*, \text{dgAlg}_k^*, \) and \(E_\infty \text{dgAlg}_k^* \) are pointed model categories. It is natural to introduce the suspension functors in these categories.

Definition 3.1. Let \(C \) be any pointed model category. We denote the point by 1, and let \(A \in C \); a suspension \(\Sigma A \) is defined as \(\text{hocolim}(1 \leftarrow A \to 1) \).

Proposition 3.2. Any map \(f : A \to S \) in \(E_\infty \text{dgAlg}_k \), where \(S \) is in \(\text{dgCAlg}_k \), factors in a unique way as \(A \to str(A) \to S \) and the forgetful functor \(U' : \text{dgCAlg}_k \to E_\infty \text{dgAlg}_k \) is fully faithful. Moreover, the unit of the adjunction \(\nu_A : A \to str(A) \) is a fibration.

Proof. Suppose that we have a map \(h : R \to S \) in \(E_\infty \text{dgAlg}_k \) such that \(R \) and \(S \) are objects in \(\text{dgCAlg}_k \). By definition of the operad \(E_\infty \) the map \(h \) respects the multiplication; therefore \(h \) is a morphism in \(\text{dgCAlg}_k \) since \(R \) and \(S \) are commutative differential graded algebras. The forgetful functor \(U' : \text{dgCAlg}_k \to E_\infty \text{dgAlg}_k \) is fully faithful: this implies that \(str(S) = S \) for any \(S \in \text{dgCAlg}_k \). We have a commutative diagram induced by the unit \(\nu \) of the adjunction \((U', str)\):

\[
\begin{array}{ccc}
A & \xrightarrow{f} & S \\
\downarrow{\nu_A} & & \downarrow{\nu_S = \text{id}} \\
str(A) & \xrightarrow{str(f)} & str(S) = S \\
\end{array}
\]

We conclude that \(f = str(f) \circ \nu_A \). The surjectivity of the \(\nu_A \) follows from the universal property of \(str(A) \). Hence, \(\nu_A \) is a fibration in \(E_\infty \text{dgAlg}_k \).

Proposition 3.3. Any map \(f : A \to S \) in \(\text{dgAlg}_k \), where \(S \) is in \(\text{dgCAlg}_k \), factors in a unique way as \(A \to Ab(A) \to S \), and the forgetful functor \(U \circ U' : \text{dgCAlg}_k \to \text{dgAlg}_k \) is fully faithful. Moreover, the unit of the adjunction \(\nu_A : A \to Ab(A) \) is a fibration.

Proof. The proof is the same as in Proposition 3.2.

Proposition 3.4. Suppose that we have a trivial cofibration \(k \to \bar{k} \) in \(E_\infty \text{dgAlg}_k \). Then the universal map \(\pi : Ab(\bar{k}) \to str(\bar{k}) \) is a trivial fibration and admits a section in the category \(\text{dgCAlg}_k \).

Proof. We consider the following commutative diagram in \(E_\infty \text{dgAlg}_k \):

\[
\begin{array}{ccc}
k & \xrightarrow{\sim} & \bar{k} \\
\downarrow{id} & & \downarrow{id} \\
k = str(k) & \xrightarrow{\sim} & str(\bar{k}) \\
\end{array}
\]

The map \(\bar{k} \to str(\bar{k}) \) is an equivalence since \(str \) is a left Quillen functor; the same thing holds for the abelianization functor. More precisely, the forgetful functor \(E_\infty \text{dgAlg}_k \to \)
dgAlg _k\ preserves cofibration (Lemma 2.1) (P = E_\infty); therefore the map Ab(k) \to Ab(\bar{k}) is a weak equivalence in dgCAlg _k. It follows that we have a commutative diagram in dgAlg _k:

\[
\begin{array}{ccc}
 k & \sim & k \\
 \downarrow^{id} & & \downarrow \\
 k = Ab(k) & \sim & Ab(\bar{k})
\end{array}
\]
i.e., \(k \to Ab(\bar{k})\) is a trivial fibration, since \(k \to Ab(\bar{k})\) is surjective by definition of the abelianization functor. On the other hand the map \(k \to str(\bar{k})\) is a trivial fibration in \(E_\infty dgAlg_\bar{k}\) (Proposition 3.2) and hence in \(dgAlg_\bar{k}\); therefore it can be factored (cf. Proposition 3.3) as \(k \to Ab(k) \to str(\bar{k})\), where \(Ab(k) \to str(k)\) is a trivial fibration between cofibrant objects in \(dgCAlg_k\). It follows that we have a retract \(l : str(k) \to Ab(k)\).

