THE ROLE OF THE DISTANCE FUNCTION IN SOME SINGULAR PERTURBATION PROBLEM

ANGELA PISTOIA

0. Introduction. This paper deals with the study of solutions to a class of nonlinear singularly perturbed problems of the form

\[
\begin{cases}
-\varepsilon^2 \Delta u + u = u^p & \text{in } \Omega \\
u > 0 & \text{in } \Omega \\
u = 0 \text{ or } \frac{\partial u}{\partial \nu} = 0 & \text{on } \partial \Omega
\end{cases}
\]

where \(\Omega \) is a bounded smooth domain of \(\mathbb{R}^N \), \(N \geq 2 \), \(\varepsilon > 0 \), \(1 < p < \frac{N+2}{N-2} \) if \(N \geq 3 \) or \(p > 1 \) if \(N = 2 \) and \(\nu \) is the unit outward normal at the boundary of \(\Omega \).

A solution of the Dirichlet problem can be interpreted as a steady state of the corresponding reaction-diffusion equation \(u_t = \varepsilon^2 \Delta u - u + u^p \), which arises in a numbers of problems, such as dynamic population and pattern formation theories and chemical reactor theory. The Neumann problem is known as the stationary equation of Keller-Segal system in chemotaxis. It can also be seen as the limiting stationary equation of the Gierer-Heinhardt system in biological pattern formation.

Neumann problem

In the pioneering papers [29], [31] and [32] Lin, Ni and Takagi established the existence of least energy solutions and showed that for \(\varepsilon \) small enough the least energy solution has only one local maximum point \(x_0 \) which belongs to \(\partial \Omega \). Moreover the limit point \(x_0 = \lim_{\varepsilon \to 0} x_\varepsilon \) satisfies \(H(x_0) = \max_{x \in \partial \Omega} H(x) \), where \(H \) denotes the mean curvature of \(x \) at \(\partial \Omega \). In [33] Ni and Takagi constructed boundary spike solutions for axially symmetric domains. In [39] Wei studied the general domain case and proved that for single boundary spike solutions the boundary spike must approach a critical point of the mean curvature. He also proved that for any nondegenerate critical point of the mean curvature one can construct boundary spike solutions whose spike approaches such a point.

In [22] Gui constructed multiple boundary spike layer solutions at multiple local maximum points. In [44] Wei and Winter constructed multiple boundary spike layer solutions at multiple nondegenerate critical points of \(H \). In [24] the authors proved that for any fixed integers \(K \) there exist boundary \(K \)-peaks solutions at a local minimum point of \(H \).

In [40] and in [41] Wei proved the existence of single interior spike solutions of (0.1) under some restricted geometric conditions on \(\Omega \). In [42] and [20] the authors constructed single interior spike solutions by using the distance function \(\text{dist}(x, \partial \Omega) \). More precisely in [42] Wei proved that for any local maximum point \(x_0 \) of the distance function there exists a family of solutions with a single maximum point which approaches \(x_0 \). In [35] the author proved the existence of a symmetric single interior spike solution in symmetric domains, by using a degree argument.

*Dipartimento Me.Mo.Mat., via A.Scarpa 16, 00100 Roma, Italy. (pistoia@dmmm.uniroma1.it).
In [23] Gui constructed multiple interior peak solutions. It was shown that for any fixed positive integer K there exists a solution of (0.1) which has exactly K maximum points x_1^1, \ldots, x_K^K such that $D_K(x_1^1, \ldots, x_K^K)$ converges to $\max(D_K(x_1^1, \ldots, x_K^K) \mid x^i \in \Omega, \ i = 1, \ldots, K}$ as ε tends to zero, where

$$D_K(x^1, \ldots, x^K) = \min \left\{ \text{dist}(x^i, \partial \Omega), \frac{|x^j - x^l|}{2} \mid i, j, l = 1, \ldots, K, j \neq l \right\}.$$

Cerami and Wei in [9] and Yan in [37] some multiplicity results are obtained by using Ljusternik-Schnirelman category. In [25] Kowalczyk proved that any “nondegenerate stationary lattice” supports a multiple spike layer solution.

We would like to point out that Bates and Fusco in [5] got similar results for the Cahn-Hilliard equation. By using a “quasi-invariant” manifold approach they established the existence of a stationary solution with many nuclei and they also gave a criteria for the asymptotic location of those nuclei as $\varepsilon \to 0$ in terms of the geometry of the domain.

