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ON EXPONENTIALLY SMALL TERMS 

OF SOLUTIONS TO NONLINEAR 

ORDINARY DIFFERENTIAL EQUATIONS 

A. Tovbis 

ABSTRACT. The subject of the paper is exponential asymptotics, or in the other 
terminology, "asymptotics beyond all orders", to solutions of nonlinear ordinary 
differential equations. We present expressions for exponential corrections to the 
power series asymptotics of solutions under some generic assumptions on a given 
equation. We also discuss relations between exponential corrections and analytic 
properties of the Borel transform of the formal asymptotic series. In particular, 
we consider the Stokes phenomenon and show that the transition constant (the 
magnitude of the exponentially small "jump") is the same for all solutions which 
possess the same power series asymptotics in the considered region on the complex 
plane. 

0. Introduction 

We start the exposition with the following example. It is known (see [PRG], [GJ]) 
that the study of travelling wave solutions to the singularly perturbed fifth order 
Korteweg-de Vries equation 

e Uxxxxx + uxxx 4- 6uux 4-^ = 0 (0.1) 

is reducible to the study of solutions of the ordinary differential equation 

v"f,(x) + v"(x) + v2(x)=0, (0.2) 

which possess the asymptotics 

v{x)=0(x~2),    x->oo, (0.3) 

in any closed proper subsector of the upper half-plane S of the complex £-plane. 
Actually, the problem is to study the asymptotic behavior of v(x) near the real 

semiaxes. It turns out that the corresponding asymptotics contain respectively expo- 
nential terms cie™ and C2eix, where ci^ € C. These terms are exponentially small in 
any proper subsector of 5, but become oscillatory and therefore "detectable" near the 
real semiaxes. 

It is known that a solitary wave solution to (0.1) consists of the central core of the 
wave accompanied by co-propagating trailing oscillations. The constant C2 — ci, which 
we call the transition constant of the equation (0.2) in S, relates the amplitude and 
the phase shift of trailing oscillations and, therefore, is an important characteristic of 
the solitary wave solutions to (0.1) ([GJ]). 

The main results of the present paper, applied to the equation (0.2), are as follows: 
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a) The mappings ci,2: ^^ ^ C are global coordinates on the manifold \I>£ of the 
solutions to (0.2), satisfying (0.3); 

b) The transition constant c = C2 — Ci does not depend on v G $§; 
c) We present an explicit formula (see § 3.3 for the equation (0.2) and (0.7) for 

the general case) for the transition constant c. 

These results will be obtained for a system of nonlinear ordinary equations of the 
general type 

x1'rz'(x) = f(x,z),    x e C, z € C1, n, r G N, (0.4) 

which possesses a formal power series solution 

oo 

z(x) = Y^ ZkX-k/p,    n0,p e N. (0.5) 
k=no 

Here the vector-valued function f(x,z) is holomorphic at (oo,0) G C x Cn. 
In fact the existence of the formal solution (0.5) follows from a condition of the 

type (0.3), namely (see [T2]) from 

x1~rz,
N(x) - f(x, zN) = 0(x~  p   ),    x -> oo, 

where the number N G N depends on the equation (0.4). (Here SN denotes the first 
N terms of (0.5)). 

Once the formal solution (0.5) to (0.4) is fixed, one can define the characteristic 
exponentials of (0.4), related to (0.5) (see § 1.2). For example, the second Painleve 
equation (3.10) 

^"(a;) = 2v3 + xv + a,    a G C, 

has two characteristic exponentials a;~1/4e±^2/3^ related to the formal power series 
solution (3.11) with the leading term —a/x. The other two characteristic exponen- 

tials x^/^e^2V 2/3ia) are related to the other formal power series solutions with the 
leading terms ±^kx* (see [T2], § 4.2). 

In this paper we consider the equation (0.4) of the generic type, i.e. satisfying the 
following assumptions: 

a) The equation (0.4) is a one-level equation of some order i/, i.e. the character- 
istic exponentials of (0.4) are of the order v (see § 1.2); 

b) There exists only one characteristic exponential, which is decreasing in the 
considered sector S of opening TT/I/. 

In fact, this work is a generalization of [GM] to the case of nonlinear equations. 
Let ^s denote the set of the solutions z{x) of (0.4), which are holomorphic in every 

closed subsector of a given open sector S on the Riemann surface of In x for sufficiently 
large |x|, and which have the asymptotic expansion z{x) in every closed subsector of 
S. The latter fact is denoted by 

z(x) ~ z(x),    x —* oo, x G S. (0.6) 

It is known that ^s is nonempty if the opening of S is less than TT/U ([RS]) and that 
either (0.6) is convergent (has a nonzero radius of convergence) or $5 = 0 when the 
opening of S is sufficiently large. In fact, #5 is a complex analytic manifold, and 
the dimension of ^5 is equal to the number of characteristic exponentials of (0.4), 
decreasing (in modulus) in every closed subsector of S as x —► 00 ([T2]). 
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Let S denote a sector, where some characteristic exponential eq^ of (0.4) is de- 
creasing as x —» oo and let Xx" be the leading term of q(x). Then, according to 
the assumptions a) and b), the opening of S is equal to ir/u and the dimension of 
\I>£ is equal to one. In §1 we show the existence of two different global coordinates 

•Pi,2: ^s ^ ^ ^n ^act' Fi,2(z)heq(x\ where h G Cn is a certain constant vector and 
\\h\\ = 1, are the exponential terms which appear in the asymptotics of the solution 
z G tyg near the boundaries of 5. In the case v = r, for example, h is the eigenvector 
of the Jacobian matrix ^j(oo,0), corresponding to the eigenvalue A. In §2 we show 
that the transition function (p§ = F2 o F^1 is given by ^(a) = a + c, where c G C 
is the transition constant. Usually by the Stokes phenomenon we understand the fact 
that cpg ^ id. 

