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CONVERGENCE OF KÄHLER TO REAL POLARIZATIONS
ON FLAG MANIFOLDS VIA TORIC DEGENERATIONS

Mark D. Hamilton and Hiroshi Konno

In this paper, we construct a family of complex structures on a
complex flag manifold that converge to the real polarization coming
from the Gelfand–Cetlin integrable system, in the sense that holomor-
phic sections of a prequantum line bundle converge to delta-function
sections supported on the Bohr–Sommerfeld fibers. Our construction
is based on a toric degeneration of flag varieties and a deformation of
Kähler structure on toric varieties by symplectic potentials.

1. Introduction

Let (M,ω) be a 2n-dimensional symplectic manifold. A prequantum line
bundle (L, h,∇) is a complex line bundle L on M with a Hermitian metric
h and a Hermitian connection ∇, whose curvature equals −2π√−1ω. Geo-
metric quantization is a procedure to assign a certain vector space, which
is called a quantum Hilbert space, to (M,ω). To perform a geometric quan-
tization procedure, we must choose a polarization, which is an integrable
Lagrangian subbundle of the (complexification of the) tangent bundle TM
ofM . Then, the quantum Hilbert space H(P ) for a polarization P is naively
a subspace of (a certain completion of) the space of sections of L, consist-
ing of covariantly constant sections along the polarization P . See [W] for
general properties of geometric quantization.
The most common example of a polarization comes from an integrable

complex structure J on M such that (M,ω, J) is a Kähler manifold. In this
case, the anti-holomorphic tangent bundle PJ = T 0,1M is a polarization,
which we call a Kähler polarization. The quantum Hilbert space H(PJ) is
the space of holomorphic sections H0(L, ∂J) with respect to the natural
holomorphic structure ∂J on L induced by J .
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Another type of polarization, called a real polarization, is given by a
foliation of M into Lagrangian submanifolds. A completely integrable sys-
tem μ : M → R

n (which is assumed to be proper) defines a singular real
polarization Pμ, where (Pμ)x is the tangent space of the fiber of μ at each
point x ∈ M . We set BS(μ) = {p ∈ μ(M)|H0((L, h,∇)|μ−1(p)) �= 0}, where
H0((L, h,∇)|μ−1(p)) = {s ∈ Γ((L, h,∇)|μ−1(p))|∇s = 0}. Namely, p ∈ BS(μ)
if and only if μ−1(p) is a Bohr–Sommerfeld fiber. Then, the quantum Hilbert
space H(Pμ) is defined to be

⊕
p∈BS(μ)H

0((L, h,∇)|μ−1(p)) [S].
From the point of view of physics, the quantum Hilbert space should be

independent of the choice of polarization. In particular, although Kähler and
real polarizations seem to be quite different, the quantum Hilbert space for
a Kähler polarization should be isomorphic to the one for a real polariza-
tion. There are several examples where this principle is observed to be true.
A non-singular projective toric variety has a natural Kähler structure, and
its moment map for the torus action induces a (singular) real polarization.
It is well known that the dimension of the space of holomorphic sections
of the prequantum line bundle is the number of lattice points in the image
of the moment map, which is also the number of Bohr–Sommerfeld fibers
in the variety. This implies that the principle holds in this case. In [JW],
Jeffrey–Weitsman showed that the principle also holds in the case of the
moduli space of flat connections over a compact Riemann surface.
A flag manifold with an integral symplectic structure has a singular real

polarization defined by the Gelfand–Cetlin system, which was introduced by
Guillemin–Sternberg in [GS], as well as a natural Kähler polarization since it
is a complex manifold. In [GS], the authors studied the quantization of flag
manifolds, and showed that the two polarizations give rise to quantizations
with the same dimensions. However, their proof did not give any sort of
direct relationship between the quantizations; rather, they computed the
dimensions of the quantizations by other means (representation-theoretical
and combinatoric) and showed they are equal.
One way of approaching the principle of independence of polariza-

tion is the following, considered by Baier, Florentino, Mourão and Nunes
in [BFMN]. Fix a Kähler polarization PJ and a real polarization Pμ on
(M,ω). Then, the principle can be understood naturally if there is a family
{PJs}s∈[0,∞) of Kähler polarizations on M with PJ0 = PJ which converges
to Pμ in the sense that there exists a basis {σm

s }m∈BS(Pμ) of H(PJs) for
each s ∈ [0,∞) such that, for each m ∈ BS(Pμ), σm

s converges to a delta-
function section supported on the Bohr–Sommerfeld fiber μ−1(m) as s goes
to ∞. In [BFMN], the authors carried out such a construction in the case
of a non-singular projective toric variety by changing symplectic potentials,
an important notion in the deformation theory of toric Kähler structures
due to Guillemin [Gu1,Gu2] and Abreu [Ab1,Ab2].
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In this paper, we construct a family of Kähler polarizations on a flag
manifold that converge to the real polarization coming from the Gelfand–
Cetlin system. See Theorem 2.1 for details. In doing so, we provide a direct
relationship between the two quantizations. Our construction is based on the
construction due to [BFMN] and the toric degeneration of a flag variety due
to Kogan and Miller [KM]. Originally, a toric degeneration of a flag variety
was constructed in terms of representation theory [GL, C]. Later Kogan
and Miller introduced deformed actions of a Borel subgroup on the space
of matrices and described a toric degeneration of a flag variety explicitly.
Moreover, they constructed a “degeneration in stages” of a flag variety to
study the geometric meaning of the Gelfand–Cetlin basis of the irreducible
representation of the unitary group. In [NNU], Nishinou, Nohara and Ueda
pointed out that through the degeneration in stages one can identify the
Gelfand–Cetlin system on the flag manifold with the integrable system on
the limiting toric variety.
Our construction of a family of Kähler polarizations on a flag man-

ifold proceeds as follows. We start from a flag manifold Fln embedded
in the product of projective spaces P =

∏
l=1,...,n−1 P(

∧l
C

n). For each
(a1, . . . , an−1) ∈ (Z>0)n−1, we fix a prequantum line bundle on P induc-
ing a natural symplectic structure on Fln. The toric degeneration of the
flag variety Fln due to [KM] is a family of complex subvarieties {Vt}t∈C in
P, where V1 = Fln and V0 is a toric variety. Since all Vt are diffeomorphic
to each other for t �= 0, the family {Vt}t�=0 can be considered as a family
of Kähler structures on the flag manifold Fln. On the other hand, there
is a family of toric Kähler structures {V0,s}s∈[0,∞) on V0 with V0,0 = V0,
as considered in [BFMN] (explained above). If we could identify Fln with
V0,s as a symplectic manifold, we could pull back the complex structures on
V0,s to Fln. However, the toric variety V0 is not diffeomorphic to the flag
manifold Fln.
Instead, we consider a space Vt, which is still diffeomorphic to the flag

manifold Fln but also is an approximation to V0. We show that the defor-
mation {V0,s}s∈[0,∞) can be realized as the restriction of a deformation of
the ambient toric variety P. The deformation of the ambient space induces
a family of Kähler structures {Vt,s}s∈[0,∞) on Vt with Vt,0 = Vt for each
t ∈ C. We develop a method to identify Vt,s with Vt,0 = Vt as a symplec-
tic manifold. Moreover, we identify Fln with Vt as a symplectic manifold
by using the gradient-Hamiltonian flow (a notion that is due to Ruan [R])
along a path that is an approximation of the path for degeneration in stages.
Hence, we can pull the complex structure of Vt,s back to Fln. We also lift
this identification to the prequantum line bundle in order to pull back holo-
morphic sections. Thus, we have a family of complex structures on the flag
manifold with a fixed symplectic structure and a family of sections of the
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prequantum line bundle on the flag manifold, which are holomorphic with
respect to the corresponding complex structure. Moreover, we give a pre-
cise estimate of these holomorphic sections, which allows us to prove that
the holomorphic sections converge to delta-function sections supported on
the Bohr–Sommerfeld fibers if we perform these two types of deformations
simultaneously in an appropriate way.
The content of this paper is organized as follows. In Section 2, we state our

main result. We review the results on a toric degeneration of a flag variety in
Section 3. Then, we recall the gradient-Hamiltonian flow and construct its
lift to the line bundle in Section 4. In Section 5, we review toric Kähler struc-
tures of toric manifolds, in particular, their deformation due to [BFMN]. In
Section 6, we develop a method to identify submanifolds under the deforma-
tion of toric Kähler structures of the ambient toric manifolds. We also give
an estimate of the change of holomorphic sections under this deformation. In
Section 7, we prove the main result, constructing a family of complex struc-
tures on the flag manifold, and proving that holomorphic sections converge
to delta-function sections supported on Bohr–Sommerfeld fibers.

2. Main results

Let GLn and B be the general linear group and its Borel subgroup consist-
ing of upper triangular matrices with C-coefficients, respectively. The flag
manifold is defined to be the complex manifold Fln = GLn/B. Let Λn be
the set of increasing indexes I = (i1 < · · · < il) with 1 ≤ i1, il ≤ n. For
I = (i1 < · · · < il) ∈ Λn and V = (vij) ∈ GLn, we set |I| = l and

pI(V ) = det

⎛
⎜⎝vi11 . . . vi1l

...
. . .

...
vil1 . . . vill

⎞
⎟⎠ .

Then, the Pluc̈ker embedding

ρ : Fln → P =
n−1∏
l=1

P(
l∧

C
n)

is defined by [V ] 	→ ([pI(V ); |I| = 1], . . . , [pI(V ); |I| = n−1]), where [xI ; |I| =
l] is the homogeneous coordinate of P(

∧l
C

n). Since the left U(n)-action on
Mn(C) commutes with the right B-action onMn(C), U(n) acts on Fln from
the left.
Next, we define a holomorphic line bundle on Fln and a Hermitian con-

nection on it. Let Hl be the hyperplane bundle on P(
∧l

C
n). It has a natural

Hermitian metric hl such that
√−1
2π R∇l

= ωl, where R∇
l
is the curvature of

the Chern connection ∇l for the Hermitian metric hl and ωl ∈ Ω2(P(
∧l

C
n))

is the Fubini–Study form. Let πl : P → P(
∧l

C
n) be the projection. Fix
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a = (a1, . . . , an−1) ∈ (Z>0)n−1. Then, we define a Kähler form ωP and a
prequantum line bundle (LP, hP,∇P) on P by

ωP =
n−1∑
l=1

alπ
∗
l ωl ∈ Ω2(P), (LP, hP,∇P) =

n−1⊗
l=1

π∗l (Hl, hl,∇l)⊗al .

Then, ∇P is the Chern connection of (LP, hP) and satisfies
√−1
2π R∇P

= ωP.
We set (LFln , hFln ,∇Fln) = ρ∗(LP, hP,∇P), i.e., LFln is a holomorphic line
bundle on Fln with a Hermitian metric hFln and the Chern connection ∇Fln

whose first Chern form is ρ∗ωP. The U(n)-action on Fln preserves ρ∗ωP with
a moment map μU(n) : Fln → u(n)∗.
Next, we recall a certain completely integrable system on Fln. Consider

U(l) for l = 1, . . . , n− 1 as a subgroup of U(n) defined by

(2.1) U(l) =
{(

A Ol,n−l

On−l,l En−l

)
∈ U(n)

}
,

where Ol,n−l ∈ Ml,n−l(C) and On−l,l ∈ Mn−l,l(C) are the zero matrices,
En−l ∈Mn−l(C) is the unit element, and A ∈Ml(C). Let ι∗l : u(n)∗ → u(l)∗

be the dual map of the inclusion ιl : u(l)→ u(n). Define a map λj
l : u(l)→ R

such that λ1
l (A) ≥ · · · ≥ λl

l(A) are eigenvalues of −
√−1A for A ∈ u(l). We

identify u(l) with u(l)∗ by the invariant inner product. In [GS], Guillemin
and Sternberg proved that

μGC = (λj
l ◦ ι∗l ◦ μU(n); 1 ≤ l ≤ n− 1, 1 ≤ j ≤ l) : Fln → R

d

is a completely integrable system, where d = 1
2 dimR Fln =

n(n−1)
2 . The com-

pletely integrable system μGC : Fln → R
d and its image ΔGC = μGC(Fln) ⊂

R
d are called the Gelfand–Cetlin system and the Gelfand–Cetlin polytope,

respectively. Note that μGC : Fln → R
d is a continuous map and that it

is smooth on μ−1
GC(IntΔGC), where IntΔGC is the interior of ΔGC. More-

over, μ−1
GC(m) is a d-dimensional real torus for each m ∈ IntΔGC. In [GS],

Guillemin and Sternberg also proved that, for m ∈ IntΔGC ⊂ R
d, the fiber

μ−1
GC(m) is a Bohr–Sommerfeld fiber if and only if m ∈ IntΔGC ∩ Z

d and
that the number of the points ΔGC∩Z

d coincides with the dimension of the
space of holomorphic sections H0(LFln , ∂

Fln), where ∂Fln is the holomor-
phic structure on LFln . Namely, the quantum Hilbert space for the Kähler
polarization on Fln is isomorphic to the one for the real polarization PμGC

coming from the Gelfand–Cetlin system μGC.
In this paper, we construct a family of complex structures {Js}s∈[0,∞) on

Fln such that the family of Kähler polarizations {PJs}s∈[0,∞) converges to
the real polarization PμGC in the following sense.
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Theorem 2.1. Let F and JF be the underlying C∞-manifold and the com-
plex structure of Fln, respectively. Set ωF = ρ∗ωP ∈ Ω2(F) and d =
dimR F = n(n−1)

2 . Let (LF, hF,∇F) be the underlying C∞ line bundle of
(LFln , hFln ,∇Fln). Then, there exists a one-parameter family of {Js}s∈[0,∞)

of complex structures on F which satisfies the following:

(1) Js is continuous with respect to the parameter s ∈ [0,∞).
(2) J0 = JF.
(3) (F, ωF, Js) is a Kähler manifold for each s ∈ [0,∞). So, for each

s ∈ [0,∞), the Hermitian line bundle (LF, hF,∇F) induces the holo-
morphic structure ∂s on LF.

