A computational error involving an index occurred in the course of the proof of Theorem 1, affecting the displayed formula in the Theorem. More precisely, the last two displayed formulae on page 28 should read

$$\psi_2(w_j - \nu_M(m), v) + i\omega_m(\nu_M(m), w_j) = T_h^{(j)} + T_t^{(j)} + T_{tv}^{(j)},$$

and

$$T_h^{(j)} := \psi_2(w_{jh}, v_h), \quad T_t^{(j)} := -\frac{1}{2} \|w_{jt} - v_t\|^2,$$

$$T_{tv}^{(j)} := -\frac{1}{2} \|w_{jt} - \nu_M(m) - v_v\|^2,$$

$$T_{tv}^{(j)} := -i\omega_m(w_{jt} - \nu_M(m) - v_v, w_{jt} + v_t) + i\left[\omega_m(w_v, w_t) - \omega_m(v_v, v_t)\right],$$

where the unitary endomorphism $w \mapsto w_j$ of $T_m M$ is induced by the isotropy action of $g_j^{-1} \in G_m \subseteq G$. This implies that in the exponent appearing in formula (52) the factor $\Gamma(w, v)$ must be replaced by

$$\Gamma(w, v) = \psi_2(w_{jh}, v_h) - \|w_{h1}\|^2 - \|v_{t1}\|^2 + i\left[\omega_m(w_v, w_t) - \omega_m(v_v, v_t)\right].$$

In the notation of the paper, let us set

$$A_{\omega,k}(g, x) =: 2^{\delta/2} \frac{\dim(V_\omega)}{|G_{\pi(x)}|} \cdot \frac{1}{\chi_\omega(g) h_g^k} \quad (g \in G_{\pi(x)}).$$
With the rest of the argument unchanged, the outcome is that in Theorem 1
the displayed formula should read:

\[
\begin{align*}
\Pi_{\varpi,k} \left(x + \frac{w}{\sqrt{k}}, x + \frac{v}{\sqrt{k}} \right) \\
\sim \left(\frac{k}{\pi} \right)^{n-g/2} e^{Q(w_v + w_t, v_v + v_t)} \sum_{g \in G_m} A_{\varpi,k}(g, x) e^{\psi(w_g, v_h)} \\
\times \left(1 + \sum_{j \geq 1} a_{\varpi j}(x, w_g, v) k^{-j/2} \right),
\end{align*}
\]

where \(w \mapsto w_g \) is the isotropy action of \(g \in G_m \), and just as before

\[
Q(w_v + w_t, v_v + v_t) = -\|v_t\|^2 - \|w_t\|^2 + i \left[\omega_m(w_v, w_t) - \omega_m(v_v, v_t) \right].
\]