Dirichlet problem

Multiplicity results about the Dirichlet problem were firstly obtained by Benci, Cerami and Passaseo in [2] and [3], by using the Ljusternik-Schnirelman category. Successively Ni and Wei in [34] established the existence of a least energy solution. They proved that as $\varepsilon \to 0$ the least energy solution has exactly one local maximum point and this local maximum point tends to a point which attains the global maximum of the distance function $\text{dist}(x, \partial \Omega)$. In [39] Wei proved that for any local maximum x_0 of the distance function there exists a family of solutions with a single global maximum point which approaches x_0. In [16] Del Pino, Felmer and Wei proved the existence of single-peaked solutions at any “suitable” critical point of the distance function. In [28] Li and Nirenberg proved another result which involves the critical points of the distance function. More precisely they show that if the Brower degree $\text{deg}(\nabla \text{dist}(\cdot, \partial \Omega), V, 0) \neq 0$ where V is a suitable subset of Ω, then there exist a family of solutions with a unique local maximum point which converges to a critical point of the distance function.

In [7] and [8] Cao, Dancer, Noussair and Yan constructed $K-$peak solutions with the peaks near the local maximum points or saddle points x_1, \ldots, x_K of $\text{dist}(\cdot, \partial \Omega)$, provided $\text{dist}(x_i, \partial \Omega) = \text{dist}(x_j, \partial \Omega)$ for any i and j. In [17] Del Pino, Felmer and Wei used a variational method to construct a $K-$peak solution with its peaks close to some local maximum points x_1, \ldots, x_K of $\text{dist}(\cdot, \partial \Omega)$, provided $\max_i \text{dist}(x_i, \partial \Omega)$ is small when compared with the distance between x_1, \ldots, x_K. In [15] Dancer and Wei proved the existence of two-peak solutions. Concerning the effect of the domain topology on the existence of multipeak solution Dancer and Yan in [13] proved that if the homology of the domain is nontrivial, then for any positive integer K problem (0.1) has at least one $K-$peak solution. In [14] Dancer and Yan assumed that the distance function has K isolated compact connected critical sets T_1, \ldots, T_K satisfying $\text{dist}(x, \partial \Omega) = c_j = \text{constant}$ for all $x \in T_j$, $\min_{i \neq j} \text{d}(T_j, T_i) > 2 \max_{1 \leq j \leq K} \text{d}(T_j, \partial \Omega)$ and the critical group of each critical set T_i is nontrivial. They constructed a solution which has exactly one local maximum point in a small neighbourhood of T_i for $i = 1, \ldots, K$. Moreover they proved that if Ω is strictly convex problem (0.1) does not have any $K-$peak solution.

Main results
In this paper we describe some results obtained by Grossi, Wei and the author in [20] and in [21].

In [20] the authors proved that any critical point “topologically non trivial” x_0 of the distance function generates a family of single interior spike solutions.

Theorem 0.1. Let x_0 be a critical point of $\text{dist} (\cdot , \partial \Omega)$. Assume $c = \text{dist} (x_0 , \partial \Omega)$ is a critical value topologically nontrivial (see Definition (2.4)). Then for ε small enough there exists a family of solutions u_ε of (0.1), whose maximum point tends to a critical point x'_0 of the distance function with $\text{dist} (x'_0 , \partial \Omega) = \text{dist} (x_0 , \partial \Omega)$.

Moreover they proved that the peak of any single solution must converge to a critical point of the distance function.

Theorem 0.2. Let u_ε be a solution of (0.1) with exactly one local interior maximum point x_ε. If $x_0 = \lim_{\varepsilon \to 0} x_\varepsilon \in \Omega$ then x_0 is a critical point of ∂_Ω.

In [21] the authors proved that any critical point “topologically non trivial” of the function \mathcal{D}_K generates a K—peaks solution.

Theorem 0.3. Let $X_0 = (x_0^1, \ldots, x_0^K)$ be a critical point of \mathcal{D}_K. Assume $\mathcal{D}_K (X_0) > 0$ is a critical value topologically nontrivial (see Definition (2.4)). Then for ε small enough there exists a family of solutions u_ε of (0.1), with Neumann boundary condition, whose K maximum points $x_\varepsilon^1, \ldots, x_\varepsilon^K$ tend to a point $\hat{X}_0 = (\hat{x}_0^1, \ldots, \hat{x}_0^K)$ such that $\mathcal{D}_K (\hat{X}_0) = \mathcal{D}_K (X_0)$, $\hat{x}_0^i \in \Omega$, $\hat{x}_0^i \neq x_0^j$ for $i \neq j$ and \hat{X}_0 is a critical point of \mathcal{D}_K.

Moreover they proved that the K peaks of any single solution must converge to a critical point of the function \mathcal{D}_K.

Theorem 0.4. Let u_ε be a solution of (0.1), with Neumann boundary condition, with exactly K local interior maximum points $x_\varepsilon^1, \ldots, x_\varepsilon^K$ and let $x_\varepsilon^i = \lim_{\varepsilon \to 0} x_\varepsilon^i$ for $i = 1, \ldots, K$. If $x_0^i \in \Omega$ then $x_0^i \neq x_0^j$ for $i \neq j$ and (x_0^1, \ldots, x_0^K) is a critical point of \mathcal{D}_K.