The characteristic exponential eq^ of (0.4) and the corresponding vector h could be 
derived from the equation (0.4) by some algebraic operations. However the evaluation 
of the transition constant c requires a principally different approach, since c depends 
transcendentally on the coefficients of f(x,z). 

Generally, q(x) is the sum of a polynomial of order u and of a logarithmic term b In x, 
where b G C. However let us assume that q(x) — \xv -f 61nx. This is not a restrictive 
assumption since there exists a holomorphic in x~~» change of the independent variable, 
reducing q{x) — b In x to \xv. In §3 we show that 

ch=-2m    lim   (pI/ + A)C1fc~6^)](p)) (0.7) 

where C~l is the inverse v-Laplace transform (see §2) of a certain solution z G \P£. 
Here the constant b and the vector h are uniquely determined by (0.4). The choice of 
the root of —A depends on the sector S. 

Under the assumption a) the inverse z/-Laplace transform C~lz is holomorphic at 
the origin ([T3]). Therefore one can simply use the formal v-Borel transform Bv to 
construct £~l[x~hz(x)). This remark justifies the evaluation of Stokes constants via 
the v-Borel summation (which was utilized, for example, in [PRG], [GJ], [HM], etc.) 
in the case when C~lz is holomorphic in the disk \p\ < |A|^. 

1.  Boundary behavior 

1.1. Prenormalization. In this subsection we derive the linear part of (0.4), which 
determines the behavior of solutions at x = 00 (see [T2]). In the following, for any 
square matrix B, diagl? denotes the diagonal matrix with diagonal entries coinciding 
with those of B. 

Let us consider the matrix linear differential equation 

x^Y'ix) = A(x)Y(x),    r G N, (1.1) 

where the matrix-valued function A(x) is holomorphic at infinity. 

Theorem 1.1 ([KT], [Tl]). There exists some po G N; such that for any £ G N the 
equation (1.1) is reducible to 

x^Z'ix) = [B(x) + o(x-c)]Z(a;),    x -» 00, (1.2) 

by means of the transformation Y(x) = T(x)Z(x). Here the matrix B(x) (which 
does not depend on £) is upper-triangular and polynomial in x"1'730, and the order 
of diaLgB(x) does not exceed rpo.   The matrix T(x) (depending on () is polynomial 
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in :E
-1

/
PO, detT(cx)) ^ 0 and we can always assume that HT^^oo)!! = 1, where T^ 

denotes the j-th column of the matrix T. 

The equation (1.2) is called a triangular form of (1.1). Triangular forms of holo- 
morphic matrix-valued functions with respect to similarity transformations were con- 
sidered in [Fr]. Generally, the triangular form (1.2) is not uniquely determined. How- 
ever it is easy to show (using, for instance, the theory of formal invariants of (1.1), 
see [BJL]) that the collection of diagonal entries {b^x)}^ of B(x) are uniquely de- 
termined modulo 0(x~r). The following Corollary demonstrates the uniqueness of 
diagjB(a;) under a certain generic assumption. 

Corollary 1.1. For all j > 2, let 

hix) =£ &J-(ay)modO(arr). (1.3) 

Then the first diagonal entry bi(x) of the triangular form (1.2), and the corresponding 
vector T^l\oo), are uniquely determined. 

Proof. Suppose matrices B(x) and B(x) correspond to different triangular forms (1.2) 
of (1.1), so that bi{x) ^ bi{x) but bi(x) = bi(x)modO{x-r). Then for any C there 
exists a polynomial in x"1/^0 matrix T{x), so that T(oo) is an invertible matrix and 

f{x)B{x) = B(x)f(x) - x1-rf\x). (1.4) 

The equation for the (n, l)-th entry of (1.4) is 

t'n^x) = Xr-1 (bn(x) - hixfyn^x) + O^"^"1), 

where tnA denotes the (n, l)-th entry of T. This differential equation may have a 
nontrivial polynomial in a:"1/po solution only if bn(x) = b1(x)modO(x~r). However, 
this contradicts (1.3) and our assumption. So, tntl = 0. By the same arguments we 
get ^,i = 0 for all j > 2. 

Let 6i(x) - hix) = P/x, where /3 G C. Then for the (l,l)-th entry of (1.4) we get 
^ 1 = pt^i/x + o(x-c^r~1). The invertibility of f(oo) implies £1,1(00) ^ 0. One can 

easily check that /? = 0 is the necessary condition for £1,1(00) ^ 0. So, bi (x) = bi(x). 
Let T(x) and f(x) denote the matrices which reduceo (1.1) respectively to the tri- 

angular forms, considered above. Then T(x) = f(x)fo(a;). The vector T^oo) is 
parallel to T(1)(oo), since all the off-diagonal entries of fM(x) are equal to zero but 
f (^(oo) / 0. Now the fact that ^^(oo)!! = ||f (1)(oo)ll = 1 completes the proof.    □ 

The following example shows that one cannot omit the condition (1.3) in Corol- 
lary 1.1. 

Example 1.1. The differential equation 

has two different triangular forms (1.2), where 

*M=(t i+-«r)- 
Here a is either of the two roots of the quadratic equation a(a - 1) - 1 = 0. 
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In order to simplify the following exposition (and without any loss of generality) 
we will assume both in Theorem 1.1 and in the formal solution (0.5) of (0.4) that the 
denominators p,po are equal to one. 