(4) For each s ∈ [0,∞), there exists a basis {σm
s |m ∈ ΔGC ∩ Z

d} of
the space of holomorphic sections H0(LF, ∂

s) such that, for each
m ∈ IntΔGC ∩ Z

d, the section σm
s

‖σm
s ‖L1(F)

converges to a delta-function

section supported on the Bohr–Sommerfeld fiber μ−1
GC(m) in the

following sense: there exists a covariantly constant section δF
m of

(LF, hF,∇F)|μ−1
GC(m) and a measure dθm on μ−1

GC(m) such that, for any

smooth section φ of the dual line bundle (LF)∗, the following holds:

lim
s→∞

∫
F

〈
φ,

σm
s

‖σm
s ‖L1(F)

〉
ωd

F

d!
=
∫

μ−1
GC(m)

〈φ, δF

m〉dθm.

Remark 2.2. By a similar argument as in the proof of Theorem 2.1, we
can also prove that the support of the section σm

s converges to μ−1
CG(m) as

s→∞ for anym ∈ (ΔGC\IntΔGC)∩Z
d. However, we cannot prove that σm

s

converges to a delta-function section for m ∈ (ΔGC \ IntΔGC)∩Z
d, because

we do not yet have a sufficient description of μ−1
CG(m).

3. Toric degeneration of flag varieties

In [KM], Kogan and Miller constructed a toric degeneration of a flag variety
based on a deformed Borel action. They also introduced degeneration in
stages of a flag variety. In this section, we review their construction and recall
its symplectic geometric aspects due to Nishinou, Nohara and Ueda [NNU].

3.1. Deformed Borel action and toric degeneration. First, we define
the right action • of the product group (GLn)n on Mn(C) by

V • g =

⎛
⎜⎝v1g1

...
vngn

⎞
⎟⎠ for V =

⎛
⎜⎝v1

...
vn

⎞
⎟⎠ ∈Mn(C) and g = (g1, . . . , gn) ∈ (GLn)n.
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Set Mn(C×) = {(aij) ∈ Mn(C)|aij �= 0 for i, j = 1, . . . , n}. Define a map
ι : Mn(C×)→ (GLn)n by

ι((aij)) =

((
a11 O

. . .
O a1n

)
, . . . ,

(
an1 O

. . .
O ann

))
.

Note that ι(Mn(C×)) is the maximal torus of (GLn)n. We also set

TGC =

⎧⎪⎨
⎪⎩ ι
⎛
⎜⎝
⎛
⎜⎝

1 1

a21

. . .
...
. . .

an1 ... ann−1 1

⎞
⎟⎠
⎞
⎟⎠
∣∣∣∣∣∣∣
⎛
⎜⎝

1 1

a21

. . .
...
. . .

an1 ... ann−1 1

⎞
⎟⎠ ∈Mn(C×)

⎫⎪⎬
⎪⎭ .

We also define a k-dimensional algebraic subtorus T (k)
GC of TGC by

T
(k)
GC = {ι((aij))|(aij) ∈Mn(C×), i = k + 1 and j ≤ k if aij �= 1}.

Then, we have

TGC = {1} × T (1)
GC × · · · × T (n−2)

GC × T (n−1)
GC .

Next, we define the deformed Borel action as follows. For t ∈ C
×, we

define tω ∈Mn(C×) by

(3.1) (tω)ij = tωij , where ωij =

{
3i−j−1 if i > j,

0 if i ≤ j.

In the above (tω)ij is the (i, j)-component of tω ∈Mn(C×). Then, we define
the deformed action •t of B on Mn(C) by

V •t b = V • {ι(tω)(b, . . . , b)(ι(tω))−1},
where ι(tω), (b, . . . , b), ι(tω)−1 ∈ (GLn)n.
Let C[vij |1 ≤ i, j ≤ n] be the coordinate ring of Mn(C). Let U ⊂ B the

subgroup consisting of the matrices with 1’s on the diagonal. Then, the ring
of U -invariant functions C[vij |1 ≤ i, j ≤ n]U for the deformed action •t of U
is generated by the deformed Pluc̈ker coordinates

{qI(V, t) = dI(tω)−1pI(V • ι(tω))|I ∈ Λn}, where dI(tω) =
|I|∏

k=1

(tω)ikk.

From the definition of ω ∈ Mn(Z), we see that qI(V, t) is a polynomial of
vij (1 ≤ i, j ≤ n) and t. Moreover, the deformed action •t can be naturally
extended to the case t = 0. Thus, we have a quotient Fln(t) = Mn(C)//tB
for all t ∈ C, where the right-hand side is a GIT quotient by the deformed
action •t. We also have a family f : (Mn(C) × C)//B → C with f−1(t) =
Fln(t). Fln(1) is nothing but the flag variety Fln. Note that each Fln(t) is
embedded in P by the deformed Pluc̈ker embedding ρt : Fln(t) → P, which
is defined by [V ] 	→ ([qI(V, t); |I| = 1], . . . , [qI(V, t); |I| = n − 1]) as in the
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case of the usual Pluc̈ker embedding. In [KM], Kogan and Miller proved
the following, based on the argument in [GL].

Proposition 3.1. (1) The family f : (Mn(C)× C)//B → C is flat.
(2) Fln(t) is biholomorphic to Fln for any t ∈ C

×. Moreover, Fln(0) is a
toric variety on which the torus TGC acts with an open dense orbit.

Let us give a few remarks about Proposition 3.1. Note that, if we set

GLn(t) = {V ∈Mn(C)|V • ι(tω) ∈ GLn},
then we have Fln(t) = GLn(t)/tB for t ∈ C

×, where the right-hand side
is a geometric quotient of GLn(t) by the deformed action •t of the Borel
subgroup B. So, we see that Fln(t) is biholomorphic to Fln for any t ∈ C

×.
Moreover, since the action •g on Mn(C) for g ∈ TGC commutes with the
action •0b onMn(C) for b ∈ B, the torus TGC acts on Fln(0) =Mn(C)//0B.
Thus, the family f : (Mn(C)×C)//B → C can be viewed as a toric degener-
ation of a flag variety. The existence of a toric degeneration of a flag variety
is originally proved in [GL,C] in terms of representation theory. In [AB], a
toric degeneration of a more general variety is constructed systematically.

3.2. Degeneration in stages. To relate the U(n)-action on Fln = Fln(1)
with the TGC-action on Fln(0), Kogan and Miller introduced degener-
ation in stages as follows. For τ = (t2, . . . , tn) ∈ (C×)n−1, we define
τω ∈Mn(C×) by

(τω)ij = t
ωij

i , where t1 = 1 and ωij is given in (3.1).

In the above (τω)ij is the (i, j)-component of τω ∈Mn(C×). Then, we define
the deformed action •τ of B on Mn(C) by

V •τ b = V • {ι(τω)(b, . . . , b)(ι(τω))−1}.
Thus, we have Fln(τ) = Mn(C)//τB for τ ∈ (C×)n−1 in the same way as
in Section 3.1. We note that Fln(τ) is also embedded in P by the deformed
Plücker relations as Fln(t). Set

τ t
k = (1, . . . , 1︸ ︷︷ ︸

n−1−k

, t, 0, . . . , 0︸ ︷︷ ︸
k−1

) ∈ C
n−1 for t ∈ [0, 1] and k = 1, . . . , n− 1.

It is easy to see that Fln(τ t
k) = Mn(C)//τ t

k
B is well defined. Note that

Fln(τ t
k) has singularities if τ t

k = τ0
1 or k ≥ 2. We call the family

{Fln(τ t
k)}t∈[0,1] the kth stage of the degeneration. Note that

U(n− k + 1)× T (n−1)
GC × · · · × T (n−k+1)

GC acts on Fln(τ1
k ),

U(n− k)× T (n−1)
GC × · · · × T (n−k+1)

GC acts on Fln(τ t
k) for t ∈ (0, 1),

U(n− k)× T (n−1)
GC × · · · × T (n−k)

GC acts on Fln(τ0
k ),
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where U(l) for l = 1, . . . , n− 1 are the subgroups of U(n) defined by (2.1).
Kogan and Miller considered the following degeneration in stages:

Fln = Fln(τ1
1 )

1st−→ Fln(τ0
1 ) = Fln(τ1

2 ) −→ · · · −→ Fln(τ1
k )

kth−→ Fln(τ0
k )

−→ · · · −→ Fln(τ0
n−1) = Fln(0).

In [NNU], Nishinou, Nohara and Ueda clarified the relation between
the Gelfand–Cetlin system on the flag variety Fln and the completely
integrable system on Fln(0) coming from its toric structure as follows.
The smooth part Fln(τ t

k)
reg of Fln(τ t

k) has a symplectic structure ι∗
τ t
k
ωP,

where ιτ t
k
: Fln(τ t

k)
reg → P is the deformed Plücker embedding. Let

μU(n−k) : Fln(τ t
k)

reg → u(n − k) be the moment map for U(n − k)-action
on Fln(τ t

k)
reg for t ∈ [0, 1], where u(n − k) is identified with u(n − k)∗ by

the invariant inner product. Define a map λj
n−k : u(n − k) → R such that

λ1
n−k(A) ≥ · · · ≥ λn−k

n−k(A) are eigenvalues of −
√−1A for A ∈ u(n− k) as in

Section 2. Then, in [NNU], the authors proved the following.

Proposition 3.2. There exists an open dense subset Fln(τ t
k)
◦ ⊂ Fln(τ t

k)
reg

and a symplectic diffeomorphism ϕt2,t1
k : Fln(τ t1

k )
◦ → Fln(τ t2

k )
◦ for each k =

1, . . . , n− 1, t ∈ [0, 1] and 0 ≤ t2 ≤ t1 ≤ 1 which satisfy the following:

(1) Fln(τ1
1 )
◦ = μ−1

GC(IntΔGC) ⊂ Fln holds.
(2) ϕt,t

k is the identity map for any t ∈ [0, 1]. Moreover, ϕt3,t2
k ◦ ϕt2,t1

k =
ϕt3,t1

k holds for 0 ≤ t3 ≤ t2 ≤ t1 ≤ 1.
(3) Under the identification of Fln(τ t

k)
◦ for all t ∈ [0, 1] by the maps

ϕt2,t1
k , the moment map for U(n−k)×T (n−1)

GC ×· · ·×T (n−k+1)
GC -action

on Fln(τ t
k)
◦ is independent of t ∈ (0, 1].

(4) (λj
n−k ◦ μU(n−k)|1 ≤ j ≤ n− k) : Fln(τ0

k )
◦ → R

n−k coincides with the

moment map for the T (n−k)
GC -action on Fln(τ0

k )
◦.

The diffeomorphism ϕt2,t1
k : Fln(τ t1

k )
◦ → Fln(τ t2

k )
◦ is constructed by using

the gradient-Hamiltonian flow due to Ruan [R], which is explained in the
next section. The moment map for U(n−k)×T (n−1)

GC ×· · ·×T (n−k+1)
GC -action on

Fln(τ t
k)
◦ induces the completely integrable system on Fln(τ t

k)
◦ in the same

way as in the case of the Gelfand–Cetlin system. Proposition 3.2 implies the
completely integrable system on Fln(τ t

k)
◦ for t ∈ [0, 1] and 1 ≤ k ≤ n − 1

remains the same during the degeneration in stages.
Due to Proposition 3.2, we have a diffeomorphism

(3.2) Ψ0 = ϕ0,1
n−1 ◦ ϕ0,1

n−2 ◦ · · · ◦ ϕ0,1
1 : Fl◦n → Fln(0)◦,
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where Fl◦n = Fln(τ1
1 )
◦ and Fln(0)◦ = Fln(τ0

n−1)
◦. Then, Nishinou, Nohara

and Ueda proved the following.

Corollary 3.3. Let μGC : Fln → R
n(n−1)

2 be the Gelfand–Cetlin system. Let
μTGC

: Fln(0)→ (tGC)∗ be the moment map for the action of TGC on Fln(0).

Then, there is a linear isomorphism i : R
n(n−1)

2 → (tGC)∗ such that i◦μGC =
μTGC

◦Ψ0 : Fl◦n → (tGC)∗. In particular, Fln(0)◦ = μ−1
TGC

(IntΔGC) ⊂ Fln(0)
holds.

Therefore, the authors concluded that Fln(0) is a toric variety con-
structed from the Gelfand–Cetlin polytope ΔGC. This fact is originally
proved in [KM] in a different way. So, Fln(0) is called a Gelfand–Cetlin toric
variety. Moreover, the Gelfand–Cetlin polytope ΔGC can be considered nat-
urally as a subset of (tGC)∗. From now on, we consider the Gelfand–Cetlin
system to be the map μGC : Fln → (tGC)∗.

4. Gradient-Hamiltonian flow

Let (M,ω, J) be a Kähler manifold. Let f : M → C be a holomorphic func-
tion. Set B = f(M) and Vc = f−1(c) for c ∈ B. Denote the inclusion
map of Vc by ρc : Vc → M . Then, we have a family of symplectic manifolds
{(Vc, ρ

∗
cω)}c∈Breg where Breg is the set of regular values of f . To identify

these symplectic manifolds, Ruan introduced the gradient-Hamiltonian flow
in [R]. In this section, we recall the gradient-Hamiltonian flow and its basic
properties. We also discuss the lift of the gradient-Hamiltonian flow to the
prequantum line bundle.
By simple computations, we see that the following holds.

