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ABSTRACT. The asymptotic behavior of the Whittaker functions M^^z) and 
WKin(z) for large modulus of the parameter K is considered. Asymptotic expan- 
sions in descending powers of ^/K are derived. The ^-independent coefficients of 
these expansions can be calculated in a simple way, making these approximations 
quite useful in practice. An explicit error bound for the expansion of MK,}fl(z) 
also is obtained. 

1. Introduction 

The Whittaker functions MK^(z) and WKjfJ,(z) have acquired an ever increasing sig- 
nificance due to their frequent use in applications of mathematics to physical and 
technical problems. Most of their known properties are collected in monographs [4], 
[12], and in general treatises on special functions [2], [6 Vol. 2], [14]. 

Important research work has been developed during recent decades for obtaining 
asymptotic approximations of M^^z) and WKifi(z) for large values of the variable z 
and/or the parameters K and fi. A quite complete survey of the results obtained before 
1975 can be found in [10] and references therein. It was pointed out in that article that 
there were several unsolved problems in this field at that time. One of these challenges 
was to obtain uniform asymptotic approximations for the case |/z| —» oo. This problem 
was satisfactory solved independently by Temme [13] and Olver [11]. They obtained 
uniform asymptotic approximations of these functions with respect to unrestricted 
values of z G (0, oo) and bounded real values of «//i in terms of parabolic cylinder 
functions. A second outstanding problem was the case \K\ —> oo. This task has been 
solved more recently by Dunster [5]. He obtained an asymptotic approximation of 
MK^(z) and WK^(z) for large real values of K in terms of Airy and Bessel functions. 
These expansions are uniformly valid for real values of K and n verifying 0 < /i/tt < 1. 

The uniformity of the expansion is an important theoretical property, but, as a 
general rule, uniform asymptotic expansions are much more involved than nonuniform 
expansions. In this way, the uniform asymptotic expansions proposed by Temme [13] 
and Olver [11] for the Whittaker functions for large \/i\ do not have an easy practical 
implementation. The coefficients of these expansions must be obtained by means of 
intricate equations that involve the asymptotic variable /z. Something similar happens 
with the uniform asymptotic expansions proposed by Dunster [5] for large \K\. The 
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coefficients of these expansions must be obtained by means of intricate equations that 
involve the asymptotic variable /€. 

Therefore, for practical computations, simplicity of the expansion may be a more 
important property than uniformity. Much simpler asymptotic expansions (although 
not uniform) of the Whittaker functions for large |/x| and bounded values of K and z 
can be found, for example, in [4, §7.2]. There, we can find cleaner expansions in inverse 
powers of // whose //-independent coefficients are computed in an easy way. On the 
other hand, a clean expansion in inverse powers of K with /^-independent coefficients 
is not available in the literature. 

In this paper we obtain asymptotic expansions of MKlp(z) and WK^(z) in the 
sequence ft~n/2 for bounded values of fi and z.1 The coefficients of the expansion 
are /^-independent and can be obtained in a systematic way. These properties make 
the expansions quite useful for practical calculations. The expansion of MK^{z) is 
accompanied also by an error bound. 

As a disadvantage over the expansion given in [5], the expansion presented here 
is not uniform. As an analytic advantage, it is a clean expansion in inverse powers 
of y/H with /c-independent and easily calculable coefficients. Besides, the expansion 
holds not only for real values of /€, but also for complex values. 

In Section 2, the asymptotic expansion of MK^{z) in the sequence KT
71
/
2
 and a 

bound for the remainder are derived. This expansion then is used to obtain an as- 
ymptotic approximation of WK^(z) for large «. A brief summary is postponed to 
Section 3. 