Let deg of a series in negative powers of x denote the exponent of the highest 
power of x occurring in the series; we set deg a(x) = — oo if a(x) = 0. Let us denote 
77 = 2n(r + 1) -f 6 — 1, where 8 € Z+ is to be defined below. Then by the change of 
variables z H+ Z 4- Ylno zkx~k wfth zk as in (0.5), we obtain the inequality 

deg/(:r,0)<-(77 + l) 

for the new free term /(x,0) of (0.4). Now by means of Theorem 1.1 we can assume 
that the Jacobian matrix ff 1^=0 is in the triangular form B(x) + o(x~^)^ where we 
set C = (n — l)(r + 1) + 1. This does not affect deg/(a;,0) since ^(oo) is invertible. 

The last step of our reduction is given by the so-called "shearing transformation" 
z{x) = S(x)y(x) (see [Wa], §19), where 

S(x) = diag(ar^+1>-*,... ,x-(2n-lKr+V-6). 

Then the equation (0.4) is reduced to 

y' = P(x)y + f(x,y), (1.5) 

and one can directly check that: 
a) f(x^y) is holomorphic at (00,0) € C x Cn; 
b) deg/>,0)<-2; 

c) degfJ|v=o<-2; 
d) the coefficient of any higher order monomial (in entries of the vector y) of 

/(a;, y) has degree not more than —2 — 6; 
e) xP(x) is a diagonal matrix which is polynomial in x of order not more than 

r. The free term of xP(x) is equal to Br + [n(r + 1) + 8]I + diag(0,7' + 
1,..., (n — l)(r +1)), where / is the identity matrix and Br = diag(&i,..., bn) 
is the leading coefficient of the polynomial (in re-1) diagi?(a;). We choose 
the minimal 6 € Z+, such that the entries of the free term of xP(x) have 
nonnegative real parts. 

The equation (1.5) is called & prenormalized form of the equation (0.4). In what follows 
we use the notation ^5, whenever it does not lead to any confusion, to denote the 
corresponding sets of solutions to both the original and the prenormalized equations. 

1.2. Volterra-type integral equations. The equation (1.5) can be considered as 
a perturbation of the linear equation y' = P{x)y and hence can be written as 

y(x) = eQW(c+ I     e-QWf(t,y)dt) (1.6) 

where Q!{x) — P{x), C € Cn and T(x) is a collection of n individual contours of 
integration for each entry of the vector integrand. The contours T^x) of r(a;) have 
the common endpoint x. 

The entries qj(x) of the diagonal matrix Q(x) consist of polynomial and logarithmic 
parts. Let J denote the set of indicies j, such that qj(x) has a non-trivial polynomial 
part, and let \jXUj, where X3; € C \ {0} and i/j € {1,... ,r}, denote the leading term 
ofqj. 
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Definition 1.1. The exponentials eq^x\ where j € J, are called characteristic expo- 
nentials of the equation (0.4). 

Definition 1.2. A ray r, issuing from the origin, is called a Stokes ray of the equa- 
tion (0.4) if ^(XJX^) = 0 when x G r. 

Let 5 be a sector of opening less than TT/Z/, where u = maxj^j Vj, in the complex 
plane. We assume the boundary rays of S are not Stokes rays of (0.4). With any 
such S in [T2] we associate the subspace Ls € O1 and the collection of contours 
Fs(x) = {rs(2;)}j=1 (which may depend on C G Ls, see below), so that the following 
statement is true. 

Theorem 1.2 ([T2]). a) The set of solutions of (1.6), where C G Ls and r(x) = 
Ts(x)f coincides with ^si 

b) The dimension of the manifold ^s is equal to the number of characteristic ex- 
ponentials decreasing in S as x —► oo; 

c) The equation (1.6), where T(x) = Ts(x) and C £ Ls are fixed, has a unique 
solution y(x). This solution can be represented as 

oo 

y(x) = J2w3(x)> (1-7) 

w/iere ^j(rr) = yj(x) — yj-i(x), yo(x) = 0 and 

%(*) = e<K*>(c+ /       c-QW/(*,»i-i(*)) *)- (1-8) 

TAe 5nm (1.7) converges uniformly and absolutely in the sufficiently remote part of S. 

The assumption a) from the Introduction means that 7^0 and i/j = v for all j (E J. 
According to the assumption b) and without any loss of generality we can assume that 
the exponential eXlxl/ is the only exponential from among the eXjxU (j G J) decreasing 
in the sector S = {x : 0 < argx < ^}. By S and S we denote small perturbations of 
5, such that S is a proper subsector of 5 and that 5 contains the ray argx = 0. We 
also assume that the opening of S is less than TT/Z/, that S D S and that no Stokes 
rays are contained in S \ S. 

For any XQ € S we introduce a closed subregion 

Sxo=U-1oJiXooUt/{S)9 

where the transformations nu, u > 0, and Ef, £ € C, are defined by 

nn: x h-» a;u;     E^ : x h-> x + ^. 