Lemma 4.1. Let (M,ω, J) be a Kähler manifold. Let �f and �f be the real
and imaginary part of the holomorphic function f : M → C, respectively. Let
X�f ∈ X (M) be the Hamiltonian vector field of the function �f . Then, the
following holds:

X�f = −grad(�f), that is, i(−grad(�f))ω = −d(�f),

where i(−grad(�f))ω is the contraction. In particular, X�f = −grad(�f)
is non-zero at a regular point of f .

Suppose that f is proper and that each point in M is a regular point of
f . Then, we have the following vector field:

Z = − grad(�f)
|grad(�f)|2 =

X�f

|X�f |2 ∈ X (M).
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It is easy to see that

Z(�f) = −1, Z(�f) = 0 on M.

Since f : M → B is proper, for any c ∈ B there exists εc > 0 such that
the flow {ϕt}t generated by the vector field Z ∈ X (M) induces a diffeomor-
phism ϕt|Vc : Vc → Vc−t for t ∈ (−εc, εc). In [R], Ruan found the following
remarkable property.

Proposition 4.2. (ϕt|Vc)
∗(ρ∗c−tω) = ρ∗cω for t ∈ (−εc, εc).

We call Z ∈ X (M) the gradient-Hamiltonian vector field and {ϕt}t the
gradient-Hamiltonian flow, respectively.
Next, we discuss the lift of the gradient-Hamiltonian flow to the prequan-

tum line bundle. Let us assume that there exists a prequantum line bundle
(L, h,∇) on M in addition to the above setting. For any c ∈ B, we denote
the restriction of (L, h,∇) to the fiber Vc by (LVc , hVc ,∇Vc).
The horizontal lift Z̃ ∈ X (L) of Z ∈ X (M) induces the flow {ϕ̃t}t, which

is a lift of the gradient-Hamiltonian flow {ϕt}t. Similarly, for any c ∈ B,
there exists εc > 0 such that the flow {ϕ̃t}t induces a bundle isomorphism
ϕ̃t|LVc : LVc → LVc−t for t ∈ (−εc, εc).
Then, we have the following proposition. Since its proof does not seem to

be found in the literature, we give a proof here.

Proposition 4.3. (ϕ̃t|LVc )∗∇Vc−t = ∇Vc and (ϕ̃t|LVc )∗hVc−t = hVc for t ∈
(−εc, εc).

Proof. Since the connection ∇ preserves the Hermitian metric h, the second
assertion is obvious. So, we prove the first assertion.
Since Z(�f) = 0 on M , the gradient-Hamiltonian flow {ϕt}t preserves

M�f=�c = {p ∈M |�f(p) = �c}. First, we show that i(Z)ω = 0 onM�f=�c.
In fact, we have

i(Z)ω = i

(
X�f

|X�f |2
)
ω =

−d(�f)
|X�f |2 = 0 on M�f=�c.

Let S ⊂ L be the unit sphere bundle and p : S → M the projection. If
we denote the connection form of ∇ by α ∈ Ω1(S), then we have dα = p∗ω.
Since the restriction of the horizontal lift Z̃ ∈ X (L) to S can be considered
as Z̃ ∈ X (S), we have i(Z̃)α = 0 and p∗Z̃ = Z. So, on p−1(M�f=�c), we
have

LZ̃α = i(Z̃)(p∗ω) = p∗{i(p∗Z̃)ω} = p∗{i(Z)ω} = 0.



484 M.D. HAMILTON AND H. KONNO

Thus, the flow induced by the vector field Z̃ ∈ X (S) preserves the connection
∇ on p−1(M�f=�c). �

5. Toric Kähler structures of toric manifolds

In this section, we review toric Kähler structures of toric manifolds. Starting
from a Delzant polytope, we construct a symplectic toric manifold in Sec-
tion 5.1 (due to [D], also described in [Gu1]) and a complex toric manifold
in Section 5.2 (described in [Au] and in Appendix 1 of [Gu2]). See [F] for
general properties of a complex toric manifold. We identify them according
to a choice of symplectic potentials due to [Ab1,Ab2,Gu1,Gu2] in Sec-
tion 5.3. We also review a certain deformation of toric Kähler structures by
changing symplectic potentials, which was introduced in [BFMN].
Let Tn be a real torus with the Lie algebra tn. Let

(5.1) Δ = {p ∈ (tn)∗|〈p, rj〉+ λj ≥ 0 for j = 1, . . . , d}

be a bounded Delzant polytope, where 〈, 〉 : (tn)∗ × tn → R is the natural
pairing and rj is a primitive vector in the lattice tn

Z
for j = 1, . . . , d. We

assume λ1, . . . , λd ∈ Z. We set

(5.2) lj(p) = 〈p, rj〉+ λj , Fj = {p ∈ (tn)∗|lj(p) = 0} for j = 1, . . . , d.

Let T d be a real torus with the Lie algebra td and X1, . . . , Xd ∈ td
Z
be the

standard basis of td. Let π : td → tn be the surjective Lie algebra homomor-
phism defined by π(Xj) = rj for j = 1, . . . , d. Then, the kernel of the cor-
responding Lie group homomorphism π̃ : T d → Tn is a connected subtorus
K of T d with the Lie algebra k. Let u1, . . . , ud ∈ (td)∗ be the dual basis of
X1, . . . , Xd ∈ td

Z
. We set λΔ = λ1u1 + · · ·+ λdud ∈ (td)∗Z.

5.1. A symplectic toric manifold Msymp. Let ω̃ be the standard
symplectic form on C

d. The natural action of T d on (Cd, ω̃) admits a
moment map μT d : C

d → (td)∗, given by μT d(z) = π
∑d

j=1 |zj |2uj , where
z = (z1, . . . , zd). If we denote the dual map of the inclusion ι : k → td

by ι∗ : (td)∗ → k∗, then the moment map μK : C
d → k∗ for the action

of the subtorus K on (Cd, ω̃) is given by μK(z) = π
∑d

j=1 |zj |2ι∗uj . The
compact symplectic toric manifold Msymp is defined to be the symplec-
tic quotient Msymp = μ−1

K (ι∗λΔ)/K with the natural symplectic structure
ω ∈ Ω2(Msymp). The quotient torus Tn = T d/K acts on (Msymp, ω) with
the moment map μT n : Msymp → (tn)∗. Since μT d(z)− λΔ ∈ ker{ι∗ : (td)∗ →
k∗} = image{π∗ : (tn)∗ → (td)∗}, it is given by μT n([z]) = (π∗)−1(μT d(z) −
λΔ) ∈ (tn)∗. It is well known that μT n(Msymp) = Δ.
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Next, we define a prequantum line bundle on Msymp. Let L̃symp = C
d×C

be the trivial line bundle with the standard fiber metric h̃. Let ∇̃ be a Her-
mitian connection on L̃symp defined by ∇̃ = d−√−1π∑d

i=j(xjdyj −yjdxj),
where xj , yj are the real and imaginary part of zj , respectively. The action of
T d on L̃symp defined by (z, v)ExpT dξ = (zExpT dξ, ve2π

√−1〈λΔ,ξ〉) preserves
the Hermitian metric h̃ and the connection ∇̃, where ExpT d : td → T d is the
exponential map. Then, the prequantum line bundle (Lsymp, h,∇) onMsymp

is defined to be the quotient of the restriction of L̃symp to μ−1
K (ι∗λΔ) by the

action of the subtorus K. Moreover, the quotient torus Tn = T d/K acts on
Lsymp, preserving h and ∇. Let [z]K ∈ Msymp denote a point represented
by z ∈ μ−1

K (ι∗λΔ). Similarly, [z, v]K denotes a point in Lsymp represented by
(z, v) ∈ μ−1

K (ι∗λΔ)× C.
Set M0

symp = μ−1
T n(IntΔ), where IntΔ is the interior of the Delzant poly-

tope Δ. Then, it is easy to see that
(√

l1(p)
π , . . . ,

√
ld(p)

π

)
∈ μ−1

K (ι∗λΔ) for

any p ∈ IntΔ. Therefore, the map ψ0
symp : IntΔ× tn/tn

Z
→M0

symp defined by

ψ0
symp(p, [q]) =

[(√
l1(p)
π

, . . . ,

√
ld(p)
π

)]
K

ExpT n(q)(5.3)

=

[(√
l1(p)
π

e2π
√−1〈u1,q̃〉, . . . ,

√
ld(p)
π

e2π
√−1〈ud,q̃〉

)]
K

is a diffeomorphism, where q̃ ∈ td is taken so that π(q̃) = q. Note that we
have

(5.4) μT n ◦ ψ0
symp(p, [q]) = p for (p, [q]) ∈ IntΔ× tn/tnZ.

Next, we define a section s0symp of Lsymp restricted to M0
symp by

s0symp(p, [q]) =

[(√
l1(p)
π

, . . . ,

√
ld(p)
π

)
, 1

]
K

ExpT n(q) ∈ Lsymp.

This section induces a unitary trivialization of the prequantum line bundle
Lsymp on M0

symp.
Fix a Z-basis p1, . . . , pn ∈ (tn)∗Z and its dual basis q1, . . . , qn ∈ tn

Z
. Set Δ0 =

{x = (x1, . . . , xn) ∈ R
n|∑n

i=1 xipi ∈ IntΔ}. Then, we have a coordinate
(x, [θ]) ∈ Δ0 × R

n/Zn on IntΔ × tn/tn
Z
. So, (x, [θ]) ∈ Δ0 × R

n/Zn can be
considered as a coordinate onM0

symp. It is easy to see the following by simple
computations.

Lemma 5.1. Let (x, [θ]) ∈ Δ0×R
n/Zn be the coordinate on M0

symp induced
by the fixed basis p1, . . . , pn ∈ (tn)∗Z. Then, the symplectic form ω on M0

symp
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and the connection ∇ on Lsymp|M0
symp

are described as follows.

(1) ω|M0
symp

=
∑n

i=1 dxi ∧ dθi.
(2) ∇|M0

symp
= d − 2π

√−1∑n
i=1 xidθi with respect to the unitary trivial-

ization defined by the section s0symp on M0
symp.

(3) For m ∈ IntΔ, μ−1
T n(m) is a Bohr–Sommerfeld fiber for the prequan-

tum line bundle (Lsymp, h,∇) if and only if m ∈ IntΔ ∩ (tn)∗
Z
. More-

over, δm([θ]) = e2π
√−1

∑n
i=1 miθis0symp|μ−1

Tn(m) is a covariantly constant
section of (Lsymp, h,∇)|μ−1

Tn(m) for m =
∑n

i=1mipi ∈ IntΔ ∩ (tn)∗
Z
,

where [θ] ∈ R
n/Zn is a coordinate on μ−1

T n(m).

5.2. A complex toric manifold Mcomp. Let Δ be a Delzant polytope
defined by (5.1), and denote the set of its vertices by Δ(0). Let Fj ⊂ (tn)∗
be the hyperplane defined in (5.2) for j = 1, . . . , d. For each v ∈ Δ(0),
we set Λv = {j|v ∈ Fj}, C

d
v = {z ∈ C

d|zj �= 0 if j ∈ {1, . . . , d} \ Λv}
and C

d
Δ =

⋃
v∈Δ(0) C

d
v. Then, the compact complex toric manifold Mcomp

is defined to be the quotient space Mcomp = C
d
Δ/KC, where KC is the

complexification of the subtorus K. Similarly, the complexification of the
torus T d is denoted by T d

C
. The quotient torus Tn

C
= T d

C
/KC acts on Mcomp,

preserving its complex structure J .
Next, we define a holomorphic line bundle onMcomp. Let L̃comp = C

d×C

be a trivial holomorphic line bundle on C
d. Define the action of T d

C
on

L̃comp by (z, v)ExpT d
C

ξ = (zExpT d
C

ξ, ve2π
√−1〈λΔ,ξ〉). The holomorphic line

bundle Lcomp is defined to be the quotient of the restriction of L̃comp to
C

d
Δ by the action of KC. Then, the quotient torus Tn

C
= T d

C
/KC acts on

Lcomp, preserving its holomorphic structure ∂̄. Let [z]KC
∈ Mcomp denote a

point represented by z ∈ C
d
Δ. Similarly, [z, v]KC

denotes a point in Lcomp

represented by (z, v) ∈ C
d
Δ × C.

Next, we define a meromorphic section s0comp of Lcomp on Mcomp by

s0comp([z]KC
) =

⎡
⎣z, d∏

j=1

z
λj

j

⎤
⎦

KC

∈ Lcomp for z ∈ C
d
Δ.

The section s0comp is holomorphic and non-zero on M0
comp = (C×)d/KC,

where (C×)d = {z ∈ C
d|zi �= 0 for i = 1, . . . , d} ⊂ C

d
Δ. So, it induces a

holomorphic trivialization of Lcomp on M0
comp.