The method used to prove the results relies on an idea of Bahri (see [1]).

Firstly for ε small enough we reduce the problem of finding a single-peak or a multi-peak solution for (0.1) to that of finding a critical point for a function K_ε defined in a finite dimensional domain.

Secondly we compute the asymptotic expansion of the function K_ε, in order to point out the connection between K_ε and function \mathcal{D}_K. Such an expansion allows us to prove that any “topologically nontrivial” critical point of the function \mathcal{D}_K generates a K—peak solution.

Finally we compute the asymptotic expansion of the function ∇K_ε, in order to point out the connection between ∇K_ε and $\nabla \mathcal{D}_K$. Such an expansion allows us to prove that the K peaks of any single solution must converge to a critical point of the function \mathcal{D}_K.

We would like to emphasize that \mathcal{D}_K is a Lipschitz continuous function which may be not smooth. So a suitable notion of critical points for non-smooth functions is needed. The generalized gradient introduced by Clarke (see [11]) becomes our main tool. The new idea in [20] and in [21] is to evaluate the gradient of K_ε in terms of the generalized gradient of Clarke of the function \mathcal{D}_K. By this result, we were able to get some new results and also to clarify many results that were previously known.
The paper is organized as follows. In Section 1 we recall some properties of the generalized gradient of Clarke. In Section 2 we introduce the notion of "topologically nontrivial" critical values for locally Lipschitz continuous function. In Section 3 we study the distance function and the function D_K and we give a criteria to localize critical points of D_K. In Section 4 we recall some results obtained by Ni and Wei in [34]. In Section 5 we study the one-peak solutions. In Section 6 we study the multi-peak solutions. In Section 7 we give some examples.

1. The generalized gradient. Let D be a smooth bounded domain of \mathbb{R}^N. Let $f : D \rightarrow \mathbb{R}$ be a Lipschitz continuous function. We recall the following definition due to Clarke (see [11]).

Definition 1.1. The generalized gradient of f at $x \in D$ is the set:

$$\partial f(x) = \{ \alpha \in \mathbb{R}^N \mid f^\alpha(x, v) \geq \alpha \cdot v \ \forall \ v \in \mathbb{R}^N \}$$

where the generalized directional derivative $f^\alpha(x, v)$ is defined by

$$f^\alpha(x; v) = \lim_{\lambda \to 0^+} \frac{f(x + h + \lambda v) - f(x + h)}{\lambda}.$$

If f is continuously differentiable at x then $\partial f(x) = \{ \nabla f(x) \}$. If f is only differentiable at x, $\partial f(x)$ can contain points other than $\nabla f(x)$. For example, if $f(x) = x^2 \sin \frac{1}{x}$ then it is easy to show that $f^\alpha(0; v) = |v|$ and so $\partial f(0) = [-1, 1]$, which contains the derivative $f'(0) = 0$.

Definition 1.2. The function f is said to be regular at $x \in D$ provided that for any $v \in \mathbb{R}^N$ there exists the usual one-sided directional derivative $f'(x; v) = \lim_{t \to 0^+} \frac{f(x + tu) - f(x)}{t}$ and $f'(x; v) = f^\alpha(x; v)$.

By ([11], Proposition 2.2.4) and ([11], (b) of Proposition 2.3.6) we deduce

Proposition 1.3. If $\partial f(x)$ reduces to a singleton $\{ \alpha \}$ then f is differentiable at x and $\nabla f(x) = \alpha$. Conversely, if f is differentiable and regular at x then $\partial f(x) = \{ \nabla f(x) \}$.

It is useful to point out the following property (see [11], Proposition 2.1.5).

Remark 1.4. Let x_n and α_n be sequences in \mathbb{R}^N such that $x_n \in D$ and $\alpha_n \in \partial f(x_n)$. Suppose that x_n converges to x and α_n converges to α. Then $\alpha \in \partial f(x)$.

Now let us suppose $x = (x_1, x_2)$. We denote by $\partial_1 f(x_1, x_2)$ the (partial) generalized gradient of $f(\cdot, x_2)$ at x_1 and by $\partial_2 f(x_1, x_2)$ that of $f(x_1, \cdot)$ at x_2. The following result holds (see [11], Proposition 2.3.15).

Remark 1.5. If f is regular at (x_1, x_2) then

$$\partial f(x_1, x_2) \subset \partial_1 f(x_1, x_2) \times \partial_2 f(x_1, x_2).$$

Let us recall another useful result. Assume that $\{f_i\}_{i \in I}$ is a finite collection of Lipschitz continuous functions defined on D. The function

$$f(x) = \min \{ f_i(x) \mid i \in I \}$$
is easily seen to be a Lipschitz continuous function. For any \(x \in D \) we let \(\mathcal{I}(x) \) denote the set of indices \(i \) for which \(f(x) = f_i(x) \) (i.e. the indices at which the minimum defining \(f \) is attained). Then the following result holds (see [11], Proposition (2.3.12)).