For an arbitrary point a: € 5 the j-th. contour T^(x) of the collection r(x) = Tg(x) 
is defined as a ray, issuing from x, such that T^(x) C 5^0 and e~qj^ is decreasing 
along rj(a;). In this case Lg = {0}, and (1.6) has a unique solution. It is clear 
that the directions of contours T^(x) can be slightly changed preserving the values 
of corresponding integrals. Then, since the opening of S is less then TT/I/, one can 
directly show the existence of some a > 0, such that for any XQ G S, X G SXO and any 

\x\>a\xo\,    \t\>a\x\. (1.9) 
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Let now xo € 5, x 6 5x0 • Thfen we define the collection T(x) as coinciding with f (x) 
except for the contour r1(x). (Note that we can deform any contour F-7^), j > 1 so 
that t^x) C SXo.) The exponential e"""91^ is increasing in the whole 5, and therefore 
f1(a;) is to be a finite contour. We choose it as the segment [xo,x] (see [Wa], §14.3 
for details). The subspace L§ is spanned by the first coordinate vector. According 
to the theorem of analytic dependence on the initial data and to the assertion a) of 
Theorem 1.2, the first entry C(i) of the vector C is a local coordinate on the manifold 
\I>£ in a neighborhood of the solution to the corresponding equation (1.6). 

1.3. Boundary curves. The objective of §1 is to study the behavior of solutions 
of \I/£ on the boundary Stokes ray r. The following simple example illustrates some 
difficulties related to this problem. 

The functions y(x) = ±i and y(x) = tan(a; + c), where c € C, represent all solutions 
of the scalar equation yf{x) = 1 4- y2(x) of order i/ = 1. Any solution y(x), except 
y(x) = —i, admits the asymptotic expansion 

y(x) ~ i,    x —> oo, x E 5, 

so it belongs to *$!§. However in the case c G M the function tan(x + c) has infinitely 
many poles, which are accumulating to x = oo, on both Stokes rays argx = 0 and 
arga; = TT. 

This example shows that generally a solution y € *&§ may have very complicated 
behavior on the boundary Stokes ray arg:r = 0. Granting this fact, our approach is 
to study the asymptotics of y E ^g along a certain curve £, such that argx —> 0 as 
|a:| —► oo, x E L 

For any given M > 0, /x > 0 we define the curve £ = €(/x, M) by the equation 

\eqiW\=M\x\-il, (1.10) 

where argrc is assumed to be bounded. Let us represent 

Qi(x) = Aix,/ + ^ajbeWfcxI/"'*: +aI/lnx 
A;=l 

where a& > 0, 0 < Ok < 27r, a^ E C. Moreover, Ai = 2|Ai| since e91^ is decreasing in 
S. Then (1.10) can be represented as $lqi(x) — InM — /xSRlna; or 

v-l 

-1 Ai I//" sin i/0 + ^ ajfep"""* cos((i/ - fc)^ + 6>fc) + (Ra^ + /x) In p - ^Qfa^ - In Af = 0, 

where x = pe2^. The assumption that </> is bounded implies Irnip.+oo <t> = 0. Then for 
sufficiently large p we get 

E^i ^fePl/~fc cos 0k + (»ay + /x) In p - In M 

~  IMW/T + Eteif17 - tyakp"-* sinOk + %<!„ ' 

which implies 0 = ^(p-1) as p —> oo. (Moreover, if all the coefficients of the polyno- 
mial part of qi(x) are purely imaginary, then 0 = 0(~£) as p —> oo.) 
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1.4. Behavior of solutions along I. Let S denote the part of S which is bounded 
by I = £{M,[i) from below (we assume £ C 5), XQ € 5 and S^ = ^ U 5. Then for 
any x G SXQ the collection of contours Ts(x) is defined as coinciding with T(x) except 
for the first contour T^x). This contour is chosen as the union of: the segment of 
f 1(a;) from the point x to the point £(x) = f 1(x) fl £; the part of the curve £ from 
€(x) to infinity. The following Theorem 1.3 is in a sense an extension of Theorem 1.2 
to the curvilinear sector 5. 

Theorem 1.3. For any M > 0 and fj, G (0,1) the equation (1.6), where T(x) = Ts(x) 
and C £ L§ is fixed, has a unique solution y(x), which possesses the asymptotics 

y(x) - eQ(<x)C = OOzT1),    x -> oo, x e S. (1.11) 

Moreoverj this solution can be represented by (1.7), (1-8). For any sufficiently remote 
point XQ G S the sum (1.7) converges uniformly and absolutely in Sxo. 

Proof. The properties of the integral operator, occurring in (1.6), were studied in [Wa], 
§14. Using Lemma 14.2 from there and the property (1.5), b), we get 

||t!;1(aOII<£M~/4,    xeSXo, 

for some XQ G S, where \xo\ is a sufficiently large number. Here Wj{x), j G N, are 
defined by (1.8) and B = 2M(||C||). 

The assertion of the theorem is a consequence of the estimate 

IKfiWII < ^IKWII,   xesx0, (1.12) 

which holds for some K, XQ G S and all j G N. We prove (1.12) by induction using 
the properties of / and the following known statement. 

Statement 1.1. Let h(x): Cn H-> C71 be a holomorphic mapping in a neighborhood 
of 0 G C1 and let h(x) contain no constant and linear terms. Then there exists 
a disk Vp = {x G Cn : ||:r|| < /?}, where /? > 0, and a matrix-valued function 
H(y, z):V0^ Cn   so that H(y, z) is holomorphic in Vp and for any y, z G Vp 

h(y)-h(z) = H(y,z)(y-z). 

Moreover \\H(y, z)\\ -> 0 as & -> 0 uniformly for all y, z G T^j, where /3i < f3. 

Let ik G N and let (1.12) hold for any positive integer j < k. Without any loss of 
generality we can assume that \xo\ > 2Ka~1

1 so ||2/j(x)|| < 2J9|X|~
/Z
 for any x G SXo. 