For m ∈ Δ ∩ (tn)∗
Z
, we define a holomorphic section σm of Lcomp by

σm([z]KC
) =

⎡
⎣z, d∏

j=1

z
lj(m)
j

⎤
⎦

KC

∈ Lcomp for z ∈ C
d
Δ.(5.5)
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It is well known that {σm|m ∈ Δ∩ (tn)∗
Z
} is a basis of the space of holomor-

phic sections H0(Lcomp, ∂̄).
Next, we introduce a complex coordinate on M0

comp. Fix a Z-basis
p1, . . . , pn ∈ (tn)∗Z and its dual basis q1, . . . , qn ∈ tn

Z
as in Section 5.1. Then,

we define a complex coordinate ϕ0
comp : M

0
comp → (C×)n by

ϕ0
comp([z]KC

) =

⎛
⎝ d∏

j=1

z
〈p1,rj〉
j , . . . ,

d∏
j=1

z
〈pn,rj〉
j

⎞
⎠ ,(5.6)

where rj ∈ tn
Z
is the vector in (5.1) for j = 1, . . . , d. Since

∏d
j=1 z

〈pi,rj〉
j is

a KC-invariant meromorphic function on C
d, it descends to a meromorphic

function on Mcomp. If we set (w1, . . . , wn) = ϕ0
comp([z]KC

), then we have

σm([z]KC
) =

(
n∏

i=1

w
〈m,qi〉
i

)
s0comp([z]KC

) on Mcomp.(5.7)

5.3. Symplectic potentials. In Sections 5.1 and 5.2, starting from a
Delzant polytope Δ defined in (5.1), we constructed a symplectic and com-
plex toric manifold, respectively. In this section, we identify them, using
symplectic potentials due to [Gu1,Gu2,Ab1,Ab2]. We also recall a cer-
tain deformation of toric Kähler structures due to [BFMN].
The inclusion μ−1

K (ι∗λΔ) ⊂ C
d
Δ induces a map χcan : Msymp → Mcomp. It

is well known that this map is a diffeomorphism. In [Gu1,Gu2], Guillemin
showed that this map is described by a single function gcan as follows.
Fix a Z-basis p1, . . . , pn ∈ (tn)∗

Z
and its dual basis q1, . . . , qn ∈ tn

Z
as

in Sections 5.1 and 5.2. Fix q̃i ∈ td
Z
so that π(q̃i) = qi for i = 1, . . . , n. Let

(x, [θ]) be the symplectic coordinate onM0
symp and (w1, . . . , wn) the complex

coordinate on M0
comp induced by p1, . . . , pn ∈ (tn)∗Z, respectively. If we write

p =
∑n

i=1 xipi, then, by (5.3) and (5.6) we have

wi(χcan(x, [θ])) =
d∏

j=1

(√
lj(p)
π

e2π
√−1

∑n
l=1〈uj ,q̃l〉θl

)〈pi,rj〉
= e

2π( ∂gcan
∂xi

+
√−1θi),

where gcan : IntΔ→ R is a function defined by

gcan(p) =
1
4π

d∑
j=1

lj(p) log lj(p) + (a linear function on (tn)∗) for p ∈ IntΔ.

Note that gcan extends continuously to gcan : Δ→ R.
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Definition 5.2. A function g ∈ C0(Δ) is a symplectic potential if and only
if the following holds:
(1) g − gcan ∈ C∞(Δ),
(2) the Hessian Hesspg of g at p is positive definite for any p ∈ IntΔ,
(3) there exists a strictly positive function α ∈ C∞(Δ) such that

det(Hesspg) =

⎡
⎣α(p) d∏

j=1

lj(p)

⎤
⎦−1

for any p ∈ IntΔ.

The set of symplectic potentials is denoted by SP (Δ).

The following results are due to [Gu1, Gu2, Ab1, Ab2], supplemented
by Baier et al. [BFMN].

Theorem 5.3. Let Δ ⊂ (tn)∗ be a Delzant polytope. Let (Msymp, ω) be
a symplectic toric manifold and (Mcomp, J) a complex toric manifold con-
structed from Δ. Let (Lsymp, h,∇) be a prequantum line bundle on Msymp

and (Lcomp, ∂̄) a holomorphic line bundle on Mcomp constructed from Δ.
Fix a Z-basis p1, . . . , pn ∈ (tn)∗Z. Let (x, [θ]) be the symplectic coordinate on
M0

symp and w = (w1, . . . , wn) the complex coordinate on M0
comp induced by

p1, . . . , pn ∈ (tn)∗Z, respectively.
(A) Each g ∈ SP (Δ) defines a Tn-equivariant diffeomorphism χg : Msymp →
Mcomp and a Tn-equivariant bundle isomorphism χ̃g : Lsymp → Lcomp such
that the following holds:
(a1) The following diagram commutes:

(Lsymp, h,∇) χ̃g−→ (Lcomp, ∂̄)
↓ ↓

(Msymp, ω)
χg−→ (Mcomp, J)

(a2) (Msymp, ω, χ
∗
gJ) is a Kähler manifold.

(a3) ∇ is the Chern connection of the Hermitian holomorphic line bundle
(Lsymp, h, χ̃

∗
g∂̄).

(a4) χg|M0
symp

: M0
symp →M0

comp is a diffeomorphism given by

(5.8) wi(χg(x, [θ])) = e
2π
(

∂g
∂xi

+
√−1θi

)
for i = 1, . . . , n.

The map χg is independent of the choice of the basis p1, . . . , pn ∈
(tn)∗

Z
. Moreover, if we write wi = e2π(yi+

√−1θi) for i = 1, . . . , n, then
the inverse mapping (χg|M0

symp
)−1 : M0

comp →M0
symp is given by

(5.9) xi(χ−1
g (w)) =

∂f

∂yi
, θi((χ−1

g )(w)) = θi for i = 1, . . . , n,

where f(y) = −g(x(y)) +∑n
i=1 xi(y)yi.
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(a5) χ̃∗gs
0
comp = e

2π
(
g−∑n

i=1 xi
∂g
∂xi

)
s0symp on M0

symp.

(B) On the other hand, if χ : Msymp → Mcomp is a Tn-equivariant diffeo-
morphism such that (Msymp, ω, χ

∗J) is a Kähler manifold and that χ is
homotopic to χcan, then there exists g ∈ SP (Δ) such that χ = χg.

In [BFMN], the authors considered a certain one-parameter family of
symplectic potentials, which provides a one-parameter family of identifica-
tions of a symplectic toric manifold with a complex toric manifold. In other
words, it provides a deformation of toric Kähler structures. The authors
proved the following remarkable property of the deformation.

Proposition 5.4. Let χs : Msymp → Mcomp and χ̃s : Lsymp → Lcomp be
the diffeomorphism and the bundle isomorphism defined by gs = g0 + sν ∈
SP (Δ) for s ≥ 0, respectively, where ν : Δ → R is a smooth strictly convex
function. Then, for each m ∈ Δ∩(tn)∗

Z
, the section χ̃∗sσm

‖χ̃∗sσm‖L1(Msymp)
converges

to a delta-function section supported on the fiber μ−1
T n(m) in the following

sense: there exists a covariantly constant section δm of (Lsymp, h,∇)|μ−1
Tn(m)

and a measure dθm on μ−1
T n(m) such that, for any smooth section φ of the

dual line bundle L∗symp, the following holds:

lim
s→∞

∫
Msymp

〈
φ,

χ̃∗sσm

‖χ̃∗sσm‖L1(Msymp)

〉
ωn

n!
=
∫

μ−1
Tn(m)

〈φ, δm〉dθm.

Note that the authors proved the above results not only for m ∈ IntΔ ∩
(tn)∗

Z
but also for all m ∈ Δ ∩ (tn)∗

Z
. In Proposition 6.6 below, we slightly

generalize this proposition.

6. Submanifolds under the deformation due to [BFMN]

In the last section, starting from a Delzant polytope Δ defined by (5.1),
we constructed a symplectic toric manifold (Msymp, ω) and a complex toric
manifold (Mcomp, J). In this section, we study the change of the identification
χs : (Msymp, ω) → (Mcomp, J) and its lift χ̃s : (Lsymp, h,∇) → (Lcomp, ∂)
induced by a family of symplectic potentials gs = g0 + sν ∈ SP (Δ) for
s ≥ 0. In Proposition 5.4, ν ∈ C∞(Δ) is assumed to be a strictly convex
function. Here, we assume that ν ∈ C∞(Δ) is a weakly convex function,
which will be important in Propositions 6.5 and 6.6. In particular, we study
the behavior of submanifolds and of the prequantum line bundles on them
under the change of identification of the ambient toric manifolds.

6.1. Identification of submanifolds. Given a complex submanifold Vcomp

of (Mcomp, J), we consider the change of the identification χs : (Msymp, ω)→
(Mcomp, J). This implies that the complex structure of the complex
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submanifold remains the same, but the symplectic structure (χ−1
s )∗ω on

it changes. In this subsection, we develop a method to identify (Vcomp,
(χ−1

s )∗ω), for different values of s, as symplectic manifolds. We also lift
the identification to the prequantum line bundle.

Proposition 6.1. Let (Vcomp, J
V ) be a compact complex submanifold

of (Mcomp, J) and ρcomp : Vcomp → Mcomp the inclusion. Set Vsymp =
χ−1

0 (Vcomp), and denote the inclusion by ρ0 : Vsymp →Msymp.
Then, there exists an inclusion ρs : Vsymp →Msymp and a diffeomorphism

χ
s
: Vsymp → Vcomp, for each s ≥ 0, such the following holds:

(a) ρ∗sω = ρ∗0ω.
(b) The following diagram commutes:

(Msymp, ω)
χs−→ (Mcomp, J)

↑ ρs ↑ ρcomp

(Vsymp, ρ
∗
0ω)

χ
s−→ (Vcomp, J

V ).

(c) (Vsymp, ρ
∗
0ω, χ

∗
s
JV ) is a Kähler manifold.

(d) The maps ρs and χ
s

are canonically defined and depend smoothly on
s ≥ 0.

Proof. If we set ψs = χ0 ◦ (χs)−1 : Mcomp → Mcomp and ωs = ((χs)−1)∗ω ∈
Ω2(Mcomp) for each s ≥ 0, then we have

(6.1) ψ∗sω0 = ωs.

We show the following.

Claim 6.2. There exists a diffeomorphism φs : Vcomp → Vcomp for each
s ≥ 0, such that φ0 = idVcomp and φ∗s(ρ∗compωs) = ρ∗compω0.

Proof of Claim 6.2. Since ρ∗compωs and ρ∗compω0 are cohomologous, Claim 6.2
is a direct consequence of the theorem of Moser. However, we give a proof,
because we will use the notation here in the proof of Proposition 6.3.
Define a vector field Xs ∈ X (Mcomp) by

(6.2) (Xs)ψs(p) =
d

dt

∣∣∣
t=0

ψs+t(p) ∈ Tψs(p)Mcomp for p ∈Mcomp.

By (6.1) we have

(6.3)
dωs

ds
= ψ∗s(LXsω0) = dηs, where ηs = ψ∗s{i(Xs)ω0} ∈ Ω1(Mcomp).

Suppose that there exists a diffeomorphism φs : Vcomp → Vcomp such
that φ∗s(ρ∗compωs) = ρ∗compω0 for each s ≥ 0. If we define a vector field
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Ys ∈ X (Vcomp) by (Ys)φs(p) = d
dt

∣∣
t=0

φs+t(p) ∈ Tφs(p)Vcomp for p ∈ Vcomp,
then we have

0 =
d

ds
{φ∗s(ρ∗compωs)} = φ∗s

{
LYs(ρ

∗
compωs) +

dρ∗compωs

ds

}
= φ∗sd

{
i(Ys)(ρ∗compωs) + ρ∗compηs

}
.

Therefore, if we define Ys ∈ X (Vcomp) conversely by

(6.4) i(Ys)(ρ∗compωs) + ρ∗compηs = 0,

then we have a desired diffeomorphism φs : Vcomp → Vcomp by integrating
Ys ∈ X (Vcomp). Moreover, we have φ0 = idVcomp from this construction. �

Since ρcomp◦χ0|Vsymp = χ0◦ρ0, we have (χ0|Vsymp)
∗(ρ∗compω0) = ρ∗0ω. Define

a smooth map ρs : Vsymp →Msymp by ρs = (χs)−1 ◦ ρcomp ◦φs ◦χ0|Vsymp . By
Claim 6.2, we have

ρ∗sω = (χ0|Vsymp)
∗φ∗s(ρ

∗
compωs) = (χ0|Vsymp)

∗(ρ∗compω0) = ρ∗0ω.

Thus, we proved (a).
Define χ

s
: Vsymp → Vcomp by χs

= φs ◦ χ0|Vsymp . Then, we have χs ◦ ρs =
ρcomp ◦ χs

, which implies (b).
Since χ∗

s
(ρ∗compωs)=ρ∗s(χ∗sωs)=ρ∗sω = ρ∗0ω, we see that (Vsymp, ρ

∗
0ω, χ

∗
s
JV )

is isomorphic to (Vcomp, ρ
∗
compωs, J

V ), which a Kähler manifold. Therefore,
(c) follows.
Finally, we prove (d). In the above construction of φs, there is no ambigu-

ous choice. So, φs is canonically defined and depends smoothly on s ≥ 0.
Therefore, the maps ρs and χs

are canonically defined and depend smoothly
on s ≥ 0. Thus, we finish the proof of Proposition 6.1. �

Next, we construct a lift of the maps ρs : Vsymp →Msymp and χs
: Vsymp →

Vcomp to the prequantum line bundle.

Proposition 6.3. In addition to the assumption of Proposition 6.1, let
(LV

symp, h
V ,∇V ) = ρ∗0(Lsymp, h,∇) and (LV

comp, ∂
V ) = ρ∗comp(Lcomp, ∂) be

a prequantum line bundle on (Vsymp, ρ
∗
0ω) and a holomorphic line bundle on

(Vcomp, J
V ), respectively. Let ρ̃comp : LV

comp → Lcomp be the canonical lift of
the inclusion ρcomp : Vcomp →Mcomp.