2. Expansions of MK^{z) and W^^z) in descending half-integer 
powers of K 

The starting point is a convergent expansion of the Whittaker function MKjfjL(z) in 
series of Bessel functions given by Buchholz [4, §7, Eq. (16)]. It reads 

MK),(z) = Tfr + 1) 22«z«+i f>£W(*) J^^S W 

where the pn (z) represent polynomials in 22, which we call Buchholz polynomials. 
These are defined by 

.in+l ' 

and generated by the function 

-(TM)(^r-j><'>H)" 

(2) 

(3) 

They also can be written in the form [1] 

^ I"/2! 
Pi ̂ )=^£o(2;)/^»-2*(*)> (4) 

1The asymptotic expansion of MKlfM(z) in inverse powers of y/n has been obtained previously in 
[8], but only for certain ranges of values of « and z. 
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as a sum of products of polynomials in v and in z, separately, easily obtainable by 
means of the recurrence relations 

*>-!.      ^-^(V)*^!*., (5) 
fe=0 

0o(z) = 1, 9m{?) = 
.    IV"'    *■    *\   / 

-T   E   (" ■^m-2fe-l(^)        (6) 

[(^1)/21/m-n4^|Jg2(w)l 
^ 2fc y     fc+i 

where the B2n denote the Bernoulli numbers [2, Table 23.2]. In what follows, /x £ 
C \ — |iV, the set — |iV = {—|, —1, — §, —2,...,} being excluded since MKiil(z) and 
WK,II{Z) are irregular at those values of /x. Besides, we consider for 2, /z, and ft only 
the main argument belonging to the sector (—7r,7r]. For obtaining the asymptotic 
expansion of MK?At(z) in inverse powers of y/k, we will need the following lemmas. 

Lemma 1.  The Buchholz polynomials are bounded in the form 

2 
where 

Re(i/)-l 

1 + 
cosh(2) 

\ti(z)\ < JfL^c-W+^I^Ml (7) 

-1 

if Re(i/) > 1, 

2sin(2) 
,    cr(i/) = i 

cos. m\ 

w 8in(2)\R"(,')-1 
(8) 

Proof. If we choose the contour |t;| = 2 in the definition (2) of Buchholz polynomials, 
we obtain 

where 

TV 
J defin: 

b(r)(z)i</M(2)l|f 

if Re(i/) < 1. 

1/-1 

\dv\ 

On the circle |v| = 2, we have 

Icos(v)\ < cosh(2),        sin(2) < | sin(u)| < cosh(2). 

Using these inequalities to bound the integrand in (10), equations (7) and (8) follow 
□ 

(9) 

(10) 

(11) 

trivially. 

Lemma 2.  The Bessel functions satisfy the inequality 

JW*) |< e6*^! (eImW + e-Im(*> + ^lll\,        n = 1,2,3,... 

where 

an(n,z) = 
if 2Re(/x) > 1 - n, 

i/ Re(/x)>-l,H^0, 

ke
er(-l - 2Re0u))e2ReM+1    if Re(/i) < -1, M ^ 0, 

e-i 

(12) 

(13) 

and e is any number satisfying 0 < 2e < |Re(z)| i/Re(z) ^ 0 or 0 < 2e < |Ini(z)| if 
Re(z) = 0. 
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Proof. FVom [2, Eqs. 9.1.22, 9.6.3, and 9.6.20], we have 

1      Z*7'" 
J2n+n(z) = - /   cos(^sin6 - (2// + n)0)d0 

_ sin(7r(2/i + n)) 
TT 

poo 

I    e-'^-^dt,        |AigW|<*      (14) 

.W^) = ^(2M+n)/2 JI ^ eXcose ^^^ + ^ ^ 

sin(7r(2/x + n))   Z"00 u/ x   , i 
 n           I    e—^'J-W^")'*],        a;>0.    (15) 