Then by virtue of Statement 1.1 the estimate 

ll/>,%) - /(*, w-i)ll < i§rlKII.   J<k,xe SX0, (1.13) 

follows from the properties (1.5), a)-d). Here the constant Ki > 0 depends on B but 
does not depend on |:co|5 as \xo\ —> oo and argxo = const. 

Now, to get the estimate (1.12) for j = k one needs to combine (1.13) with 
Lemma 14.2, [Wa]. Let us however note that the integral along F^x) needs a special 
consideration since it is not the subject of Lemma 14.2. According to (1.10) and (1.13) 
the integral along £ from £(x) to oo times eqi^ does not exceed 

1-//   ItfaOl   ' 
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This remark together with (1.9) completes the proof.    □ 

Remark 1.1. Theorem 1.3 is true under various weakenings of the restrictions a), b) 
from the Introduction. For instance, a) can be simply dropped. However this causes 
a considerable complication of the proof. 

Remark 1.2. For a given fi e (0,1) the constant K = K{B) in (1.12) is completely 
determined by B. So, the estimate (1.12) is uniform for equations (1.6), where r(a;) = 
rs(x),CeL5and||C7||<^. 

Remark 1.3. Let us represent the vector C from (1.6) as the sum of some absolutely 
convergent series C — Y^jLi Q' ^e can introciuce Wj — Vj ~ Vj-u where y^ = 0 and 

Vj 
oQW" fEc'*+/     e-«W/(t,%-_i(t))d«l,    j>l. (l.H) 

Then the series Y^jLi W^j^W converges uniformly in SXo for some sufficiently remote 

point XQ 6 S, and their sum is equal to (1.7). Moreover Y^jLi wj(x) — Sjli Wji00)- 
The corresponding assertion can be extended to an arbitrary contractive operator in 
a Banach space. 

Remark 1.4. The contour F^rc) is defined via the boundary curve £(//, M). However 
for a given C G Lg the solution of (1.6) does not depend on the particular choices of 
M > 0 and // G (0,1). Indeed, according to (1.12) the variation of F^rc), caused by 
the corresponding variation of M and /x, does not affect the terms Wj(x) of (1.7) (but 
may increase the corresponding value of |a;o|). 

Theorem 1.4. The set of solutions of (1.6), where T(x) = Tsix) and C G L§, 
coincides with ^§. 

Proof. Let y(x) satisfy (1.6) for some C G L§ and T(x) = rs(a;). Then y{x) is also 
the solution of (1.6), where T(x) = r(a;) and C = C G Lg.   Here the collection of 

o o 

contours r(a;) is determined by some sufficiently remote point XQ G 5, and 

Ai) = C(i) + / e-qiit)f(i)(t,y)dt, (1.15) 
Jrl

s(xo) 

where a subindex in brackets here and henceforth means the corresponding entry of a 
vector. Hence, according to Theorem 1.2, y(x) G ^§. 

To prove the opposite inclusion let us assume that y(x) is the solution of (1.6), 
where T(x) = r(x) and C = C G L§. Then, according to Theorem 1.2, y(x) can be 
formally represented as (1.7), where 

ytix) = e«<*>([<7+ / e-Wfeyj-Jdt] + /       e-Wf^yj^dt), 
V Jr(x)-Ts(x) JTs(x) (/j6) 

or as (1.14), where ijj = yj and 

Ck= f e-QM{f{t,yk-i) - f(t,yk-2)}dt,    k > 1. (1.17) 
Jt(x)-Ts(x) 
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So, according to Remark 1.3, it remains to show the existence of the integrals (1.17) 
and the convergence of YlkLi Ck, where 

&=&+ [ e-QWf(t,0)dt. (1.18) 
Jt(x)-Ts(x) 

Let B = 2M\\C\\a-fJ' and K = K(B), and let |a;o| be so large that 

where ^ = 1 + cr"1. Under these assumptions, by induction we can easily prove 

\\wj+i(x)\\ < (j^x) B\x0\-^   j e N, x e SX0, (1.20) 

where the Wj are defined in Remark 1.3. Indeed, by virtue of (1.9), in the same way 
as in Theorem 1.3 we get 

\\wi(x)\\<B\x0\-». (1.21) 

Let now k € N and let (1.20) be true for all j < k. Then (1.19) implies \\yj(x)\\ < 
2jE?|a;o|~M for any x E SXo. Therefore the estimate (1.12) is applicable to both integrals 
in (1.16), so 

\\wk+i(x)\\ < £-A\wk(xo)\\ + 7z\\Mx)\\. (1-22) 
Fo| \x\ 

The inequality (1.20) for j = k and thus for all j G Z+ follows from (1.9), (1.21), 
(1.22) and the inductive hypothesis. 

The estimate (1.20) implies the existence of the integrals in (1.16) and the conver- 
gence of XXiC*. 

Let us return to the assumption (1.19). The solution y(x) of (1.6), where T(x) = 
f(x) and C = C E L§, satisfies e~qi^Xo>)y^i)(xo) = C(i). Hence, the constant C(i) = 
C(i)(xo) may increase exponentially as the point XQ is directed to infinity within 5, 
and therefore may cause the corresponding increase of K{B). To avoid this difficulty 
let us vary the curve £ = £(M(:co)5^)j where the constant M(XQ) is determined by 

M(:ro)||C(so)||=oB.- 
A point XQ € S belongs to the sector S, determined by the curve £(M(£o), y), if and 

only if le^^l < M{XQ)\XQ\-^. This inequality is equivalent to |b(i)(xo)|| • \XQ\^ < J5, 

which for any sufficiently remote point XQ E S follows from (1.11). So y{x) satisfies 
(1.6), where the contour F^x) is determined by the corresponding curve £(M(a;o), /x). 
It follows now that Remark 1.4 completes the proof.   □ 

2. Transition function 

2.1. Stokes phenomenon for nonlinear equations. Let us consider a sector 5, 
bounded by two successive Stokes rays T\ and T2, which corresponds to the exponential 
eQi(x). Let eqi^ be decreasing in S and let the curves £i and €2 be defined by (1.10), 
where M > 0 and /x E (0,1), with respect to the rays n and T2 correspondingly. 
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Corollary 2.1. There exist two one-to-one correspondences Fji *$!§ h-* L^; j = 1,2, 
such that 

y(x) = e^^Fjiy) + O^"1),    x -+ oo, a; G % (2.1) 

iifere 51,2 ^ a dosed sectorial region, bounded by ii^ from below (above) and by an 
arbitrary inner ray of S from above (below). 