Proposition 1.6. If \(f_i \) is regular at \(x \) for any \(i \in \mathcal{I}(x) \) then \(f \) is regular at \(x \) and

\[
\partial f(x) = \text{co} \{ \partial f_i(x) \mid i \in \mathcal{I}(x) \}.
\]

Finally we give the definition of a critical point for a nonsmooth function.

Definition 1.7. A point \(x_0 \) in \(D \) is said to be a critical point of \(f \) if \(0 \in \partial f(x_0) \). A real number \(c \) is said to be a critical value of \(f \) if there exists a critical point \(x_0 \) of \(f \) such that \(f(x_0) = c \).

By Definition (1.1) we easily deduce that if \(x_0 \) is a minimum point or a maximum point for a Lipschitz continuous function \(f \) then \(0 \in \partial f(x_0) \).

2. Critical values topologically nontrivial.

In this section we recall a result of the critical point theory. The following one is given by Ramos in [36] and it is a jointed version of the classical linking theorem and the local saddle point proved in [30]. Although it concerns \(C^1 \)-function, it is possible to extend such a result to Lipschitz continuous function, by using deformation lemma proved by Chang in [10].

We consider three compact subsets \(\partial Q, Q \) and \(A \) of \(D \) such that

\[(2.1) \quad \partial Q \subset Q \quad \text{and} \quad Q \cap A = \emptyset.\]

\(\partial Q \) is not necessarily the topological boundary of \(Q \) and \(A \) can be the empty set. We define the class:

\[
\Gamma = \{ \gamma \in C^0([0,1] \times Q, D \setminus A) \mid \gamma_0 \equiv \text{Id}, \quad \gamma_t|_{\partial Q} \equiv \text{Id} \quad \forall t \in [0,1] \},
\]

where \(\text{Id} \) is the identity map. We note that \(\Gamma \neq \emptyset \) because \(\text{Id} \in \Gamma \).

Definition 2.1. Let \(S \) be a subset of \(D \). We say that \(S \) links \(Q \) via \(\partial Q \) by homotopy in \(D \setminus A \) if

\[(2.2) \quad S \cap \partial Q = \emptyset \quad \text{and} \quad \gamma_1(Q) \cap S \neq \emptyset \quad \forall \gamma \in \Gamma.\]

It is useful to point out the following fact.

Remark 2.2. Assume \(\partial Q_1, Q_1, A_1 \) and \(S_1 \) and \(\partial Q_2, Q_2, A_2 \) and \(S_2 \) are two families of subset of \(D \) which satisfy (2.1) and (2.2). Then \(\partial Q = (\partial Q_1 \times Q_2) \cup (Q_1 \times \partial Q_2) \), \(Q = Q_1 \times Q_2 \), \(A = (A_1 \times S_2) \cup (S_1 \times A_2) \) and \(S = S_1 \times S_2 \) are subsets of \(D \times D \) which satisfy (2.1) and (2.2).

The following result holds.

Theorem 2.3. Let \(f : D \to \mathbb{R} \) be a Lipschitz continuous function. Assume \(S \) links \(Q \) via \(\partial Q \) by homotopy in \(D \setminus A \) and

\[(2.3) \quad \max_{\partial Q} f < \min_{S} f \leq \max_{Q} f < \min_{A} f.\]

Let

\[(2.4) \quad c = \inf_{\gamma \in \Gamma} \max_{u \in Q} f(\gamma_1(u)).\]
If \(c \in \mathbb{R} \) and the set \(\{ x \in D \text{ s.t. } c - \varepsilon \leq f(x) \leq c + \varepsilon \} \) is complete for some \(\varepsilon > 0 \) then \(c \) is a critical value of \(f \).

If \(A = \emptyset \) we get the classical linking theorem. The "local saddle point" of [30] is a particular case of the previous theorem when \(A \neq \emptyset \).

In the following definition we introduce the notion of critical values of a Lipschitz continuous function \(f : D \rightarrow \mathbb{R} \) which are "stable" with respect to suitable perturbations (see [20], Definition (1.7) and [21], Definition (1.11))

Definition 2.4. We say that \(c \) is a critical value topologically nontrivial of \(f \) if there exists a family of subsets \(\partial Q_\delta, Q_\delta, A_\delta \) and \(S_\delta \) of \(D \) which satisfy (2.1), (2.2) and (2.3), with the properties

\[
\max_{\partial Q_\delta} f < \min_{S_\delta} f \leq c < \max_{A_\delta} f < \min_{S_\delta} f
\]

and

\[
\lim_{\delta \to 0} \min_{S_\delta} f = \lim_{\delta \to 0} \max_{Q_\delta} f = c.
\]

We point out that if we assume that the sets \(\{ x \in D \text{ s.t. } c' - \varepsilon \leq f(x) \leq c' + \varepsilon \} \) are complete for any \(c' \) close enough to \(c \) and for some \(\varepsilon > 0 \) then by Theorem (2.3) we deduce that \(c \) is a critical value of \(f \).