Then, there exists a lift ρ̃s : LV
symp → Lsymp of ρs : Vsymp → Msymp and a

lift χ̃
s
: LV

symp → LV
comp of χ

s
: Vsymp → Vcomp, for each s ≥ 0, such that the

following holds:

(a) ρ̃∗s(Lsymp, h,∇) = (LV
symp, h

V ,∇V ).
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(b) The following diagram commutes:

(Lsymp, h,∇) χ̃s−→ (Lcomp, ∂̄)
↑ ρ̃s ↑ ρ̃comp

(LV
symp, h

V ,∇V )
χ̃

s−→ (LV
comp, ∂̄

V ).

(c) ∇V is the Chern connection of (LV
symp, h

V , χ̃∗
s
∂

V ).
(d) The maps ρ̃s and χ̃

s
are canonically defined and depend smoothly on

s ≥ 0.

Proof. We use the same notation as in the proof of Proposition 6.1.
First, we show the following.

Claim 6.4. Let R : Vsymp× [0,∞)→Msymp be the map defined by R(p, s) =
ρs(p). Then, the following holds:

i

(
∂

∂s

)
(R∗ω) = 0 on Vsymp × [0,∞).

Proof of Claim 6.4. Define θ : Vcomp × [0,∞) → Mcomp by θ(p, s) = ψs ◦
ρcomp ◦ φs(p). Fix any (p0, s0) ∈ Vsymp × [0,∞) and v ∈ Tp0Vsymp. We set
q0 = χ

0
(p0) ∈ Vcomp, w = (χ

0
)∗p0(v) ∈ Tq0Vcomp, and

v = (v, 0) ∈ Tp0Vsymp ⊕ R ∼= T(p0,s0){Vsymp × [0,∞)},
w = (w, 0) ∈ Tq0Vcomp ⊕ R ∼= T(q0,s0){Vcomp × [0,∞)}.

Since R(p, s) = ((χ0)−1 ◦ θ)(χ
0
(p), s), we have

{
i

(
∂

∂s

)
(R∗ω)

}
(p0,s0)

(v) = ω0

(
θ∗(q0,s0)

(
∂

∂s

)
, θ∗(q0,s0)(w)

)
.

By (6.2), we have

θ∗(q0,s0)

(
∂

∂s

)
=

∂

∂s

∣∣∣
s=s0

(ψs ◦ ρcomp ◦ φs)(q0)

= (Xs0)ψs0◦ρcomp◦φs0 (q0) + (ψs0)∗(ρcomp)∗
(
∂

∂s

∣∣∣
s=s0

φs(q0)
)
,

θ∗(q0,s0)(w) = (ψs0)∗(ρcomp)∗(φs0)∗q0(w).
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Thus, we have{
i

(
∂

∂s

)
(R∗ω)

}
(p0,s0)

(v)

= {ψ∗s0
(i(Xs0)ω0)}ρcomp◦φs0 (q0)((ρcomp)∗(φs0)∗q0(w))

+ {(ρcomp)∗(ψs0)
∗ω0}((Ys0)φs0 (q0), (φs0)∗q0(w))

= (ηs0)ρcomp◦φs0 (q0)((ρcomp)∗(φs0)∗q0(w))

+ (−ρ∗compηs0)φs0 (q0)((φs0)∗q0(w))

= 0,

where we used (6.3) and (6.4) in the second equality. This implies
Claim 6.4. �

Consider the line bundle (L′symp, h
′,∇′) = R∗(Lsymp, h,∇) on Vsymp ×

[0,∞). Let S′ ⊂ L′symp be the unit sphere bundle and p : S
′ → Vsymp× [0,∞)

the projection. If we denote the connection form of∇′ by α ∈ Ω1(S′), then we
have dα = p∗R∗ω. If we denote the horizontal lift of ∂

∂s ∈ X (Vsymp× [0,∞))
by ξ ∈ X (S′), we have i(ξ)α = 0 and p∗ξ = ∂

∂s . So, we have

Lξα = i(ξ)dα = i(ξ)(p∗R∗ω) = p∗{i(p∗ξ)(R∗ω)} = p∗
{
i

(
∂

∂s

)
(R∗ω)

}
= 0.

Thus, the flow defined by the vector field ξ ∈ X (S′) preserves the connection
∇′. So, it induces a lift ρ̃s : LV

symp → Lsymp of the map ρs : Vsymp → Msymp

such that ρ̃∗s(h,∇) = (hV ,∇V ) for s ≥ 0. This implies (a).
Since χs ◦ ρs = ρcomp ◦ χs

holds, χ̃
s
= ρ̃−1

comp ◦ χ̃s ◦ ρ̃s : LV
symp → LV

comp is
well defined. Thus, (b) holds from the definition of χ̃

s
: LV

symp → LV
comp.

Since χ̃∗
s
∂

V = χ̃∗
s
(ρ̃∗comp∂) = ρ̃∗s(χ̃∗s∂), we see that (LV

symp, h
V , χ̃∗

s
∂

V )
is isomorphic to ρ̃∗s(Lsymp, h, χ̃

∗
s∂). Since ∇ is the Chern connection of

(Lsymp, h, χ̃
∗
s∂), ∇V = ρ̃∗s∇ is the Chern connection of (LV

symp, h
V , χ̃∗

s
∂

V ).
This implies (c).
Finally, (d) holds obviously from the definition of the maps ρ̃s and χ̃s

. �

6.2. Toric subvarieties. Let (Msymp, ω) and (Mcomp, J) be a symplectic
and complex toric manifold, respectively, constructed from a Delzant poly-
tope Δ defined by (5.1). In this subsection, we study a (possibly singular)
toric subvariety Vcomp of (Mcomp, J) under the deformation of toric Kähler
structures of the ambient toric manifold.
Fix a Z-basis p1, . . . , pn ∈ (tn)∗

Z
and its dual basis q1, . . . , qn ∈ tn

Z
. This

induces symplectic coordinate (x, [θ]) on M0
symp as in Section 5.1 and com-

plex coordinate w = (w1, . . . , wn) on M0
comp as in Section 5.2. Note that

M0
comp is the T

n
C
-orbit through e = (1, . . . , 1) ∈M0

comp.
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Proposition 6.5. Let T l
C

be an l-dimensional subtorus of Tn
C
. Let ι∗ :

(tn)∗ → (tl)∗ be the dual map of the inclusion of the Lie algebra ι : tl → tn.
Let Vcomp ⊂Mcomp be a closed l-dimensional (possibly singular) toric subva-
riety containing e = (1, . . . , 1). The torus action on Vcomp is the restriction
of the T l

C
-action on Mcomp and its orbit through e is open dense in Vcomp.

(1) Let χs : Msymp →Mcomp be the diffeomorphism defined by

gs = g0 + s(ν ◦ ι∗) ∈ SP (Δ) for s ≥ 0,

where ν : ι∗(Δ)→ R is a smooth strictly convex function. Set Vsymp =
(χ0)−1(Vcomp). Then, χ0 ◦ χ−1

s |Vcomp : Vcomp → Vcomp is a homeomor-
phism for each s ≥ 0.

(2) Let ρs : Vsymp → Msymp and χ
s
: Vsymp → Vcomp be the maps con-

structed in Proposition 6.1. Then, ρs = ρ0 and χ
s
= χs|Vsymp hold for

s ≥ 0. Moreover, their lifts constructed in Proposition 6.3 are given
by ρ̃s = ρ̃0 : LV

symp → Lsymp and χ̃
s
= χ̃s|LV

symp
: LV

symp → LV
comp.

Proof. (1) Note that Vcomp ∩M0
comp is a connected component of

(6.5)

{
w ∈M0

comp|
n∏

i=1

w
〈p,qi〉
i = 1 for all p ∈ ker ι∗ ∩ (tn)∗Z

}
,

which contains e = (1, . . . , 1). By (5.8), we see that (χs)−1(Vcomp ∩M0
comp)

is a connected component of
(6.6)

{(x, [θ]) ∈M0
symp|e2π

∑n
i=1〈p,qi〉

(
∂gs
∂xi

+
√−1θi

)
= 1 for all p ∈ ker ι∗ ∩ (tn)∗Z}.

On the other hand, we have

n∑
i=1

〈p, qi〉∂gs

∂xi
=

n∑
i=1

〈p, qi〉∂g0
∂xi

+ s
n∑

i=1

〈p, qi〉∂(ν ◦ ι
∗)

∂xi
=

n∑
i=1

〈p, qi〉∂g0
∂xi

because
∑n

i=1〈p, qi〉 ∂
∂xi

is a differential in the direction of ker ι∗ for all p ∈
ker ι∗ ∩ (tn)∗

Z
. Therefore, we have (χs)−1(Vcomp) ⊂ (χ0)−1(Vcomp) = Vsymp.

So, we have an injective continuous map χ0 ◦ χ−1
s |Vcomp : Vcomp → Vcomp.

Next, we show that the map χ0 ◦ χ−1
s |Vcomp : Vcomp → Vcomp is surjec-

tive. Let V 0
comp be the T l

C
-orbit through e. Note that χ0 ◦ χ−1

s |Vcomp is
T l-equivariant and injective. If we consider the isotropy subgroup at each
point, we have χ0 ◦ χ−1

s (V 0
comp) ⊂ V 0

comp and χ0 ◦ χ−1
s (Vcomp \ V 0

comp) ⊂
Vcomp \ V 0

comp. Since χ0 ◦ χ−1
s |V 0

comp
is a C∞-map and its differential is

an isomorphism at each point, χ0 ◦ χ−1
s (V 0

comp) is open in V 0
comp. On the
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other hand, since Vcomp is compact, χ0 ◦ χ−1
s (Vcomp) is compact. Therefore,

we see that χ0 ◦ χ−1
s |V 0

comp
: V 0

comp → V 0
comp is surjective. So, we see that

χ0 ◦ χ−1
s |Vcomp : Vcomp → Vcomp is surjective.

Since χ0 ◦ χ−1
s |Vcomp : Vcomp → Vcomp is a bijective continuous map and

Vcomp is a compact Hausdorff space, it is a homeomorphism.
(2) In the proof of Proposition 6.1, we constructed φs : Vcomp → Vcomp by

integrating the time-dependent vector field Ys ∈ X (Vcomp) defined by

i(Ys)(ρ∗compωs) + ρ∗compηs = 0, where ηs = ψ∗s{i(Xs)ω0} ∈ Ω1(Mcomp).

In our situation, the vector field Ys is defined on V 0
comp. Since V

0
comp is

non-compact, it is not obvious that Ys is integrated to define the map
φs|V 0

comp
: V 0

comp → V 0
comp. However, we show that this holds in our case

and that φs|V 0
comp

extends to a homeomorphism φs : Vcomp → Vcomp.
In the proof of Proposition 6.5 (1), we showed that ψs|V 0

comp
= χ0 ◦

χ−1
s |V 0

comp
: V 0

comp → V 0
comp is a diffeomorphism. Moreover, by (6.2) the

restriction Xs|V 0
comp

takes its values in the tangent bundle of V 0
comp. If we

note (6.1), we have

ρ∗compηs = ρ∗compψ
∗
s{i(Xs)ω0}

= ρ∗comp{i((ψ−1
s )∗Xs)ψ∗sω0} = i((ψ−1

s )∗(Xs|V 0
comp

))ρ∗compωs.

Thus, we have

0 = i(Ys)(ρ∗compωs) + ρ∗compηs = i(Ys + (ψ−1
s )∗(Xs|V 0

comp
))ρ∗compωs.

So, we have

Ys + (ψ−1
s )∗(Xs|V 0

comp
) = 0 ∈ X (V 0

comp).

For any p ∈ V 0
comp, we have

(Ys)p = −{(ψ−1
s )∗(Xs|V 0

comp
)}p = − d

dt

∣∣∣
t=0

ψ−1
s ◦ψs+t(p) =

d

dt

∣∣∣
t=0

ψ−1
s+t◦ψs(p).

Namely, we have (Ys)ψ−1
s (p) =

d
dt

∣∣
t=0

ψ−1
s+t(p). Thus, the vector field Ys on

V 0
comp is integrated to define φs|V 0

comp
= ψ−1

s |V 0
comp

= χs ◦ χ−1
0 |V 0

comp
. So,

φs|V 0
comp

is extended to a homeomorphism φs = χs ◦ χ−1
0 |Vcomp : Vcomp →

Vcomp. So, we have χs
= φs ◦ χ0|Vsymp = χs|Vsymp . Then, the rest of the

statement is obvious. �

Recall that we defined a holomorphic section σm of Lcomp form ∈ Δ∩(tn)∗
Z

by (5.5). Then, χ̃∗sσm is a section of Lsymp. By Proposition 6.5 (2), the section
ρ̃∗s(χ̃∗sσm) = ρ̃∗0(χ̃∗sσm) of LV

symp can be written as χ̃
∗
sσ

m|Vsymp .
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Proposition 6.6. In addition to the assumptions in Proposition 6.5, sup-
pose that ι∗((tn)∗

Z
) = (tl)∗

Z
. Set μT l = ι∗ ◦ μT n : Msymp → (tl)∗ and

ΔV = μT l(Vsymp).

(1) For m,m′ ∈ Δ ∩ (tn)∗
Z
, σm|Vcomp = σm′ |Vcomp if ι∗m = ι∗m′.

(2) For p ∈ IntΔV , μ−1
T l (p)∩Vsymp is a Bohr–Sommerfeld fiber for the pre-

quantum line bundle (Lsymp, h,∇)|Vsymp if and only if
p ∈ IntΔV ∩ (tl)∗Z.