This corollary is a direct consequence of Theorems 1.3 and 1.4. Let Fj = PFj, 
where P: Cn •-» L§ is the projector orthogonal to all but the first coordinate vectors 
of Cn. The functions Fj can be considered as global coordinates on tyg, i.e. they 
present "natural" parametrizations of #£. 

Let us define the transition function y?^: C —► C by (p§ = F2 o F^1. It is possible 
to show that the fact that (fg = id for all eqj, j G J in all corresponding sectors S is 
equivalent to the convergence of the formal power series solution (0.5) of (0.4). 

Statement 2.1. The transition function ^^(c) is a linear function. 

Proof. Let us first show the analyticity of i^1, j = 1,2, at an arbitrary point c G C. 
For F^ic) this fact can be shown by applying Theorem 1.3 to the equation (1.6), after 
(1.6) has been differentiated with respect to the parameter c = (7(1). The analyticity of 
Fj follows from the analyticity and univalence of F"1 (we consider the local coordinate 

on *£ given by (1.6) with some XQ G S^T(X) = r(x), see §1 for notations). Then the 
statement follows from Corollary 2.1 and from the fact that linear functions are the 
only entire schlicht functions.    □ 

The free term c of the transition function 

ipg(z) = az -f c (2.2) 

is called the transition constant of (1.5) in the sector 5. In this section we show that 
a = 1 and give an explicit formula for the transition constant c. 

2.2. Evaluation of c by means of the inverse Laplace transforms. Let XJX" 

be the leading terms of qj(x)i j G J, and let ^X] = |Ai|
1/,'ei(ar**'-*>. By U 

we denote the complex p-plane with the cuts from points xj—\je~!^~, j G J, k = 
0,..., v — 1, in the directions aigp = ^(argAj + (2k — IJTT) respectively. 

In what follows we use the standard direct and inverse i/-Laplace transforms defined 
by the formulas 

{CvY(p))(x) = v        e-xUP"pv-1Y{p)dp (2.3) 

{C-ly{x)) (p) = £-. J e""*V-1^*) dx (2.4) 

respectively. Here the contour 70 = 111/^(7), where 7 is a vertical line in the right 
halfplane and nu(rr;) = xu. Note that £±1 = Cf1 are the usual direct and inverse 
Laplace transforms. 

Let i? be an arbitrary sector with opening more than n/v and y G *£§. Then by 
£~17/ we mean the integral (2.4) along the contour 70, turned around the origin in 
such a way that 70 C S. 
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Theorem 2.1 ([T3]). Let (0.4) be a one-level equation of the order v and y G ^§. 
Then Y(p) = [C^y^p) is holomorphic in U. 

Remark 2.1. The fact that Y(p) is holomorphic at p — 0 implies Y{jp) — [^^](p), 
where Bv is the formal ZA-Borel transform. Hence Y(p) does not depend on the choice 
of S. 

Remark 2.2. In what follows for the sake of simplicity we assume that qx[x) — 
\\xv + din x, where d — b\ + n{r -f 1) + b. This is a non-restrictive assumption which 
can always be achieved by an appropriate change of the independent variable x. 

Theorem 2.2. Let (1.5) be a prenormalized form of the one level equation (0.4) of 
order v, and let the characteristic exponential eqi^ be decreasing in the sector S of 
opening J.  Then the corresponding transition constant can be given as 

c = -2m    lim    {pu + AiJ^jCp), (2.5) 

where Y(i){p) = [C~1x~dy^(x)](p)f and the limit in (2.5) is taken along any direction 
which is nontangent to the cut issuing from the point \J—\\. Here and henceforth the 
choice of the root is determined by the sector S. 

Proof. Let y G ^§. Then Theorems 1.2, 1.3 and Corollary 2.1 imply 

F2{y)-Fl{y) = f e-x^t-df{l)(t,y)dt, (2.6) 

where the contour 7 consists of the part of t,i from infinity to some fixed point £1 € ^1, 
followed by a path from £1 to some £2 £ ^2 and then along ^2 to infinity. 

Now the assumption Fi{y) = 0, according to (2.2) and (2.6), implies 

c = F2(y) = c(^-\ll (2.7) 

where 

c(p)= /e^'V'/u) (*,»)*• (2-8) 

On the other hand the assumption Fi(y) = 0 implies y G ^5, where S D S and the 
opening of S is greater than J. Then y(x) satisfies the integral equation (1.6), where 
r(x) = Tg(x) and C = 0, and so 

x-dy(i)(x) = ex^ f   e-x^t-df(1)(t,y)dt. 

Applying the transformation C^1 in the sector S we get after some calculations 

-KP" + Xi)Y{1)(p) = ^-"-"^/(DftyJlOO. (2.9) 

(For the sake of transparency in what follows we assume that S is bisected by the 
positive real semiaxis. Then —Ai > 0 and >/—Ai = lAil1/^.) 