3. The distance function and the function \(D_K \). Let \(\Omega \) be a smooth open bounded domain of \(\mathbb{R}^N \).

Definition 3.1. Let \(d_{\partial \Omega} : \Omega \rightarrow \mathbb{R} \) be the distance function defined by \(d_{\partial \Omega}(x) = \text{dist}(x, \partial \Omega) = \min_{y \in \partial \Omega} |x - y| \).

It is well known that \(d_{\partial \Omega} \) is a Lipschitz continuous function. By using (see [11], Corollary 2, p. 87) we can compute the generalized gradient of the distance function.

Remark 3.2. For any \(x \in \Omega \) we have

\[
\partial d_{\partial \Omega}(x) = \left\{ \int_{\partial \Omega} \nu^{(i)}(y) d\mu_x(y) \mid \begin{array}{l}
d\mu_x(y) \text{ is a bounded Borel measure on } \partial \Omega, \\
\int_{\partial \Omega} d\mu_x(y) = 1, \supp(d\mu_x(y)) \subset \Pi_{\partial \Omega}(x) \end{array} \right\},
\]

where

\[
\Pi_{\partial \Omega}(x) = \{ y \in \partial \Omega \mid |y - x| = d_{\partial \Omega}(x) \}
\]

and \(\nu^{(i)}(y) \) denotes the unit inward normal at the point \(y \) of \(\partial \Omega \).

By ([11], Corollary 2, p. 87) we deduce that the distance function is regular at any \(x \in \Omega \). Therefore by Proposition (1.3) we get

Remark 3.3. \(d_{\partial \Omega} \) is differentiable at \(x \) if and only if \(\Pi_{\partial \Omega}(x) \) reduces to a singleton \(\{ \pi(x) \} \) and \(\nabla d_{\partial \Omega}(x) = \nu^{(i)}(\pi(x)) \), where \(\nu^{(i)}(\pi(x)) \) denotes the unit inward normal at \(\pi(x) \).
Finally since Ω is smooth we have the following property.

Proposition 3.4. There exists a neighbourhood U of the boundary of Ω such that $0 \notin \partial \delta_\Omega(x)$ for any $x \in U \cap \Omega$.

Now let us introduce the function D_K which will play a crucial role in the next sections.

Definition 3.5. Let $K \geq 1$ be an integer. Set $\Omega^K = \Omega \times \ldots \times \Omega$. Let $D_K : \Omega^K \to \mathbb{R}$ be defined by

$$D_K(X) = \min \left\{ d_\Omega(x^i), \frac{|x^j - x^l|}{2} \mid i, j, l = 1, \ldots, K, j \neq l \right\}. \quad (3.3)$$

Let us point out that

$$D_1(x) = d_\Omega(x) \quad \forall x \in \Omega.$$

Set

$$\mathcal{M}_K(\Omega) = \left\{ X = (x^1, \ldots, x^K) \in \Omega^K \mid x^i \neq x^j, i \neq j, i, j = 1, \ldots, K \right\}. \quad (3.4)$$

By using the regularity of the distance function and Proposition (1.6) we can compute the generalized gradient of D_K.

Lemma 3.6. For any $X \in \mathcal{M}_K(\Omega)$ we have that $\beta(X) \in \partial D_K(X)$ if and only if

$$\beta(X) = \left(a_1 \alpha(x^1) + \frac{1}{2} \sum_{j=1}^{K} b_{1j} \frac{x^1 - x^j}{|x^1 - x^j|}, \ldots, a_K \alpha(x^K) + \frac{1}{2} \sum_{j \neq K}^{K} b_{1j} \frac{x^K - x^j}{|x^K - x^j|} \right),$$

with $\alpha(x^i) \in \partial \delta_\Omega(x^i)$, $a_i, b_{ij} \geq 0$, $b_{jj} = b_{jj}$, $\sum_{i=1}^{K} a_i + \frac{1}{2} \sum_{j \neq K}^{K} b_{jj} = 1$.

In particular by Lemma (3.6) we deduce that if x^1, \ldots, x^K are K different critical points of the distance function then $X = (x^1, \ldots, x^K)$ is a critical point of D_K.

Next results generalizes Proposition (3.4). More precisely we prove that there is not any critical point of D_K close to the boundary of $\mathcal{M}_K(\Omega)$.

Proposition 3.7. There exists a neighbourhood U of the boundary of $\mathcal{M}_K(\Omega)$ such that $0 \notin \partial D_K(X)$ for any $X \in U \cap \mathcal{M}_K(\Omega)$.