3) Fix any m ∈ Δ∩ (tn)∗
Z

with ι∗m ∈ IntΔV ∩ (tl)∗Z. Let Bι∗m be an open
neighborhood of ι∗m in (tl)∗. Then, there exists C0(s) > 0, depending
continuously on s ≥ 0, such that lims→∞C0(s) = 0 and, for arbitrary
s ≥ 0

‖τm
s ‖C0(Msymp\μ−1

Tl (Bι∗m)) ≤ C0(s),

where τm
s = χ̃∗sσm

‖χ̃∗sσm|Vsymp‖L1(Vsymp)
.

(4) Fix m ∈ Δ∩(tn)∗
Z

with ι∗m ∈ IntΔV ∩(tl)∗Z. The section τm
s |Vsymp con-

verges to a delta-function section supported on the Bohr–Sommerfeld
fiber μ−1

T l (ι∗m) ∩ Vsymp in the following sense: there exists a covari-
antly constant section δι∗m of (Lsymp, h,∇)|μ−1

Tl (ι∗m) and a measure

dθι∗m on μ−1
T l (ι∗m)∩Vsymp such that, for any smooth section φ of the

dual line bundle (LV
symp)

∗, the following holds:

lim
s→∞

∫
Vsymp

〈
φ, τm

s |Vsymp

〉 (ρ∗0ω)l
l!

=
∫

μ−1

Tl (ι∗m)∩Vsymp

〈φ, δι∗m〉dθι∗m.

Proof. (1) By (5.7), we have σm′/σm =
∏n

i=1w
〈m′−m,qi〉
i on M0

comp. Since
m′ −m ∈ ker ι∗, due to (6.5), we have σm′/σm = 1 on Vcomp.

(2) Since ι∗((tn)∗
Z
) = (tl)∗

Z
, we can take p′1, . . . , p′l ∈ (tn)∗Z so that ι∗p′1, . . . , ι∗p′l

is a Z-basis of (tl)∗
Z
. In addition, if we fix a Z-basis p′l+1, . . . , p

′
n of (ker ι∗) ∩

(tn)∗
Z
, then p′1, . . . , p′n is a Z-basis of (tn)∗

Z
. It induces the complex coordi-

nate w′ = (w′1, . . . , w′n) on M0
comp and the symplectic coordinate (x

′, [θ′]) on
M0

symp as in the previous subsections.
By (6.5), we have Vcomp ∩M0

comp = {w′ ∈ M0
comp|w′l+1 = · · · = w′n =

1}. So, by (6.6), we see that θ′l+1, . . . , θ
′
n are constant on Vsymp ∩ M0

symp.
Moreover, by (5.4), we have μT l(x′, [θ′]) =

∑l
i=1 x

′
ip
′
i for (x

′, [θ′]) ∈ M0
symp.

For each p =
∑l

i=1 x
′
ip
′
i ∈ IntΔV , since μ−1

T l (p) ∩ Vsymp is a single T l-orbit,
x′1, . . . , x′n are also constant on μ−1

T l (p) ∩ Vsymp.
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On the other hand, due to Lemma 5.1, we see that ∇|M0
symp

= d −
2π
√−1∑n

i=1 x
′
idθ

′
i with respect to the trivialization defined by s

0
symp. There-

fore, for a fixed p =
∑l

i=1 x
′
iι
∗p′i ∈ IntΔV , the multi-valued section

δp([θ′]) = e2π
√−1

∑l
i=1 x′iθ

′
is0symp of (Lsymp, h,∇)|μ−1

Tl (p)∩Vsymp
is covariantly

constant. Since δp is single-valued if and only if p ∈ IntΔV ∩ (tl)∗Z, we finish
the proof.
(3) The following proof is a slight modification of the argument in [BFMN].
If we write m =

∑n
i=1m

′
ip
′
i ∈ (tn)∗Z, due to (5.7) and Theorem 5.3, we have

χ̃s
∗σm = χ̃s

∗
{(

n∏
i=1

(w′i)
m′i

)
s0comp

}

=

{
n∏

i=1

e
2πm′i

(
∂gs
∂x′

i
+
√−1θ′i

)}
e
2π

(
gs−

∑n
i=1 x′i

∂gs
∂x′

i

)
s0symp

= e
2π

(
gs−

∑n
i=1(x′i−m′i)

∂gs
∂x′

i

)
e2π

√−1(
∑n

i=1 m′iθ
′
i)s0symp

= e−2πsαm(x′)ςm,

where

ςm(x′, [θ′]) = e
2π

(
g0−

∑n
i=1(x′i−m′i)

∂g0
∂x′

i

)
e2π

√−1(
∑n

i=1 m′iθ
′
i)s0symp(x

′, [θ′]),

αm(x′) =
n∑

i=1

(x′i −m′i)
∂(ν ◦ ι∗)
∂x′i

(x′)− (ν ◦ ι∗)(x′).

If we set αι∗m(p) =
∑l

i=1(x
′
i−m′i) ∂ν

∂x′i
(p)−ν(p) for p =∑l

i=1 x
′
iι
∗p′i ∈ ι∗Δ ⊂

(tl)∗, then we have αm(x′) = αι∗m ◦ μT l(x′, [θ′]). As in the argument in
Section 4 in [BFMN], we have

αι∗m(p) = αι∗m(ι
∗m) +

∫ 1

0

d

dt
αι∗m(ι

∗m+ t(p− ι∗m))dt

= −ν(ι∗m) +
∫ 1

0

t(p− ι∗m)(Hessι∗m+t(p−ι∗m)ν)(p− ι∗m)dt.

Since ν : ι∗(Δ)→ R is strictly convex and ι∗Δ is compact, if we put ‖p‖2 =∑l
i=1(x

′
i)

2 for p =
∑l

i=1 x
′
ip
′
i = ι∗x′ ∈ (tl)∗, there exists C1, C2 > 0 such that

−ν(ι∗m)+C1‖p− ι∗m‖2 ≤ αι∗m(p) ≤ −ν(ι∗m)+C2‖p− ι∗m‖2 for p ∈ ι∗Δ.
So, we have

(6.7) e−sαι∗m(p) ≤ esν(ι∗m)−sC1‖p−ι∗m‖2 for p ∈ ι∗Δ.
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On the other hand, there exists C3 > 0, for sufficiently small r > 0∫
ΔV

e−sαι∗m(p)dp

≥
∫

Br(ι∗m)∩ΔV

esν(ι∗m)−sC2‖p−ι∗m‖2dp ≥ C3r
lesν(ι∗m)−sC2r2

.

Since αm = αι∗m◦μT l is a smooth function onMsymp, ςm is a smooth section
of Lsymp. Since ςm is non-zero on μ−1

T l (ι∗m) and independent of s ≥ 0, there
exists C4 > 0 such that

(6.8) ‖χ̃∗sσm|Vsymp‖L1(Vsymp) ≥ C4r
lesν(ι∗m)−sC2r2

.

By (6.7) and (6.8), there exists C5 > 0 such that

∣∣τm
s (x′, [θ′])

∣∣ =
∣∣∣∣∣ χ̃∗sσm(x′, [θ′])
‖χ̃∗sσm|Vsymp‖L1(Vsymp)

∣∣∣∣∣
≤ C5

esν(ι∗m)−sC1‖ι∗x′−ι∗m‖2

rlesν(ι∗m)−sC2r2 = C5r
−le−s(C1‖ι∗x′−ι∗m‖2−C2r2).

Since we can take small r > 0 so that C1‖p − ι∗m‖2 − C2r
2 > 0 for any

p ∈ ι∗Δ \Bι∗m, we finish the proof.
(4) By the above argument, we also have

lim
s→∞

e−2πsαι∗m(p)

‖e−2πsαι∗m‖L1(ΔV )
= δ(p− ι∗m)

for ι∗m ∈ IntΔV ∩ (tl)∗
Z
, where δ(x) is the Dirac delta function on (tl)∗

supported at the origin. Moreover, the restriction ςm|μ−1

Tl (ι∗m)∩Vsymp
=

c(e2π
√−1(

∑l
i=1 m′iθ

′
i)s0symp)|μ−1

Tl (ι∗m)∩Vsymp
, where c is a constant, is a covari-

antly constant section on μ−1
T l (ι∗m)∩Vsymp, which we denote by δι∗m(θ′). So,

the assertion is proved easily. The details are the same as in [BFMN]. �

7. Proof of main result

In this section, we prove Theorem 2.1 by applying the method developed in
Section 6. In Section 7.1, we explain how the setting of Theorem 2.1 fits into
the framework of Section 6. In Section 7.2, we construct a family of complex
structures on the flag manifold, from which (1)–(3) of Theorem 2.1 turn out
to be obvious. Finally, we prove Theorem 2.1 (4) in Sections 7.3 and 7.4.

7.1. Set up. In Section 2, we fixed a symplectic structure ωP on P =∏n−1
l=1 P(

∧l
C

n). We denote the complex structure on P by JP. Note that
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(P, ωP, JP) is a toric Kähler manifold, constructed from a Delzant polytope
ΔP. Moreover, the toric Kähler manifold (P, ωP, JP) can be viewed as the
identification of a symplectic toric manifold (Psymp, ωP) with a complex toric
manifold (Pcomp, JP) by the diffeomorphism χ0 : (Psymp, ωP) → (Pcomp, JP)
defined by a symplectic potential g0 ∈ SP (ΔP), as in Section 5.3. Similarly,
the Hermitian line bundle (LP, hP,∇P) can also be viewed as the identifica-
tion of the prequantum line bundle (LP

symp, h
P,∇P) on (Psymp, ωP) with the

holomorphic line bundle (LP
comp, ∂

P) on (Pcomp, JP) via the bundle isomor-
phism χ̃0, which is a lift of the map χ0 : Psymp → Pcomp.
The flag manifold (F, ωF, JF) in Theorem 2.1 can also be viewed as the

identification of (Fsymp, ωF) with (Fcomp, JF) as follows. Let us denote the
Plücker embedding by ρcomp : (Fcomp, JF) → (Pcomp, JP). We set Fsymp =
χ−1

0 (Fcomp) and let ρsymp : Fsymp → Psymp be the embedding. Note that
ρ∗sympωP = ωF. We also set (LF

symp, h
F,∇F) = ρ∗symp(L

P
symp, h

P,∇P) and

(LF
comp, ∂

F) = ρ∗comp(L
P
comp, ∂

P). Then, we have the following commutative
diagrams:

(Psymp, ωP)
χ0−→ (Pcomp, JP) (LP

symp, h
P,∇P)

χ̃0−→ (LP
comp, ∂

P

)
↑ ρsymp ↑ ρcomp ↑ ρ̃symp ↑ ρ̃comp

(Fsymp, ωF)
χ0|Fsymp−→ (Fcomp, JF) (LF

symp, h
F,∇F)

χ̃0|LF
symp−→ (LF

comp, ∂
F

),

(7.1)

where ρ̃symp and ρ̃comp are the natural embeddings.
In Section 3.1, we constructed a family of varieties {Fln(t) =

Mn(C)//tB}t∈C. We set (Vt,comp, JVt) = Fln(t) for t ∈ [0, 1] and denote
the deformed Plücker embedding by ρt,comp : Vt,comp → Pcomp, which is
defined in Section 3.1. Let Vt,symp = χ−1

0 (Vt,comp) and ρt,0 : Vt,symp → Psymp

be the embedding. We also set (LVt
symp, h

Vt ,∇Vt) = ρ∗t,0(LP
symp, h

P,∇P) and

(LVt
comp, ∂

Vt) = ρ∗t,comp(L
P
comp, ∂

P). Then, we have a commutative diagram,
which is the case s = 0 in the diagram (7.4) below. Note that V1,comp = Fcomp

and V1,symp = Fsymp and that V0,comp is the Gelfand–Cetlin toric variety
Fln(0) ⊂ P. Thus, the above family {Vt,comp}t∈[0,1] connects the flag mani-
fold Fcomp with the Gelfand–Cetlin toric variety Fln(0).
For any t ∈ [0, 1], fix a path γt : [0, 1]→ C

n−1, which is given by straight
lines connecting the points

γt(0) = (1, . . . , 1)→ (1, . . . , 1, t)→ (1, . . . , 1, t, t)→ · · · → (t, . . . , t) = γt(1).

Recall that we constructed a family of varieties {Fln(τ) =Mn(C)//τB} for
τ ∈ (C×)n−1 in Section 3.2 and that we also constructed a degeneration in
stages by extending the family. The path γt is an approximation to the path
γ0 for the degeneration in stages. Note that Fln(γt(1)) = (Vt,comp, JVt) for
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t ∈ [0, 1]. Due to Propositions 4.2 and 4.3, the gradient-Hamiltonian flow
along the path γt, for t ∈ (0, 1], gives a symplectic diffeomorphism which
together with its lift to the prequantum line bundle gives rise to the following
diagram:

(7.2)
(LF

symp, h
F,∇F) Ψ̃t−→ (LVt

symp, h
Vt ,∇Vt)

↓ ↓
(Fsymp, ρ

∗
sympωP)

Ψt−→ (Vt,symp, ρ
∗
t,0ωP).

We can also extend Ψt : Fsymp → Vt,symp in (7.2) to the case t = 0 if we
restrict its domain to an open dense subset F

◦
symp of Fsymp. It is already

given by (3.2). Using the notation in this section, it should be written as
Ψ0 : F

◦
symp → V ◦0,symp. We also have its lift to the prequantum line bundle.

Thus, we have the following:

(LF
symp, h

F,∇F)|F◦symp

Ψ̃0−→ (LV0
symp, h

V0 ,∇V0)|V ◦0,symp

↓ ↓
(F◦symp, ρ

∗
sympωP)

Ψ0−→ (V ◦0,symp, ρ
∗
0,0ωP).