Definition 3.5. The suspension functor in the pointed model categories \(dgCAlg_\ast^k\), \(dgAlg_\ast^k\), and \(E_\infty dgAlg_\ast^k\) are denoted by \(B\) (resp. \(\Sigma\) and resp. \(B_\infty\)).

Remark 3.6. The notation \(\Sigma\) is a generic notation for the suspension functor in a pointed model category. In the case of \(dgCAlg_\ast^k\) and \(dgAlg_\ast^k\) we have used the notation \(B\) and \(B_\infty\) to make a link with the Bar construction for commutative \((E_\infty)\) differential graded algebra; this coincides with the generic suspension functor.

Lemma 3.7. Suppose that \(A\) is a cofibrant object in \(E_\infty dgAlg_\ast^k\). Then \(str(B_\infty A)\) is a retract of \(Ab(\Sigma A)\) in the category \(dgCAlg_k\).

Proof. First of all, if a map \(f\) is associative (or commutative, or an \(E_\infty\) map) we put index \(f_a\) (or \(f_c\), or \(f_\infty\), respectively). Notice that by definition of the operad \(E_\infty\) any \(E_\infty\)-map is a strictly associative map. Suppose that \(A\) is a cofibrant object in \(E_\infty dgAlg_k\). Consider the following commutative square:

\[
\begin{array}{ccc}
 A & \xrightarrow{i_\infty} & k \\
 \downarrow^{i_\infty} & & \downarrow\
 \Sigma A & \xrightarrow{h_a} & B_\infty A
\end{array}
\]

where \(\Sigma A\) is the (homotopy in Lemma 2.1) pushout in \(dgAlg_k\) and \(B_\infty A\) is the (homotopy) pushout in \(E_\infty dgAlg_\ast^k\). By Proposition 5.2 and Proposition 3.3 we have the
following commutative square in dgAlg_k:

\[
\begin{array}{ccc}
\Sigma A & \xrightarrow{u_a} & B_\infty A \\
\downarrow & & \downarrow \\
Ab(\Sigma A) & \xrightarrow{x_c} & \text{str}[B_\infty A] = B[\text{str}(A)].
\end{array}
\]

By Proposition 3.4 we have an inclusion of commutative differential graded algebras $l_c : \text{str}(k) \to Ab(k)$ and after strictification we obtain another homotopy pushout (inner) square in dgCAlg_k given by

\[
\begin{array}{ccc}
\text{str}(A) & \xleftarrow{i_c} & \text{str}(k) & \xleftarrow{l_c} & Ab(k) \\
\downarrow{i_c} & & \downarrow{f_c} & & \downarrow{h_c} \\
\text{str}(k) & \xleftarrow{f_c} & B[\text{str}(A)] & \xrightarrow{h_c} & \text{str}[B_\infty A] \\
\downarrow{l_c} & & \downarrow{!} & & \downarrow{u_c} \\
Ab(k) & \xleftarrow{h_c} & Ab(\Sigma A) & \xleftarrow{x_c} & \text{str}[B_\infty A].
\end{array}
\]

In order to prove that $B[\text{str}(A)]$ is a retract of $Ab(\Sigma(A))$ it is sufficient to prove that $x_c \circ h_c \circ l_c = f_c$.

By Proposition 3.2 and Proposition 3.3 the composition E_∞-maps

\[
\begin{array}{ccc}
k & \xrightarrow{f_\infty} & B_\infty A & \xrightarrow{\pi} & \text{str}[B_\infty A] \\
\downarrow{id} & & \downarrow{h_a} & & \downarrow{=h_a} \\
k & \xrightarrow{pr} & Ab(\Sigma A) & \xrightarrow{x_c} & \text{str}[B_\infty A].
\end{array}
\]

By unicity, $\alpha_c = f_c$. On the other hand, using the first pushout in $E_\infty\text{dgAlg}_k$, the previous composition $k \to \text{str}[B_\infty A]$ is factored as

\[
\begin{array}{ccc}
k & \xrightarrow{h_a} & \Sigma A & \xrightarrow{x_c} & \text{str}[B_\infty A].
\end{array}
\]