Proof. We prove that if X_ε is a sequence in $\mathcal{M}_K(\Omega)$ such that $\lim_{\varepsilon \to 0} X_\varepsilon = X_0$ and $X_0 \in \partial \mathcal{M}_K(\Omega)$, then there exists $\varepsilon_0 > 0$ and $C > 0$ such that for any $\varepsilon \in (0, \varepsilon_0)$

$$|\beta_\varepsilon(X_\varepsilon)| \geq C > 0 \quad \forall \beta_\varepsilon(X_\varepsilon) \in \partial D_K(X_\varepsilon).$$

We proceed by induction on the number K.

Let $K = 1$ and let x_ε be a sequence in Ω such that $x_0 = \lim_{\varepsilon} x_\varepsilon \in \partial \Omega$. By Remark (3.3) and Remark (3.4) it follows that for ε small enough $\partial D_1(x_\varepsilon) = \{ \nu(1)(\pi(x_\varepsilon)) \}$ and the claim follows.

Suppose the claim to be true for any integer $1 \leq H \leq K - 1$. Let us prove the claim for K.

Let X_ε be a sequence in $\mathcal{M}_K(\Omega)$ such that $\lim_{\varepsilon \to 0} X_\varepsilon = X_0$ and $X_0 \in \partial \mathcal{M}_K(\Omega)$. Then we have either

(i) $\exists i, j \in \{1, \ldots, K\}$ s.t. $x_0^i \neq x_0^j$,

or

(ii) $x_0^1 = \ldots = x_0^K \in \partial \Omega$,

or

(iii) $x_0^1 = \ldots = x_0^K \in \Omega$.

By using Lemma (3.6) and inductive assumptions the claim easily follows. □

Next results allows us to localize some special critical points of the function \mathcal{D}_K.

Proposition 3.8. Let $(x^1, \ldots, x^K) \in \mathcal{M}_K(\Omega)$ be a critical point of \mathcal{D}_K. Assume that for any integer $1 \leq H \leq K-1$ and for any set of indices $\{i_1, \ldots, i_H\} \subset \{1, \ldots, K\}$ $(x^{i_1}, \ldots, x^{i_H})$ is not a critical point of \mathcal{D}_H. Then $\mathcal{D}_H(x^i) = \frac{|x^i - x^H|}{2}$ for any i, l, h and $0 \in \co\{\alpha(x^i) \mid \alpha(x^i) \in \partial \mathcal{D}_\Omega(x^i), \ i = 1, \ldots, K\}$.

Proof. We argue by contradiction. Then we have either

(i) $\exists i, j \in \{1, \ldots, K\}$ s.t. $\mathcal{D}_K(X) < \frac{|x^i - x^j|}{2}$,

or

(ii) $\forall l, h \in \{1, \ldots, K\}$ $\mathcal{D}_K(X) = \frac{|x^l - x^h|}{2}$ and $\exists i \in \{1, \ldots, K\}$ s.t. $\mathcal{D}_K(X) = \mathcal{D}_\Omega(x^i)$.

By using Lemma (3.6) a contradiction arises in both cases. □

In particular by Proposition (3.8) and by Remark (3.3) we deduce the following characterization of the critical points of \mathcal{D}_2.

Corollary 3.9. Let $(x^1, x^2) \in \mathcal{M}_2(\Omega)$ be a critical point of \mathcal{D}_2 such that the distance function is differentiable at x^1 and x^2. Then $\mathcal{D}_\Omega(x^1) = \mathcal{D}_\Omega(x^2) = \frac{|x^1 - x^2|}{2}$ and $\nu^{(i)}(\pi(x^1)) = -\nu^{(i)}(\pi(x^2)) = \frac{x^2 - x^1}{|x^2 - x^1|}$.

4. Some preliminary results. Let us introduce the ground state solution U. We recall the following results (see, for example, [6], [19] and [26]).

Theorem 4.1. The equation:

\[
\begin{cases}
-\Delta u + u = u^p & \text{in } \mathbb{R}^N \\
u(X) \to 0 & \text{for } |x| \to +\infty
\end{cases}
\]

possesses a unique non trivial regular solution U with the following properties:

(i) $U(x) > 0$ \forall $x \in \mathbb{R}^N$,

(ii) U is spherically symmetric, i.e. $U(x) = U(r)$ where $r = |x|$, and U decreases with respect to r,

(iii) $U \in C^2(\mathbb{R}^N)$,

(iv) U together with its derivatives up to order 2 have exponential decay at infinity, that is there exist $C > 0$ and $\delta > 0$ such that $|D^\alpha U(x)| \leq Ce^{-\delta|x|} \forall$ $x \in \mathbb{R}^N$ and $|\alpha| \leq 2$.

(v) there exists $\beta > 0$ such that $\lim_{r \to +\infty} r^{\frac{n-1}{2}} e^r U(r) = \beta > 0$.

