COHOMOLOGICALLY SYMPLECTIC SOLVMANIFOLDS ARE SYMPLECTIC

Hisashi Kasuya

We consider aspherical manifolds with torsion-free virtually polycyclic fundamental groups, constructed by Baues. We prove that if those manifolds are cohomologically symplectic then they are symplectic. As a corollary we show that cohomologically symplectic solvmanifolds are symplectic.

1. Introduction

A $2n$-dimensional compact manifold M is called cohomologically symplectic (c-symplectic) if we have $\omega \in H^2(M, \mathbb{R})$ such that $\omega^n \neq 0$. A compact symplectic manifold is c-symplectic but the converse is not true in general. For example $\mathbb{C}P^2 \# \mathbb{C}P^2$ is c-symplectic but not symplectic. But for some class of manifolds these two conditions are equivalent. For examples, nilmanifolds, i.e., compact homogeneous spaces of nilpotent simply connected Lie groups. In [7], for a nilpotent simply connected Lie group G with a cocompact discrete subgroup Γ (such subgroup is called a lattice), Nomizu showed that the de Rham cohomology $H^*(G/\Gamma, \mathbb{R})$ of G/Γ is isomorphic to the cohomology $H^*(\mathfrak{g})$ of the Lie algebra of G. By the application of Nomizu’s theorem, if G/Γ is c-symplectic then G/Γ is symplectic (see [3, p. 191]). Every nilmanifold can be represented by such G/Γ (see [6]).

Consider solvmanifolds, i.e., compact homogeneous spaces of solvable simply connected Lie groups. Let G be a solvable simply connected Lie group with a lattice Γ. We assume that for any $g \in G$ the all eigenvalues of the adjoint operator Ad_g are real. With this assumption, in [5] Hattori extended Nomizu’s theorem. By Hattori’s theorem, for such case, without difficulty, we can similarly show that if G/Γ is c-symplectic, then G/Γ is symplectic. But the isomorphism $H^*(G/\Gamma, \mathbb{R}) \cong H^*(\mathfrak{g})$ fails to hold for general solvable Lie groups, and not all solvmanifolds can be represented by G/Γ. Thus it is a considerable problem whether every c-symplectic solvmanifold is symplectic.
Let \(\Gamma \) be a torsion-free virtually polycyclic group. In [1] Baues constructed the compact aspherical manifold \(M_\Gamma \) with \(\pi_1(M_\Gamma) = \Gamma \). Baues proved that every infra-solvmanifold (see [1] for the definition) is diffeomorphic to \(M_\Gamma \). In particular, the class of such aspherical manifolds contains the class of solvmanifolds. We prove that if \(M_\Gamma \) is c-symplectic then \(M_\Gamma \) is symplectic. In other words, for a torsion-free virtually polycyclic group \(\Gamma \) with \(2n = \text{rank} \Gamma \), if there exists \(\omega \in H^2(\Gamma, \mathbb{R}) \) such that \(\omega^n \neq 0 \) then we have a symplectic aspherical manifold with the fundamental group \(\Gamma \).

2. Notation and conventions

A general reference here is [2]. Let \(k \) be a subfield of \(\mathbb{C} \). A group \(G \) is called a \(k \)-algebraic group if \(G \) is a Zariski-closed subgroup of \(GL_n(\mathbb{C}) \) which is defined by polynomials with coefficients in \(k \). Let \(G(k) \) denote the set of \(k \)-points of \(G \) and \(U(G) \) the maximal Zariski-closed unipotent normal \(k \)-subgroup of \(G \) called the unipotent radical of \(G \). Let \(U_n(k) \) denote the \(n \times n \) \(k \)-valued upper triangular unipotent matrix group.

3. Aspherical manifolds with torsion-free virtually polycyclic fundamental groups

Definition 3.1. A group \(\Gamma \) is polycyclic if it admits a sequence

\[
\Gamma = \Gamma_0 \supset \Gamma_1 \supset \cdots \supset \Gamma_k = \{e\}
\]

of subgroups such that each \(\Gamma_i \) is normal in \(\Gamma_{i-1} \) and \(\Gamma_{i-1}/\Gamma_i \) is cyclic. We denote \(\text{rank} \Gamma = \sum_{i=1}^{k} \text{rank} \Gamma_{i-1}/\Gamma_i \).

Proposition 3.1 [8, Proposition 3.10]. The fundamental group of a solvmanifold is torsion-free polycyclic.

Let \(k \) be a subfield of \(\mathbb{C} \). Let \(\Gamma \) be a torsion-free virtually polycyclic group. For a finite index polycyclic subgroup \(\Delta \subset \Gamma \), we denote \(\text{rank} \Gamma = \text{rank} \Delta \).