(7.3)

7.2. Construction of a family of complex structures. On (P, ωP, JP),
a (1

2 dimR P)-dimensional torus TP acts with an open dense orbit. On the
Gelfand–Cetlin toric variety Fln(0) = V0,comp ⊂ P, a (1

2 dimR F)-dimensional
torus TGC acts with an open dense subset, as explained in Section 3.2. There
is an injective homomorphism ι̃GC : TGC → TP such that the embedding
ρ0,comp : V0,comp → Pcomp is equivariant. It is described explicitly in Section
6 in [NNU]. Let ι∗GC : t∗

P
→ t∗GC be the dual map of the inclusion of the Lie

algebras ιGC : tGC → tP. From the description of the map ι̃GC : TGC → TP

given in [NNU], we see that ι∗GC((tP)
∗
Z
) = (tGC)∗Z.

Fix a strictly convex function ν : t∗GC → R and set ν = ν ◦ ι∗GC : t∗
P
→ R.

Let us consider the diffeomorphism χs : (Psymp, ωP) → (Pcomp, JP) defined
by gs = g0 + sν ∈ SP (ΔP). Due to Propositions 6.1 and 6.3, we have the
following commutative diagrams:

(Psymp, ωP)
χs−→ (Pcomp, JP) (LP

symp, h
P,∇P)

χ̃
s−→ (LP

comp, ∂
P)

↑ ρt,s ↑ ρt,comp ↑ ρ̃t,s ↑ ρ̃t,comp

(Vt,symp, ρ
∗
t,0ωP)

χ
t,s−→ (Vt,comp, JVt) (LVt

symp, h
Vt ,∇Vt)

χ̃
t,s−→ (LVt

comp, ∂
Vt),

(7.4)

where χ
t,0

= χ0|Vt,symp and χ̃
t,0

= χ̃0|LV
t,symp

. Note that ρ∗t,sωP = ρ∗t,0ωP ∈
Ω2(Vt,symp).
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In the case (t, s) = (1, 0), the diagrams (7.4) are the same as the dia-
grams (7.1). In the case t = 0, the diagrams (7.4) describe the deformation
of toric Kähler structures of the Gelfand–Cetlin toric variety V0,comp. The
defining equation of the image of the embedding ρ0,comp : V0,comp → Pcomp

is given by equations (7) in [NNU]. From this description, we see that
the image ρ0,comp(V0,comp) contains the point (1, . . . , 1) ∈ P in the notation
in Proposition 6.5. So, Proposition 6.6 can be applied to our case. There-
fore, the holomorphic sections on V0,comp converge to delta-function sections
supported on Bohr–Sommerfeld fibers as s goes to infinity. Therefore, the
holomorphic sections on Vt,comp are close to delta-function sections when t
and s go to zero and infinity, respectively, at the same time. So, we make
t a function of s as follows: let t : [0,∞) → R>0 be a strictly decreasing
C∞-function with t(0) = 1 and lims→∞ t(s) = 0, where R>0 is the set of
positive real numbers. (In fact, t(s) should be required to satisfy additional
conditions, which will be discussed in Lemma 7.5 below.)
We define a complex structure Js on (Fsymp, ρ

∗
sympωP) as the pull back of

JVt(s)
by the following composition of diffeomorphisms, which appeared in

the diagrams (7.2) and (7.4):

(Fsymp, ρ
∗
sympωP)

Ψt−→ (Vt,symp, ρ
∗
t,0ωP)

χ
t,s−→ (Vt,comp, JVt).

Namely, a family of complex structures {Js}s∈[0,∞) on (Fsymp, ρ
∗
sympωP) is

defined by

(7.5) Js = (χ
t(s),s

◦Ψt(s))
∗JVt(s)

.

Then, (1) and (2) of Theorem 2.1 follow from the construction of {Js}s∈[0,∞).
By Proposition 6.1 (2), (Vt,symp, ρ

∗
t,0ωP, χ

∗
t,s
JVt) is a Kähler manifold. More-

over, (Vt(s),symp, ρ
∗
t(s),0ωP, χ

∗
t(s),s

JVt(s)
) is isomorphic to (Fsymp, ρ

∗
sympωP, Js)

as a Kähler manifold. So, Theorem 2.1 (3) follows as well. Thus, for any
s ∈ [0,∞), Js induces the holomorphic structure ∂

s of the Hermitian line
bundle (LF

symp, h
F,∇F). Note that the map χ̃

t(s),s
◦ Ψ̃t(s) : (LF

symp, ∂
s) →

(L
Vt(s)
comp, ∂

Vt(s)) is an isomorphism of holomorphic line bundles.
To prove Theorem 2.1 (4), we have to construct a basis {σm

s |m ∈ ΔGC ∩
(tGC)∗Z} of the space of holomorphic sections H0(LF

symp, ∂
s).

First, we find a basis of the space of holomorphic sections H0(LV0
comp, ∂

V0)
in the following way. Recall that the Gelfand–Cetlin polytope ΔGC is consid-
ered as a subset of t∗GC as explained in Section 3.2. Since ι

∗
GC((tP)

∗
Z
) = (tGC)∗Z,

for each m ∈ ΔGC ∩ (tGC)∗Z, we can choose m̃ ∈ ΔP ∩ (tP)∗Z such that
ι∗(m̃) = m. Let σm̃ be the holomorphic section of (LP

comp, ∂
P) defined by

(5.5). Due to Proposition 6.6 (1), the restriction (ρ̃0,comp)∗σm̃ to V0,comp

depends only on m ∈ ΔGC ∩ (tGC)∗Z, not on m̃. Due to Corollary 3.3,
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ΔGC is the moment polytope for the action of TGC on the Gelfand–
Cetlin toric variety (V0,symp, ρ

∗
0,0ωP), where ρ∗0,0ωP is the first Chern form

of (LV0
symp, h

V0 ,∇V0). Since LV0
symp is naturally identified with LV0

comp by the
map χ̃

0,0
, we see that {(ρ̃0,comp)∗σm̃|m ∈ ΔGC ∩ (tGC)∗Z} is a basis of the

space of holomorphic sections H0(LV0
comp, ∂

V0) by the general fact on toric
varieties.
Since linearly independence of the restriction of holomorphic sections from

P is an open condition, there exists s0 > 0 such that, for any s ≥ s0,
{(ρ̃t(s),comp)∗σm̃|m ∈ ΔGC ∩ (tGC)∗Z} are liniarly independent. On the other
hand, all (Vt(s),comp, JVt(s)

) and all
(
L

Vt(s)
comp, ∂

Vt(s)
)
are isomorphic for s ≥ 0

as complex manifolds and holomorphic line bundles, respectively. Moreover,
due to [GS], the dimension of the space of holomorphic sections of LV1

comp =
LF

comp is equal to the numbers of ΔGC∩ (tGC)∗Z. Therefore, we conclude that
{(ρ̃t(s),comp)∗σm̃|m ∈ ΔGC ∩ (tGC)∗Z} is a basis of the space of holomorphic
sections H0

(
L

Vt(s)
comp, ∂

Vt(s)
)
for any s ≥ s0.

So we define, for s ≥ s0,

(7.6) σm
s = (χ̃

t(s),s
◦ Ψ̃t(s))

∗((ρ̃t(s),comp)
∗σm̃) for m ∈ ΔGC ∩ (tGC)∗Z.

Since all (Vt(s),comp, JVt(s)
) and all

(
L

Vt(s)
comp, ∂

Vt(s)
)
are isomorphic for s ≥ 0

as complex manifolds and holomorphic line bundles, respectively, we can
extend a basis {σm

s |m ∈ ΔGC∩ (tGC)∗Z} of the space of holomorphic sections
H0
(
LF

symp, ∂
s
)
for all s ∈ [0, s0], which depends continuously on s. Thus, we

have defined the basis {σm
s |m ∈ ΔGC ∩ (tGC)∗Z} of the space of holomorphic

sections H0
(
LF

symp, ∂
s
)
for all s ≥ 0.

7.3. Another gradient-Hamiltonian flow. To prove that the holomor-
phic sections defined by (7.6) converge to delta-function sections, we intro-
duce another gradient-Hamiltonian flow.
Let us consider the family of varieties f : (Mn(C) × C)//B → C con-

structed in Section 3.1. Put the standard Kähler metric on C. Consider
the map F : (Mn(C) × C)//B → Psymp × C given by F (x) = (ρt,0(x), t)
if x ∈ Vt,symp = f−1(t). We put the Kähler metric on the smooth part of
(Mn(C) × C)//B by pulling back the metric on Psymp × C by the map F .
Consider the gradient-Hamiltonian flow along the straight-line path from 1
to 0 in C. Since Vt,symp are smooth manifolds for all t ∈ (0, 1], by Lemma 4.1
the vector field and thus the flow are defined on all of Vt,symp for each
t ∈ (0, 1], and also on V ◦0,symp, where V

◦
0,symp is the same as in (7.3). Let

V ◦t,symp ⊂ Vt,symp denote the image of V ◦0,symp under the reverse flow. Then,
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due to Propositions 4.2 and 4.3, we have the following symplectic diffeomor-
phism and its lift defined by the gradient-Hamiltonian flow for t ∈ [0, 1]:

(LVt
symp, h

Vt ,∇Vt)|V ◦t,symp

Φ̃t−→ (LV0
symp, h

V0 ,∇V0)|V ◦0,symp

↓ ↓
(V ◦t,symp, ρ

∗
t,0ωP)

Φt−→ (V ◦0,symp, ρ
∗
0,0ωP).

Let μTP
: Psymp → t∗

P
be the moment map for the TP-action on (Psymp, ωP).

Set μTGC
= ι∗GC ◦μTP

: Psymp → t∗GC. Fix an open set B ⊂ IntΔGC such that
IntΔGC ∩ (tGC)∗Z ⊂ B and B ⊂ IntΔGC. Set U0 = μ−1

TGC
(B) ∩ V0,symp ⊂

V ◦0,symp. Here, we are considering V0,symp as a subset of Psymp by the embed-
ding ρ0,0. Moreover, we set Ut = Φ−1

t (U0) and U c
t = Vt,symp \ Ut. We denote

the closure of Ut in Vt,symp by Ut. Note that Ut and U c
t are compact.

Let dP( , ) be the distance on P. Then, we have the following.

Lemma 7.1. For an arbitrary ε > 0, there exists t1 > 0 such that
dP(ρt,0(x), ρ0,0(Φt(x))) < ε for any 0 ≤ t ≤ t1 and x ∈ Ut ⊂ Vt,symp.

Proof. Fix an arbitrary small t′1 > 0. Then, Ut consists of regular points of
f : (Mn(C)× C)//B → C for any 0 ≤ t ≤ t′1 and

⋃
0≤t≤t1

Ut is compact. As
noted in Lemma 4.1, |grad(�f)| is non-zero at regular points of f . Therefore,
there exists c > 0 such that |grad(�f)| ≥ c on Ut, for every t ∈ [0, t′1]. Thus,
the gradient-Hamiltonian vector field Z satisfies |Z| ≤ 1

c on Ut for t ∈ [0, t′1].
Since Φt is the flow of Z over a “time” t, we finish the proof. �
Similarly, we have the following.

Lemma 7.2. For an arbitrary ε > 0, there exists t2 > 0 such that
dP(ρ1,0(Ψ−1

t (x)), ρ1,0(Ψ−1
0 ◦ Φt(x))) < ε for all 0 ≤ t ≤ t2 and x ∈ Ut ⊂

Vt,symp, where Ψt is the map in (7.2) or (7.3).

Proof. This follows from “smoothness in initial conditions” results in the
theory of differential equations. Because the path γt is close to the path γ0

considered in Section 7.1 for small t > 0, the resulting diffeomorphisms Ψt

and Ψ0 are very close. Combining with Lemma 7.1, we finish the proof. �

7.4. Convergence to delta-function sections. For an m ∈ IntΔGC ∩
(tGC)∗Z, we have chosen m̃ ∈ ΔP ∩ (tP)∗Z such that ι∗(m̃) = m and defined
the holomorphic section σm

s by (7.6). From now on, we prove that, if we
choose t(s) appropriately for s ≥ 0, the section σm

s
‖σm

s ‖L1(Fsymp)
converges to a

delta-function section supported on the Bohr–Sommerfeld fiber μ−1
GC(m) as

s goes to infinity. Set, for 0 ≤ t ≤ 1, s >> 0,

τm
t,s =

χ̃∗
t,s
(ρ̃∗t,compσ

m̃)

‖χ̃∗
t,s
(ρ̃∗t,compσ

m̃)‖L1(Vt,symp)
∈ H0(LVt

symp, χ̃
∗
t,s
∂

Vt).
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Since

Ψ̃∗t τ
m
t,s =

Ψ̃∗t χ̃∗t,s(ρ̃
∗
t,compσ

m̃)

‖χ̃∗
t,s
(ρ̃∗t,compσ

m̃)‖L1(Vt,symp)
=

Ψ̃∗t χ̃∗t,s(ρ̃
∗
t,compσ

m̃)

‖Ψ̃∗t χ̃∗t,s(ρ̃∗t,compσ
m̃)‖L1(Fsymp)

,

we have Ψ̃∗t(s)τ
m
t(s),s =

σm
s

‖σm
s ‖L1(Fsymp)

, where t(s) will be defined in Lemma 7.5

below.
For a section φ ∈ Γ((LF

symp)
∗), we denote the push-forward of φ with

respect to the map Ψ̃t by Ψ̃t∗φ, which is a section of the line bundle (LVt
symp)

∗

for t > 0 or a section of (LV0
symp)

∗ restricted to some open dense subset of
V0,symp for t = 0. In what follows, we omit the notation for the volume form
when integrating on Fsymp or Vt,symp, since it is preserved by the maps Ψt

and Φt. First, we have the following:

Lemma 7.3. (1) For m ∈ IntΔGC, μT−1
GC
(m)∩V0,symp is a Bohr–Sommerfeld

fiber for (LV0
symp, h

V0 ,∇V0) if and only if m ∈ (tGC)∗Z.
(2) For m ∈ IntΔGC∩ (tGC)∗Z, there exists a covariantly constant section δm
of (LV0

symp, h
V0 ,∇V0)|μ−1

TGC
(m)∩V0,symp

and a measure dθm on μ−1
TGC

(m)∩V0,symp

which satisfy the following: for any φ ∈ Γ((LF
symp)

∗), there exists C1(s, φ) > 0
for s ≥ 0, such that lims→∞C1(s, φ) = 0 and

(7.7)

∣∣∣∣∣
∫

V0,symp

〈Ψ̃0∗φ, τm
0,s〉 −

∫
μ−1

TGC
(m)∩V0,symp

〈Ψ̃0∗φ, δm〉 dθm

∣∣∣∣∣ ≤ C1(s, φ).