Let us introduce some notation. Set $\Omega_\varepsilon = \{y \mid \varepsilon y \in \Omega\}$ and for $x \in \Omega$ $\Omega_{\varepsilon,x} = \{y \mid \varepsilon y + x \in \Omega\}$. Of course solving problem (0.1) is equivalent to solve the rescaled
problem

\begin{equation}
\begin{cases}
-\Delta u + u = u^p & \text{in } \Omega_\varepsilon \\
u = 0 \text{ or } \frac{\partial u}{\partial \nu} = 0 & \text{in } \partial \Omega_\varepsilon.
\end{cases}
\end{equation}

We set $\mathcal{P}_{\Omega_\varepsilon} U$ to be the unique solution of the problem

\begin{equation}
\begin{cases}
-\Delta u + u = U^p & \text{in } \Omega_{\varepsilon,x} \\
u = 0 \text{ or } \frac{\partial u}{\partial \nu} = 0 & \text{in } \partial \Omega_{\varepsilon,x}.
\end{cases}
\end{equation}

$\mathcal{P}_{\Omega_\varepsilon} U$ is the projection of the ground state U into $H^1_0(\Omega_{\varepsilon,x})$ in the Dirichlet case or into $H^1(\Omega_{\varepsilon,x})$ in the Neumann case. The idea of projections has been introduced in [1].

Set

$$\varphi_{\varepsilon,x}(z) = U(y) - \mathcal{P}_{\Omega_\varepsilon} U(y)$$

with $z = \varepsilon y + x$, $x \in \Omega$, $z \in \Omega$.

The following estimate plays a fundamental role (see [41], Section 2 and [34], Section 4).

Lemma 4.2. For $x \in \Omega$ set

\begin{equation}
\psi_{\varepsilon}(x) = -\varepsilon \log (\varphi_{\varepsilon,x}(x)) \quad \text{in the Dirichlet case,}
\end{equation}

or

\begin{equation}
\psi_{\varepsilon}(x) = -\varepsilon \log (-\varphi_{\varepsilon,x}(x)) \quad \text{in the Neumann case,}
\end{equation}

Then

\begin{equation}
\lim_{\varepsilon \to 0} \psi_{\varepsilon}(x) = 2d_{\partial \Omega}(x) \quad \text{uniformly in } \Omega.
\end{equation}

By Lemma (4.2) and by (v) of Theorem (4.1) we easily deduce that

Lemma 4.3. Let for $X \in \mathcal{M}_K(\Omega)$

\begin{equation}
\Phi_{\varepsilon}(X) = -\varepsilon \log \left[-\sum_{i=1}^{K} \varphi_{\varepsilon,x^i}(x^i) + \sum_{i \neq j}^{K} U \left(\frac{|x^j - x^i|}{\varepsilon} \right) \right].
\end{equation}

Then in the Neumann case

$$\lim_{\varepsilon \to 0} \Phi_{\varepsilon}(X) = 2\mathcal{D}_K(X) \quad \text{uniformly in } \mathcal{M}_K(\Omega).$$
5. Existence of one-peak solutions. Let H_ε be the Hilbert space

$$H_\varepsilon = H^2(\Omega_\varepsilon) \cap H^1_0(\Omega_\varepsilon)$$

in the Dirichlet case

or

$$H_\varepsilon = \left\{ u \in H^2(\Omega_\varepsilon) \mid \frac{\partial u}{\partial n_\varepsilon} = 0 \text{ on } \partial \Omega_\varepsilon \right\}$$

in the Neumann case

Define

$$S_\varepsilon(u) = \Delta u - u + (u^+)^p \quad \text{for} \quad u \in H_\varepsilon.$$

Then solving equation (0.1) or equation (4.2) is equivalent to solve the following one

$$S_\varepsilon(u) = 0, \quad u \in H_\varepsilon.$$

Let us consider the linearized operator $L_\varepsilon : H_\varepsilon \rightarrow L^2(\Omega_\varepsilon)$ given by

$$L_\varepsilon(v) = \Delta v - v + pP_{\Omega_\varepsilon,U}U^{p-1}v.$$

It is easy to see that the cokernel of L_ε coincides with its kernel. Choose approximate cokernel and kernel as

$$K_{\varepsilon,x} = \text{span} \left\{ \frac{\partial P_{\Omega_\varepsilon,U}}{\partial x_i} \mid i = 1, \ldots, N \right\} \subset H^2(\Omega_\varepsilon),$$

$$C_{\varepsilon,x} = \text{span} \left\{ \frac{\partial P_{\Omega_\varepsilon,U}}{\partial x_i} \mid i = 1, \ldots, N \right\} \subset L^2(\Omega_\varepsilon).$$

Now we state the following lemmas, which allow us to reduce problem (4.2) to a finite dimensional problem.