On the one hand, for ffiefo) + n > 1, we caa bound the integrand in the second 

7= MzX*    lt/2 fln^ ^ ^^ 1 (14)' Perf0rin the Chailge of v^able 

S fa SpfaS M) " a uA bOUnd f0r the integrand in the seco^ inte^aTof (15) s obtained in a similar way, but using cosh(«) > sinh(t) and x = lm(z) instead of 
ReW. Bounding also the integrands in the first integrals of (14) and (5), we^obtain 

l^fnWl < e^l^^l («!-(.) + e-L-W + ^ii) j )        ^j > e > 0)      (16) 

iJWse*/2)! < e
3-|imM| ^ + ^x + ^^\ ^        ^ > e > 0 (17) 

w^ina!)*^^^ 

MKAZ) = ^±^1 fees (2^-^-1) ^ ^ZLfc) 
n=0        ^       ' 

-7=8in(2ViK-/i7r--)     V     M2n+i(//,z)        ^ 
n=0 (-*) 

where the coefficients of the expansion Mn{n,z) are given by 

(18) 

n Mnifi>z)=uh £ (-2)^>(z)-(^-n+2"+y2^-^   (19) 
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For |«| > |z|/4 and the sector |Arg(^) + Arg(«)| < TT, the remainder term RJ^\Z,K) 

is an 0{K~
N

/
2
~

1
/

2
) quantity bounded by 

WM < 
VI V 2"|(2^ + 2n - JV - l/2)2(jy-n+1)l  toQ^-^i 
2N ^-i (iV-n+1)! n=0 v '^ 

r((JV - n)/2 + 3/2)^(^)1 f 7r|(2M + n)2 - 1/4|' riri(2M + n)»-l/4n 
T((N-n)/2 + l) ep\ 2|2ViS| J 

+ -i!|««|V4a(2M)e«W+io«|imH(7r + ajv+1(At>2>/5S))     ^ (20) 

where an(/i, ^) is pwen by (13) and cr(2/i) and a are ^zven by (8). 

Proo/. Prom (1) and using Jv(z) = (^1)(^) + ^2)(^))/2 where IT^ and i?(2) repre- 
sent the Hankel functions, we have 

r    N (2/i)/   v 

x (4i)
+„(2V^ + ff2)

+„(2VS)) +>'ii')(2,«) 

n=0 ' 

where 

n=iV+l 

Now we can use the asymptotic expansions [9, Chap. 7, Eqs. (4.03) and (4.04)], 

Wi*,*)-  E  IrrrSr^+n^v^). (22) 

simultaneously valid for all v when t is confined to the sector |Arg(t)| < TT. For 
|Arg(£)| < 7r/2, the error term ^(u^t) is an O^-"^"1) quantity bounded by [9, 
Chap. 7, Eqs. (13.02H13.05)], 

| (i).   t)l < Jiiy-N- l/2)2(N+1)T(N/2 + 3/2)        f ^ - 1/41 ] 
|flNW«;|<        2^(JV + l)!r(JV/2 + l)|t|^+i Pl      2|t|       /'       (5j 

and the same holds for rj^fat). Then, introducing (23) and (24) into equation (21) 
and grouping powers of ft-1/2, we obtain, for |Arg(z) + Arg(«)| < 27r, 

T(2n + l)zi 
2v7r«M+4 

,i(2V^-^-f) / V> (-l)nMn(^,z)       (1) '(S^m^-^-O 
_|_ e-^(2^fzii- ^V ( E ^? + /#V, *,«)) + fcrVW'Mft*,«)]    (26) 
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where the coefficients Mn(n,z) axe given in (19) and the remainder term p(
N'(iJ,,ziK) 

is an 0(K~
N

I
2
~

1
/

2
) quantity bounded, for |Arg(z) + Arg(/c)| < TT, by 

I (% W^^l'Sr 2nl(2M + 2n - AT - l/2)2(W_n+1)| r((iV - n)/2 + 3/2) 
\pNW,z,K)\^ 2N ^ (N-n + l)\ T((N-n)/2 + l) 

and the same holds for pjy (/x, z, ft). To prove (18)-(20), we still have to show that 

rjy (2, K) in equation (26) is bounded by an 0(K~^
N

^
2
'^

1
^) quantity. But using 

Lemmas 1 and 2, we have, for \w\ > \z\ and n > N + 1, 

r7(2/i)r^ Pn     \Z)   T /    x 
—— J2n+n{W) < -1(7(2^) eal2l+97rlIm^f 

x feM-) + e-Mi.> + «W^«>)\  £ ^    (28) 
\ TT /   it; 

where cr(2/i) and a are given by (8). Therefore, using the definition (22) of rfc\z, K) 

and this last inequality, we find that the remainder rjy (2, K) in the expansion (26) is 
bounded by 