We summarize the previous remarks in the following commutative diagram:

\[
\begin{array}{ccc}
k & \xrightarrow{pr} & Ab(k) & \xrightarrow{\pi} & \text{str}(k) & \xrightarrow{f_c} & \text{str}[B_\infty A] \\
\downarrow{id} & & \downarrow{h_a = Ab(h_a)} & & \downarrow{id} & & \downarrow{id} \\
k & \xrightarrow{pr} & Ab(\Sigma A) & \xrightarrow{x_c} & \text{str}[B_\infty A].
\end{array}
\]

By definition of h_a, the dotted map h_c makes the left square commutative. Since the whole square is commutative and the map pr is surjective, we conclude that
\[x_c \circ h_c = f_c \circ \pi.\] Since the map \(l_c : \text{Str}(k) \to \text{Ab}(k)\) is a retract of \(\pi\) (cf. [3,4]), i.e., \(\pi \circ l_c = \text{id}\), we conclude that \(x_c \circ h_c \circ l_c = f_c\). Finally, by unicity of the pushout, we deduce that the following composition

\[B[\text{str}(A)] \xrightarrow{uc} \text{Ab}(\Sigma A) \xrightarrow{x_c} B[\text{str}(A)]\]

is identity.

4. Main result and applications

Theorem 4.1. For any \(R\) and \(S\) in \(\text{dgCAlg}_{\mathbb{Q}}\), the induced map by the forgetful functor

\[\Omega \text{Map}_{\text{dgCAlg}_{\mathbb{Q}}}(R, S) \to \Omega \text{Map}_{\text{dgAlg}_{\mathbb{Q}}}(R, S)\]

has a retract; in particular

\[\pi_i \text{Map}_{\text{dgCAlg}_{\mathbb{Q}}}(R, S) \to \pi_i \text{Map}_{\text{dgAlg}_{\mathbb{Q}}}(R, S)\]

is injective \(\forall \, i > 0\).

Proof. Suppose that \(R\) is a cofibrant object in \(E_\infty \text{dgAlg}_{\mathbb{Q}}\) and \(S\) any object in \(\text{dgCAlg}_{\mathbb{Q}}\). By adjunction, we have that

\[\Omega \text{Map}_{\text{dgCAlg}_{\mathbb{Q}}}(\text{str}(R), S) \sim \text{Map}_{\text{dgCAlg}_{\mathbb{Q}}}(B[\text{str}(R)], S)\]

(2)

\[\sim \text{Map}_{\text{dgCAlg}_{\mathbb{Q}}}(\text{str}[B_\infty R], S)\]

(3)

\[\sim \text{Map}_{E_\infty \text{dgAlg}_{\mathbb{Q}}}(B_\infty R, S)\]

(4)

\[\sim \Omega \text{Map}_{E_\infty \text{dgAlg}_{\mathbb{Q}}}(R, S)\].

(5)

By Lemma 3.7, we have a retract

\[\text{Map}_{\text{dgCAlg}_{\mathbb{Q}}}(B[\text{str}(R)], S) \to \text{Map}_{\text{dgCAlg}_{\mathbb{Q}}}(\text{str}[B_\infty R], S) \to \text{Map}_{\text{dgCAlg}_{\mathbb{Q}}}(B[\text{str}(R)], S)\].

Again by adjunction:

\[\text{Map}_{\text{dgCAlg}_{\mathbb{Q}}}(\text{str}[B_\infty R], S) \sim \text{Map}_{\text{dgAlg}_{\mathbb{Q}}}(\Sigma R, S) \sim \Omega \text{Map}_{\text{dgAlg}_{\mathbb{Q}}}(R, S)\].