Theorem 2.1 asserts the holomorphy of the right hand side of (2.9) in some region, 
which contains the interval (0, y/— Ai). Let us show that for any PQ G [0, >/—Ai] 

-^      Hm      C-1[t-d+1-fil)(t,y)}(p) = c(po), (2.10) 
arg(p-po)=/3 
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where (3 G (0,7r). 
Indeed, the assumption Fi(y) = 0 together with the properties (1.5), b)-d) and 

Theorem 1.3 imply 

f(t1y) = 0(x-2),    x—>oo, x€SUS, (2.11) 

where the closed sectorial region S is bounded by the curve 7 and is situated on the 
right of 7. 

Let us fix some p which is sufficiently close to po and with arg(p - po) G (0,7r). 
Let us divide the corresponding contour 70 from (2.4) into two parts 70 = 7o" U 7^, 
where 7^ C S\S, JQ C S (here only the infinite parts of the contours are considered). 
Then, according to (2.11), the contours 7 and 70 of the integrals (2.8) and (2.9) can be 
deformed into 6 = 7^ U £2, preserving the values of the integrals. Then (2.10) follows 
from the dominated convergence theorem. 

Now, (2.7) - (2.10) and Theorem 2.1 imply 

cOpo) = -27rt(pS + \i)Y{1)(po), (2.12) 

where po G [0, >/-Ai). According to Remark 1.4 we can always assume that 7 C S. 
Then limpo_ y^clpo) = c(^AD follows from the inequality \e-XlxU\ > |ep^"| 
when x G 7. Then (2.10) also holds when /3 = TT. 

We can now choose another y G ^g so that JF^y) = 0 and similarly show that 
-Fi(2/) = c(lf->^) and that (2.10) holds for /? G [7r,27r). Then (2.5) follows from 
(2.7), (2.10).    □ 

Let us define the asymptotic difference A^y^(x) of y(i)(x) in the sector S as the 
difference in asymptotics of y(i)(x) along the curves £2 and £1. 

Corollary 2.2. For any y G $$ the asymptotic difference A§y^)(x) = eqi^c. That 
is to say, the transition function (p§(z) = z -f c. 

Indeed, Corollary 2.2 follows from the fact that ^(t/) = 0 implies Fi(y) = -c (see 
the end of the proof of Theorem 2.2). 

Remark 2.3. For any d such that 3M > 0, the limit (2.10), where /(i)(£, y) is replaced 
by f(t,y), exists and is equal to the corresponding constant (depending on po) vector. 

3. Evaluation of Stokes constants. 

3.1. Formulae for Stokes constants. Let z{x) be the formal solution of the orig- 
inal equation (0.4) and let y{x) be the formal solution of the corresponding prenor- 
malized equation (1.5). Then 

*(*) " E ***"* = nx)S{x)y{x), (3.1) 

where the number 77 and the matrices T{x) and S{x) were defined in §1. 
Let y G ^§ be a solution of (1.5). Then 

Z{x) = ^ ^^-fc + nx)S{x)y{x) (3.2) 
it=i 
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is a proper solution of (0.4) admitting the asymptotics z(x) in S. According to (2.1), 
the asymptotic difference 

Asz(x)    =   T(x)S(x)eQ^[F2(y)-F1(y)) + 0(x-n^1^6-1) 

=   cT^\x)e^^ +0(x-n(r+1)-^-1)7 (3.3) 

where c is the corresponding transition constant and T^^rc) is the first column of 
T(x). According to Remark 2.2, 

ftfaO = 9i W - NC7* + 1) + 5]lna; = Aix" + 6i In re, (3.4) 

where 6i is defined in (1.5), e). So 

A^z(x) = (C + o(l))a;6leAi:cl/ + 0(arn<r+1>-'-1), (3.5) 

where (7 = cT^^oo) = ch, and ||/i|| = 1, see Theorem 1.1. Moreover, according to the 
assumption b) from the Introduction and to Corollary 1.1, both hi and h are uniquely 
determined. 

Definition 3.1. The vector C = Col(C?i,... ,Cn) is called the vector of Stokes con- 
stants of the solution z(x) of (0.4) in the sector 5. 

According to (1.10) 

xb*eXlxV = 0(a;-n(r+1>-*-'4),     x -> oo, a; G 4,2. 

Since /x G (0,1), the exponential term CxbleXlxU is the leading term of A§z(x) near 
the boundaries £1^2 of S as re —> oo. 

Remark 3.1. The change of variables z(x) i-» ^(rr) -f X]fc=i zk%~ki where A^ G N, in 
the equation (0.4) does not affect the exponential term CxbleXlxU 

For a scalar function u(x), holomorphic in some sector S of opening more than ir/u, 
we introduce the operator 

Tlu = -27ri    lim    (p^ + Ai)^"1^]^), 

where the limit is taken in the sense of Theorem 2.2. It is clear that IZy = 0 if C^y 
exists and is continuous at p = \/—Ai. 

Theorem 3.1. Le^ ^Ae characteristic exponent eqi^ be decreasing in the sector S of 
opening -K/V. Then the vector of Stokes constants of the solution z{x) in S is given by 

C = n[x-blz{x)]. (3.6) 

Remark 3.2. According to Remark 3.1, we can always assume the existence of 
n[x-b^z(x)} 

The following Lemmas precede the proof. 