\r^\z,K)\ < <7(2/i) eal*l+97rlIm^) 

x f e -f 0-im^v*«; _j_ V^ 
2Vft 

iV+l 

(29) 

After straightforward operations and using (27) and (29) in (26), we obtain (18) and 
(20). □ 

A recursion relation for the coefficients Mn(n,z) in the expansion (18) can be 
obtained from Olver's method of deriving asymptotic expansions from differential 
equations with a large parameter [9, Chap. 10]. The Whittaker differential equation 
can be written in the form 

— + -w = g{z)w (30) 

where g(z) = (z2 + 4^2 — 1)(22)~2. After the transformations z = C2/4 and W = 
z~1/4w, we obtain 

fw+nw^mw,   v(o = ^+v~2
1/4- (si) 

The asymptotic expansion in the sequence (\/ft)"n of two independent solutions 
W

+
(K,C) and W""(K,Q (analytic for z ^ 0) of the above differential equation are 

given by [9, Chap. 10, Theorem 3.1] 

W^C*, 0 ^ **** T M4^ (32) 
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where the coefficients Mn(/i, C2/4) are defined recursively by 

Mn+1(M)C
2/4) = ^y^ - i/^(C)Mn(M,C2/4)C (33) 

with Mo(/i?C
2/4) = 1. Prom the asymptotic behavior of MK^(z) for large K;, we see 

that 

MKAZ)
 
= T%fijlw   (e-^^W+i*, 0 + e^+^W-iK, 0).        (34) 

The coefficients of the expansion Mn(^z) given explicitly in (19) also are given by 
the recurrence (33) with the integration constants set to zero. Therefore, we obtain 
the expansion (18). 

Olver's method also provides an error bound for the remainder terms in the expan- 
sions (32) and, therefore, for the remainder in the expansion of MK^(z). But, as a 
consequence of the divergence of the coefficients Mn(/i, C

2/4) for large £> these bounds 
cannot be uniformly defined for arbitrarily large z (see [9, Chap. 10, Theorem 3.1] for 
details). 

An asymptotic approximation of WK^(z) can be obtained from the expansion (18) 
of M^z) and the relations [2, Eqs. (6.1.17) and (13.1.34)], 

WKAZ) = r(-2M)rfc + M + i/2) cos[7r(K + ^^ 

The expansion (18) has been obtained for |Arg(2) + Arg(^)| < 27r and the bound 
(20) for |Arg(z) + Arg(tt)| < TT. We can extend these parameters to the whole complex 
plane by using the reflection formula [5, Eq. (2.11)], 

M-^ze***) = e^+W^M^z). (36) 

3.  Summary 

For bounded values of z ^ 0 and /i and large values of |K|, the asymptotic expansion of 
the Whittaker function MK^(z) in inverse powers of y/n is given in equation (18) for 
|Arg(z)4-Arg(tt)| < 27r. The coefficients of this expansion are given in equation (19) 
and satisfy the recurrence relation (33). A bound for the remainder after iV terms is 
given in equation (20) for |Arg(2)+Arg(Ac)| < TT. In order to cover the whole complex 
z, /c, and //-plane, equations (18) and (20) should be used combined with (36). 

For bounded values of z ^ 0 and fi and large values of |«|, an asymptotic approx- 
imation of the Whittaker function WK^(z) in inverse powers of y/R can be obtained 
combining (18) and (35). The Stirling asymptotic expansions of the gamma functions 
in (35) should be introduced for obtaining an asymptotic approximation of WKitl(z) 
in inverse powers of y/k and K, ± fi + 1/2. 
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