Definition 3.2. We call a \(k \)-algebraic group \(H_\Gamma \) a \(k \)-algebraic hull of \(\Gamma \) if there exists an injective group homomorphism \(\psi : \Gamma \to H_\Gamma(k) \) and \(H_\Gamma \) satisfies the following conditions:

1. \(\psi(\Gamma) \) is Zariski-dense in \(H_\Gamma \).
2. \(Z_{H_\Gamma}(U(H_\Gamma)) \subset U(H_\Gamma) \) where \(Z_{H_\Gamma}(U(H_\Gamma)) \) is the centralizer of \(U(H_\Gamma) \).
3. \(\dim U(H_\Gamma) = \text{rank} \Gamma \).

Theorem 3.1 [1, Theorem A.1]. There exists a \(k \)-algebraic hull of \(\Gamma \) and a \(k \)-algebraic hull of \(\Gamma \) is unique up to \(k \)-algebraic group isomorphism.

Let \(\Gamma \) be a torsion-free virtually polycyclic group and \(H_\Gamma \) the \(\mathbb{Q} \)-algebraic hull of \(\Gamma \). Denote \(H_\Gamma = H_\Gamma(\mathbb{R}) \). Let \(U_\Gamma \) be the unipotent radical of \(H_\Gamma \).
and T a maximal reductive subgroup. Then H_Γ decomposes as a semi-direct product $H_\Gamma = T \times U_\Gamma$. Let u be the Lie algebra of U_Γ. Since the exponential map $\exp : u \rightarrow U_\Gamma$ is a diffeomorphism, U_Γ is diffeomorphic to \mathbb{R}^n such that $n = \text{rank} \Gamma$. For the semi-direct product $H_\Gamma = T \times U_\Gamma$, we denote $\phi : T \rightarrow \text{Aut}(U_\Gamma)$ the action of T on U_Γ. Then we have the homomorphism $\alpha : H_\Gamma \rightarrow \text{Aut}(U_\Gamma) \times U_\Gamma$ such that $\alpha(t, u) = (\phi(t), u)$ for $(t, u) \in T \times U_\Gamma$. By the property (2) in Definition 3.2, ϕ is injective and hence α is injective.

In [1] Baues constructed a compact aspherical manifold $M_\Gamma = \alpha(\Gamma) \backslash U_\Gamma$ with $\pi_1(M_\Gamma) = \Gamma$. We call M_Γ a standard Γ-manifold.

Theorem 3.2 [1, Theorem 1.2, 1.4]. A standard Γ-manifold is unique up to diffeomorphism. A solvmanifold with the fundamental group Γ is diffeomorphic to the standard Γ-manifold M_Γ.

Let $A^*(M_\Gamma)$ be the de Rham complex of M_Γ. Then $A^*(M_\Gamma)$ is the set of the Γ-invariant differential forms $A^*(U_\Gamma)^T$ on U_Γ. Let $(\bigwedge u^*)^T$ be the left-invariant forms on U_Γ which are fixed by T. Since $\Gamma \subset H_\Gamma = T \times U_\Gamma$, we have the inclusion

$$(\bigwedge u^*)^T = A^*(U_\Gamma)^H_\Gamma \subset A^*(U_\Gamma)^\Gamma = A^*(M_\Gamma).$$

Theorem 3.3 [1, Theorem 1.8]. This inclusion induces an isomorphism on cohomology.

By the application of the above facts, we prove the main theorem of this paper.

Theorem 3.4. Suppose M_Γ is c-symplectic. Then M_Γ admits a symplectic structure. In particular, cohomologically symplectic solvmanifolds are symplectic.

Proof. Since we have the isomorphism $H^*(M_\Gamma, \mathbb{R}) \cong H^*((\bigwedge u^*)^T)$, we have $\omega \in (\bigwedge^2 u^*)^T$ such that $0 \neq [\omega]^n \in H^{2n}((\bigwedge u^*)^T)$. This gives $0 \neq \omega^n \in (\bigwedge u^*)^T$ and hence $0 \neq \omega^n \in \bigwedge u^*$. Since ω^n is a non-zero invariant 2n-form on U_Γ, we have $(\omega^n)_p \neq 0$ for any $p \in U_\Gamma$. Hence by the inclusion $(\bigwedge u^*)^T \subset A^*(U_\Gamma)^T = A^*(M_\Gamma)$, we have $(\omega^n)_{\Gamma p} \neq 0$ for any $\Gamma p \in \Gamma \backslash U_\Gamma = M_\Gamma$. This implies that ω is a symplectic form on M_Γ. Hence, we have the theorem.