We conclude that

\[\Omega \text{Map}_{E_\infty \text{dgAlg}_{\mathbb{Q}}}(R, S) \xrightarrow{U} \Omega \text{Map}_{\text{dgAlg}_{\mathbb{Q}}}(R, S) \xrightarrow{\pi_i} \Omega \text{Map}_{E_\infty \text{dgAlg}_{\mathbb{Q}}}(R, S)\]

is a retract. Hence, the forgetful functor \(U\) induces an injective map on homotopy groups, i.e.,

\[\pi_i \text{Map}_{\text{dgCAlg}_{\mathbb{Q}}}(\text{str}(R), S) \simeq \pi_i \text{Map}_{E_\infty \text{dgAlg}_{\mathbb{Q}}}(R, S) \to \pi_i \text{Map}_{\text{dgAlg}_{\mathbb{Q}}}(R, S)\]

is injective \(\forall \, i > 0\).

4.1. Rational homotopy theory

We give an application of our Theorem 4.1 in the context of rational homotopy theory. Let \(X\) be a simply connected rational space such that \(\pi_i X\) is finite dimensional \(\mathbb{Q}\)-vector space for each \(i > 0\). Let \(C^*(X)\) be the differential graded \(\mathbb{Q}\)-algebra cochain associated to \(X\) which is a connective \(E_\infty \text{dgAlg}_{\mathbb{Q}}\). If \(R = C^*(X)\) and \(S = \mathbb{Q}\) then by the Sullivan theorem \(\pi_i X \simeq \pi_i \text{Map}_{\text{dgCAlg}_{\mathbb{Q}}}(C^*(X), \mathbb{Q})\). By Theorem 4.1 we have that
\(\pi_i X \) is a sub \(\mathbb{Q} \)-vector space of \(\pi_i \text{Map}_{\text{dgAlg}_k}(R, S) \). On the other hand \([1]\), since \(C^*(X) \) is connective, we have that for any \(i > 1 \)

\[
\pi_i \text{Map}_{\text{dgAlg}_k}(C^*(X), \mathbb{Q}) \simeq \text{HH}^{1-i}(C^*(X), \mathbb{Q}),
\]

where \(\text{HH}^* \) is the Hochschild cohomology. Since we have assumed finiteness condition on \(X \), we have that

\[
\text{HH}^{1-i}(C^*(X), \mathbb{Q}) \simeq \text{HH}_{i-1}(C^*(X), \mathbb{Q}).
\]

The functor \(C^*(-, \mathbb{Q}) : \text{Top}^{op} \to \text{E}_\infty \text{dgAlg}_k \) commutes with finite homotopy limits, where \(\text{Top} \) is the category of simply connected spaces. Hence,

\[
\text{HH}_{i+1}(C^*(X), \mathbb{Q}) = H^{i-1}[C^*(X) \otimes_{C^*(X \times X)} \mathbb{Q}] \simeq H^{i-1}(\Omega X, \mathbb{Q}).
\]

We conclude that \(\pi_i X \) is a sub \(\mathbb{Q} \)-vector space of \(H^{i-1}(\Omega X, \mathbb{Q}) \).

More generally by the Block-Lazarev result \([3]\) on rational homotopy theory and \([1]\), we have an injective map of \(\mathbb{Q} \)-vector spaces

\[
\text{AQ}^{-i}(C^*(X), C^*(Y)) \to \text{HH}^{i+1}(C^*(X), C^*(Y)),
\]

where the \(C^*(X) \)-(bi)modules structure on \(C^*(Y) \) is given by \(C^*(X) \to \mathbb{Q} \to C^*(Y) \), and \(\text{AQ}^* \) is the André-Quillen cohomology. We also assume that \(X \) and \(Y \) are simply connected and \(i > 1 \).

More generally,

\[
\pi_i \text{Map}_{\text{E}_\infty \text{dgAlg}_k}(R, S) = \text{AQ}^{-i}(R, S) \to \text{HH}^{-i+1}(R, S) = \pi_i \text{Map}_{\text{dgAlg}_k}(R, S)
\]

is an injective map of \(\mathbb{Q} \)-vector spaces for all \(i > 1 \) and any augmented \(\text{E}_\infty \)-differential graded connective \(\mathbb{Q} \)-algebras \(R \) and \(S \), where the action of \(S \) on \(R \) is given by \(S \to \mathbb{Q} \to R \).

Acknowledgments

I’m grateful to Benoît Fresse for his nice explanation of Lemma \([2]\), the key point of the proof is due to him. I would like to thank the referee for many useful suggestions.

References

Ilias Amrani ilias.amranifedotov@gmail.com

Department of Mathematics, Masaryk University, Kotlarska 2, Brno, Czech Republic