Lemma 3.1. IfTly exists, then 1Z(y/xa) = 0 for any a > 0. 
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Proof. Assume that v = 1. The existence of IZy means 

np) = ^(p + Ai)-1+o(p + A1)-
1,    p-^-Ai, 

where Y = C~ly. Then we need to show 

lim   (p + A1)[r(p)*p«-1] = 0. (3.7) 

Let us fix some small e G C and represent the convolution as 

Y(p)*p°'-1 = [JP e + JP jytrXp-T)0-1 

It is easy to check that only the second integral is actually of interest here . 
Without any loss of generality one can assume that -Ai,e > 0, p G (0, — Ai). Let 

S = -(Ai +p) > 0. Then in fact (3.7) follows from 

r6+e    g.a-1 
lim S / da = 0. 

This assertion is a consequence of the estimates 26(6 + £)Q!~1|ln25| in the case a > 1 
and 26a\ln26\ in the case a G (0,1). 

The case v ^ 1 can be reduced to the considered one.   □ 

Lemma 3.2. If j ^ 1, then TZy^j) = 0. 

Proof. The solution y G ^5. Hence y(j){x), j G {l,...,n}, satisfies the integral 
equation 

y^ix) = e^+M f.     e-W-Mfofry)dt, (3.8) 

where qj(x) is a polynomial of degree less than u, which may also contain a logarithmic 
term. The equation (3.8) can be represented 

= i4i(a;) + A2(a?), (3.9) 

where /(#) denotes the integral in (3.8). 
Now, by means of integration by parts we get 

C;1A1=-(p" + \j)-
1£;1[x1-»f{j)(x,y)}. 

Then, according to Remark 2.3, j ^1 implies TlAx = 0. The fact that 'JIA2 = 0 follows 
from Lemma 3.1 since deg ^'(a:) < 1/ — 1. Finally, the remark 1Zy(j) — V^Ax +7^2 = 0 
completes the proof.    □ 

Proof of Theorem 3.1. Using Remark 3.1 and Lemma 3.2 we get from (3.2) 

7Z[x-blz(x)} = n[x-blT(x)S(x)y(x)} = n[T^\x)x-bl'n^+1^sy(1)(x)]. 

Then, according to Remark 2.2, Lemma 3.1 and Theorem 2.2, 

n[x-b^z(x)}=T^(oo)n\x-dy{l)(x)} = C.   D 

Remark 3.3. By the same technique one can evaluate the higher order terms of A^z. 
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3.2.  Stokes constants for Painleve II.    Let us consider the well-known second 
Painleve equation 

v"(x) = 2v3 + xv + a, (3.10) 

where a € C is a parameter. There exist three different formal power series solutions 
of (3.10). We consider here one of them, given by 

v2 -/ N         c*     ^a(cr — 1) a v^       -u /o-,-.\ 
v(x) = + ^ i + -.. = -Vt;*a; 3fc, 3.11 

A:=0 

where the coefficients Vk are polynomials in a. 
It is known (and one can easily check) that (3.10) is a one-level equation of order 

i/ = 3/2, and that the linear part of (3.10), corresponding to the formal solution (3.11), 
is the well-known Airy equation v"(x) — xv. The Stokes rays of the Airy equation are 
given by 

TT 2 
argrc = — +-TTA;,     k£Z. 

tj o 

The characteristic exponential x~1/4e~ix3 2 of the Airy equation is decreasing in 
the sector S = {x : |arg:r| < f}. Let v € ^g. It is known (see, for instance, [T2], 
§4.2), that the exponential corrections of the asymptotics v(x) near the boundaries of 
S are proportional to the Airy function Ai(x), i.e. of the type ca;~1/4e~2/3:c . Then, 
according to Theorem 3.1, the Stokes constant c of the solution v(x) in S is given by 

/ 9 \ 
c = -Ini   lim   (p2 - -)Cl1[x^v{x)){p). 

Here Z^}2[x~1l/iv(x)]{p) is equal to the formal f-Borel transform 83/2 of the series 

xl^v(x), which is defined by 

where F denotes the gamma-function. (Equivalently we can suppose that Fi(v) — 0 
and evaluate >Cr/

1
2[a;~1/4'y(a:)](p) in the corresponding sector.) 

Then 

c=-27rza    lim   p~^(p), (3.12) 

2 

where the power series W{j>) = X^o^fcP2* ^as ratlius of convergence |3.   Here 
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In the particular case a = 0 the Stokes constant c = 0. This demonstrates that if a 
solution v{x) G \I/£ (a'.e. if v{x) ~ 0 in 5), then it has the same exponential corrections 
on both rays argx = ±f • 

3.3. Other examples. The "asymptotics beyond all orders" approach, currently 
developed by M. D. Kruskal and H. Segur (see [KS]), yields a number of interesting 
problems requiring the calculation of Stokes constants. Let us return to the equa- 
tion (0.1), which describes the trailing oscillations of the singularly perturbed fifth 
order Korteweg de-Vries equation ([GJ]). 

The equation (0.1) is a one-level equation of order 1, which have characteristic 
exponentials e±%x. This equation possesses a formal power series solution 

., x 6      90 ^ -2fe 

Let 

v{x) ~ v(x),    x —► oo,    I argrrl < TT. (3.13) 

What are the exponential corrections to the asymptotics (3.13) with respect to the 
rays argx = ±7r? It can be shown directly that they are of the form c±e±'lx (see also 
[GJ]), so according to Theorem 3.1 

c± = —27ri lim (p±z)y(p), 

where V(p) = J^kLi (2k-i)\P2k~1'• ^ ^s easy to c^eck ^at c+ = c_ and c+ is a purely 
imaginary number. The evaluation of c± is discussed in [GJ]. 
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