Proof. (1) follows from Proposition 6.6 (2).
(2) follows from Proposition 6.6 (4). Since the number of points in IntΔGC∩
(tGC)∗Z is finite, we can choose C1(s, φ) independently of m ∈ IntΔGC ∩
(tGC)∗Z. �

We take Ut ⊂ Vt,symp as in Section 7.3. Then, we have the following.

Lemma 7.4. For each section φ ∈ Γ((LF
symp)

∗), the following holds:∣∣∣∣∣
∫

Fsymp

〈φ, Ψ̃∗t τm
t,s〉 −

∫
μ−1

TGC
(m)∩V0,symp

〈Ψ̃0∗φ, δm〉 dθm

∣∣∣∣∣
≤ C1(s, φ) + vol(Fsymp)‖φ‖C0(Fsymp)(‖τm

t,s‖C0(Uc
t ) + ‖Φ̃∗t τm

0,s‖C0(Uc
t ))

+ vol(Fsymp)‖φ‖C0(Fsymp)‖τm
t,s − Φ̃∗t τ

m
0,s‖C0(Ut)

+ ‖Ψ̃t∗φ− Φ̃∗t Ψ̃0∗φ‖C0(Ut).
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Proof. Fix arbitrary φ ∈ Γ((LF
symp)

∗). Then, we have

∣∣∣∣∣
∫

Fsymp

〈φ, Ψ̃∗t τm
t,s〉 −

∫
μ−1

TGC
(m)∩V0,symp

〈Ψ̃0∗φ, δm〉 dθm

∣∣∣∣∣(7.8)

=

∣∣∣∣∣
∫

Vt,symp

〈Ψ̃t∗φ, τm
t,s〉 −

∫
μ−1

TGC
(m)∩V0,symp

〈Ψ̃0∗φ, δm〉 dθm

∣∣∣∣∣
≤
∣∣∣∣∣
∫

Vt,symp

〈Ψ̃t∗φ, τm
t,s〉 −

∫
V0,symp

〈Ψ̃0∗φ, τm
0,s〉
∣∣∣∣∣

+

∣∣∣∣∣
∫

V0,symp

〈Ψ̃0∗φ, τm
0,s〉 −

∫
μ−1

TGC
(m)∩V0,symp

〈Ψ̃0∗φ, δm〉 dθm

∣∣∣∣∣ .
The second term on the right-hand side of (7.8) is estimated by (7.7). Next,
we estimate the first term on the right-hand side of (7.8)

∣∣∣∣∣
∫

Vt,symp

〈Ψ̃t∗φ, τm
t,s〉 −

∫
V0,symp

〈Ψ̃0∗φ, τm
0,s〉
∣∣∣∣∣(7.9)

=

∣∣∣∣∣
∫

Vt,symp

〈Ψ̃t∗φ, τm
t,s〉 −

∫
Vt,symp

〈Φ̃∗t Ψ̃0∗φ, Φ̃∗t τ
m
0,s〉
∣∣∣∣∣

≤
∣∣∣∣
∫

Ut

〈Ψ̃t∗φ, τm
t,s〉 − 〈Φ̃∗t Ψ̃0∗φ, Φ̃∗t τ

m
0,s〉
∣∣∣∣

+

∣∣∣∣∣
∫

Uc
t

〈Ψ̃t∗φ, τm
t,s〉 − 〈Φ̃∗t Ψ̃0∗φ, Φ̃∗t τ

m
0,s〉
∣∣∣∣∣

≤
∣∣∣∣
∫

Ut

〈Ψ̃t∗φ, τm
t,s〉 − 〈Φ̃∗t Ψ̃0∗φ, Φ̃∗t τ

m
0,s〉
∣∣∣∣

+ vol(Fsymp)‖φ‖C0(Fsymp)(‖τm
t,s‖C0(Uc

t ) + ‖Φ̃∗t τm
0,s‖C0(Uc

t )).

Finally, we estimate the first term on the right-hand side of (7.9). If we
note that

∫
Ut

|Ψ̃t∗φ| ≤ vol(Ut)‖Ψ̃t∗φ‖C0(Ut) ≤ vol(Fsymp)‖φ‖C0(Fsymp),∫
Ut

|Φ̃∗t τm
0,s| =

∫
U0

|τm
0,s| ≤

∫
U0

|χ̃∗
0,s
(ρ̃∗0,compσ

m̃)|
‖χ̃∗

0,s
(ρ̃∗0,compσ

m̃)‖L1(V0,symp)
≤ 1,
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then we have

∣∣∣∣
∫

Ut

〈Ψ̃t∗φ, τm
t,s〉 − 〈Φ̃∗t Ψ̃0∗φ, Φ̃∗t τ

m
0,s〉
∣∣∣∣

(7.10)

≤
∣∣∣∣
∫

Ut

〈Ψ̃t∗φ, τm
t,s − Φ̃∗t τ

m
0,s〉
∣∣∣∣+
∣∣∣∣
∫

Ut

〈Ψ̃t∗φ− Φ̃∗t Ψ̃0∗φ, Φ̃∗t τ
m
0,s〉
∣∣∣∣

≤ ‖τm
t,s − Φ̃∗t τ

m
0,s‖C0(Ut)

∫
Ut

|Ψ̃t∗φ|+ ‖Ψ̃t∗φ− Φ̃∗t Ψ̃0∗φ‖C0(Ut)

∫
Ut

|Φ̃∗t τm
0,s|

≤ ‖τm
t,s − Φ̃∗t τ

m
0,s‖C0(Ut)vol(Fsymp)‖φ‖C0(Fsymp) + ‖Ψ̃t∗φ− Φ̃∗t Ψ̃0∗φ‖C0(Ut).

By (7.7)–(7.10), we finish the proof of Lemma 7.4. �

Next, we introduce a function t : [0,∞) → R so that the holomorphic
sections σm

s converges to delta-function sections as s goes to infinity.

Lemma 7.5. There exists a strictly decreasing C∞-function t : [0,∞) →
R>0, where R>0 is the set of positive real numbers, with t(0) = 1 and
lims→∞ t(s) = 0 which satisfies the following: for any φ ∈ Γ((LF

symp)
∗),

there exists a constant C2(s, φ) > 0 with lims→∞C2(s, φ) = 0 such that∣∣∣∣∣
∫

Fsymp

〈φ, Ψ̃∗t(s)τm
t(s),s〉 −

∫
μ−1

TGC
(m)∩V0,symp

〈Ψ̃0∗φ, δm〉 dθm

∣∣∣∣∣ ≤ C2(s, φ).

Proof. First, we estimate the term ‖Φ̃∗t τm
0,s‖C0(Uc

t ) in Lemma 7.4. Due to
Proposition 6.6 (3), there exists C3(s) > 0 such that lims→∞C3(s) = 0 and,
for any t > 0,

(7.11) ‖Φ̃∗t τm
0,s‖C0(Uc

t ) = ‖τm
0,s‖C0(Uc

0 ) ≤ C3(s).

Next, we estimate other terms in Lemma 7.4. In Section 7.3, we fixed an
open set B ⊂ IntΔGC such that IntΔGC ∩ (tGC)∗Z ⊂ B and B ⊂ IntΔGC.
We set U0 = μ−1

TGC
(B) ∩ V0,symp ⊂ V ◦0,symp and Ut = Φ−1

t (U0). Now, we
also take an open set B1 ⊂ IntΔGC such that IntΔGC ∩ (tGC)∗Z ⊂ B1 and
B1 ⊂ B. Then, due to Proposition 6.6 (3), there exists C4(s) > 0 such that
lims→∞C4(s) = 0 and, for any s ≥ 0 and m ∈ IntΔGC ∩ (tGC)∗Z,

‖ χ̃∗sσm̃

‖χ̃∗sσm̃|V0,symp‖L1(V0,symp)
‖C0(Psymp\μ−1

TGC
(B1)) ≤ C4(s).(7.12)

Since ρ0,s = ρ0,0 : V0,symp → Psymp for s ≥ 0 by Proposition 6.5 (2), we
have

ρ0,s(U c
0) = ρ0,0(U c

0) ⊂ Psymp \ μ−1
TGC

(B1).
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Note that

lim
t→0

‖χ̃∗
t,s
(ρ̃∗t,compσ

m̃)‖L1(Vt,symp) = ‖χ̃∗0,s
(ρ̃∗0,compσ

m̃)‖L1(V0,symp) �= 0.

Since U c
t is compact, for each n = 1, 2, . . . , there exists tn ∈ (0, 1] which is

independent of φ and satisfies the following (7.13) holds for each s ∈ [n, n+1]
and t ∈ [0, tn]:

ρt,s(U c
t ) ⊂ Psymp \ μ−1

TGC
(B1),

‖χ̃∗
t,s
(ρ̃∗t,compσ

m̃)‖L1(Vt,symp)

‖χ̃∗
0,s
(ρ̃∗0,compσ

m̃)‖L1(V0,symp)
≥ 1
2
.(7.13)

By (7.12) and (7.13), we have, for each s ∈ [n, n+ 1] and t ∈ [0, tn]

C4(s) ≥ ‖
ρ̃∗t,s(χ̃∗sσm̃)

‖ρ̃∗
0,s
(χ̃∗sσm̃)‖L1(V0,symp)

‖C0(Uc
t )(7.14)

= ‖
χ̃∗

t,s
(ρ̃∗t,compσ

m̃)

‖χ̃∗
0,s
(ρ̃∗0,compσ

m̃)‖L1(V0,symp)
‖C0(Uc

t )

=
‖χ̃∗

t,s
(ρ̃∗t,compσ

m̃)‖L1(Vt,symp)

‖χ̃∗
0,s
(ρ̃∗0,compσ

m̃)‖L1(V0,symp)
‖τm

t,s‖C0(Uc
t ).

By (7.13) and (7.14), we have, for each s ∈ [n, n+ 1] and t ∈ [0, tn]
(7.15) ‖τm

t,s‖C0(Uc
t ) ≤ 2C4(s).

Moreover, due to Lemmas 7.1 and 7.2, taking smaller tn > 0 if necessary,
we may also conclude that the following (7.16) and (7.17) hold for each
s ∈ [n, n+ 1] and t ∈ [0, tn]:

‖τm
t,s − Φ̃∗t τ

m
0,s‖C0(Ut) ≤

1
n+ 2

for any m ∈ IntΔ ∩ (tGC)∗Z,(7.16)

‖Ψ̃t∗φ− Φ̃∗t Ψ̃0∗φ‖C0(Ut) ≤
‖φ‖C1(Fsymp)

n+ 2
for any φ ∈ Γ((LF

symp)
∗).(7.17)

By Lemma 7.4 together with (7.11), (7.15), (7.16) and (7.17), we have,
for each section φ ∈ Γ((LF

symp)
∗), n = 1, 2, . . . , s ∈ [n, n+ 1] and t ∈ [0, tn]∣∣∣∣∣

∫
Fsymp

〈φ, Ψ̃∗t τm
t,s〉 −

∫
μ−1

TGC
(m)∩V0,symp

〈Ψ̃0∗φ, δm〉 dθm

∣∣∣∣∣
≤ C1(s, φ) + vol(Fsymp)‖φ‖C0(Fsymp)(2C4(s) + C3(s))

+ vol(Fsymp)‖φ‖C0(Fsymp)
1

s+ 1
+
‖φ‖C1(Fsymp)

s+ 1
.
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We can take a continuous decreasing function t : [0,∞)→ R with t(0) = 1
and lims→∞ t(s) = 0 such that t(n) ≤ tn for n >> 0. Thus, we finish the
proof of Lemma 7.5. �
We use t(s) in Lemma 7.5 to define the complex structure Js by (7.5) and

the holomorphic section σm
s by (7.6). If we recall Ψ̃∗t(s)τ

m
t(s),s =

σm
s

‖σm
s ‖L1(Fsymp)

,

then we have

lim
s→∞

∫
Fsymp

〈
φ,

σm
s

‖σm
s ‖L1(Fsymp)

〉
=
∫

μ−1
TGC

(m)∩V0,symp

〈Ψ̃0∗φ, δm〉 dθm.

Due to Corollary 3.3, if we define a covariantly constant section δF
m of

(LF, hF,∇F)|μ−1
GC(m) by pulling δm on μ−1

TGC
(m)∩V0,symp back by Ψ̃0, then we

have the desired convergence in Theorem 2.1 (4).
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