4. Remarks

Let $G = \mathbb{R} \ltimes \phi U_3(\mathbb{C})$ such that

$$\phi(t) \cdot \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & e^{\text{i}zt} \cdot x \\ 0 & 1 & e^{-\text{i}zt} \cdot y \\ 0 & 0 & 1 \end{pmatrix},$$
and $D = \mathbb{Z} \ltimes_{\varphi} D'$ with
\[
D' = \left\{ \begin{pmatrix} 1 & x_1 + iy_2 & z_1 + iz_2 \\ 0 & 1 & y_1 + iy_2 \\ 0 & 0 & 1 \end{pmatrix} : x_1, y_2, z_2 \in \mathbb{Z}, x_2, y_1, z_1 \in \mathbb{R} \right\}.
\]
Then D is not discrete and G/D is compact. We have $D/D_0 \sim \mathbb{Z} \ltimes_{\varphi} U_3(\mathbb{Z})$ such that
\[
\varphi(t) \cdot \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & (-1)^tx & z \\ 0 & 1 & (-1)^ty \\ 0 & 0 & 1 \end{pmatrix},
\]
where D_0 is the identity component of D. Denote $\Gamma = D/D_0$. We have the algebraic hull $H_\Gamma = \{\pm 1\} \ltimes_{\psi} (U_3(\mathbb{R}) \times \mathbb{R})$ such that
\[
\psi(-1) \cdot \left(\begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix}, t \right) = \left(\begin{pmatrix} 1 & -x & z \\ 0 & 1 & -y \\ 0 & 0 & 1 \end{pmatrix}, t \right).
\]
The dual of the Lie algebra u of $U_3(\mathbb{R}) \times \mathbb{R}$ is given by $u^* = \langle \alpha, \beta, \gamma, \delta \rangle$ such that the differential is given by
\[
da \alpha = da = d\delta = 0,
\]
and the action of $\{\pm 1\}$ is given by
\[
(-1) \cdot \alpha = -\alpha, (-1) \cdot \beta = -\beta,
\]
\[
(-1) \cdot \gamma = \gamma, (-1) \cdot \delta = \delta.
\]
Then we have a diffeomorphism $M_\Gamma \cong G/D$ and an isomorphism $H^*(M_\Gamma, \mathbb{R}) \cong H^*((\bigwedge u^*)^{\{\pm 1\}})$. By simple computations, $H^2((\bigwedge u^*)^{\{\pm 1\}}) = 0$ and hence the solvmanifold G/D is not symplectic.

Remark 1. The proof of the Theorem 3.4 contains a proof of the following proposition.

Proposition 4.1. If M_Γ admits a symplectic structure, then U_Γ has an invariant symplectic form.

Otherwise for the above example, $U_\Gamma = U_3(\mathbb{R}) \times \mathbb{R}$ has an invariant symplectic form but M_Γ is not symplectic. Thus the converse of this proposition is not true. If Γ is not nilpotent, then T is trivial and any invariant symplectic form on U_Γ induces the symplectic form on M_Γ. Hence for nilmanifolds, the converse of Proposition 4.1 is true.

Remark 2. Γ is a finite extension of a lattice of $U_\Gamma = U_3(\mathbb{R}) \times \mathbb{R}$. Hence M_Γ is finitely covered by a Kodaira–Thurston manifold (see [9], [3, p. 192]). M_Γ is an example of a non-symplectic manifold finitely covered by a symplectic manifold.
Let $H = G \times \mathbb{R}$. Then the dual of the Lie algebra \mathfrak{h} of H is given by $\mathfrak{h}^* = \{\sigma, \tau, \zeta_1, \zeta_2, \eta_1, \eta_2, \theta_1, \theta_2\}$ such that the differential is given by

\[d\sigma = d\tau = 0,\]
\[d\zeta_1 = \tau \wedge \zeta_2, \quad d\zeta_2 = -\tau \wedge \zeta_1,\]
\[d\eta_1 = \tau \wedge \eta_2, \quad d\eta_2 = -\tau \wedge \eta_1,\]
\[d\theta_1 = -\zeta_1 \wedge \eta_1 + \zeta_2 \wedge \eta_2, \quad d\theta_2 = -\zeta_1 \wedge \eta_2 - \zeta_2 \wedge \eta_1.\]

By simple computations, any closed invariant 2-form $\omega \in \bigwedge^2 \mathfrak{h}^*$ satisfies $\omega^4 = 0$. Hence H has no invariant symplectic form. Otherwise we have a lattice $\Delta = 2\mathbb{Z} \times U_3(\mathbb{Z} + i\mathbb{Z}) \times \mathbb{Z}$ which is also a lattice of $\mathbb{R}^2 \times U_3(\mathbb{C})$. Thus H/Δ is diffeomorphic to a direct product of a two-dimensional torus and an Iwasawa manifold (see [4]). Since an Iwasawa manifold is symplectic (see [4]), H/Δ is also symplectic. By this example we can say:

Remark 3. For a simply connected nilpotent Lie group G with a lattice Γ, if the nilmanifold G/Γ is symplectic then G has an invariant symplectic form. But suppose G is solvable we have an example of a symplectic solvmanifold G/Γ such that G has no invariant symplectic form.

References

Graduate School of Mathematical Science
University of Tokyo
Japan
E-mail address: khsc@ms.u-tokyo.ac.jp

Received 07/30/2010, accepted 02/17/2011
The author would like to express his gratitude to Toshitake Kohno for helpful suggestions and stimulating discussions. This research is supported by JSPS Research Fellowships for Young Scientists.