Lemma 5.1. For any compact set $K \subset \Omega$ there exists $\varepsilon_0 > 0$ such that for any $\varepsilon \in (0, \varepsilon_0)$ and $x \in K$ there exists a unique $e_\varepsilon \in K^\perp_{\varepsilon,x}$ such that

$$S_\varepsilon \left(P_{\Omega_\varepsilon,U} + e_{\varepsilon,x} \right) \in C_{\varepsilon,x}.$$

Moreover $e_{\varepsilon,x}$ is C^1 in x and

$$\|e_{\varepsilon,x}\|_{H^2(\Omega_\varepsilon)} \leq Ce^{-(1+\sigma)\frac{d_\Omega}{\varepsilon}},$$

where C is a positive constant and $\sigma = \min\{1, p-1\}$.

Proof. The proof relies on a contraction mapping argument. The claim can be proved by collecting some results obtained in [41] and [42].

Now we define the function $K_\varepsilon : \Omega \rightarrow \mathbb{R}$

$$K_\varepsilon(x) = J_\varepsilon(P_{\Omega_\varepsilon,U} + e_{\varepsilon,x}),$$

where the “rescaled” energy functional $J_\varepsilon : H^1(\Omega_\varepsilon) \rightarrow \mathbb{R}$ is defined by

$$J_\varepsilon(u) = \left[\frac{1}{2} \int_{\Omega_\varepsilon} (|\nabla u|^2 + u^2) - \frac{1}{p+1} \int_{\Omega_\varepsilon} (u^+)^{p+1} \right].$$
THE ROLE OF THE DISTANCE FUNCTION IN SOME ELLIPTIC PROBLEMS 311

Now we evaluate the asymptotic expansion of K_ε.

Proposition 5.2. x_ε is a critical point of K_ε if and only if $u_\varepsilon = \mathcal{P}_{\Omega, x_\varepsilon} U + \Phi_\varepsilon(x_\varepsilon)$ is a solution of (4.2). Moreover the following estimates hold uniformly on compact sets of Ω

\begin{equation}
K_\varepsilon(x) = A + \frac{1}{2} \gamma e^{-\frac{\psi_\varepsilon(x)}{\varepsilon}} + o\left(e^{-\frac{\psi_\varepsilon(x)}{\varepsilon}}\right) \quad \text{in the Dirichlet case}
\end{equation}

or

\begin{equation}
K_\varepsilon(x) = A - \frac{1}{2} \gamma e^{-\frac{\psi_\varepsilon(x)}{\varepsilon}} + o\left(e^{-\frac{\psi_\varepsilon(x)}{\varepsilon}}\right) \quad \text{in the Neumann case},
\end{equation}

where

\[A = \frac{1}{2} \int_{\mathbb{R}^N} (|\nabla U|^2 + U^2) - \frac{1}{p+1} \int_{\mathbb{R}^N} U^{p+1}, \quad \gamma = \int_{\mathbb{R}^N} U^p(y)e^{-y_1}dy. \]

Proof. See [20], [23], [41] and [42]. \hfill \Box

The next results play a crucial role in connecting the topological structure of the sublevels of the distance function with the topological structure of the sublevels of the function K_ε.

Lemma 5.3. Let $x_1^\varepsilon, x_2^\varepsilon$ be sequences in Ω be such that $\lim_{\varepsilon \to 0} x_1^\varepsilon = x_1 \in \Omega$, $\lim_{\varepsilon \to 0} x_2^\varepsilon = x_2 \in \Omega$ and $d_{\partial \Omega}(x_1) < d_{\partial \Omega}(x_2)$. Then there exists $\varepsilon_0 > 0$ such that for any $\varepsilon \in (0, \varepsilon_0)$

\begin{equation}
K_\varepsilon(x_1^\varepsilon) > K_\varepsilon(x_2^\varepsilon) \quad \text{in the Dirichlet case}
\end{equation}

or

\begin{equation}
K_\varepsilon(x_1^\varepsilon) < K_\varepsilon(x_2^\varepsilon) \quad \text{in the Neumann case}.
\end{equation}

Proof. We prove (5.7). The proof of (5.6) is the same. By the expansion of K_ε given in (5.5) of Proposition (5.2) we have

\begin{equation}
k_\varepsilon(x_2^\varepsilon) - k_\varepsilon(x_1^\varepsilon) = \frac{1}{2} \gamma \left(e^{-\frac{\psi_\varepsilon(x_1^\varepsilon)}{\varepsilon}} - e^{-\frac{\psi_\varepsilon(x_2^\varepsilon)}{\varepsilon}}\right)
\end{equation}

or

\begin{equation}
k_\varepsilon(x_1^\varepsilon) - k_\varepsilon(x_2^\varepsilon) = \frac{1}{2} \gamma \left(e^{-\frac{\psi_\varepsilon(x_2^\varepsilon)}{\varepsilon}} - e^{-\frac{\psi_\varepsilon(x_1^\varepsilon)}{\varepsilon}}\right).
\end{equation}

Since $d_{\partial \Omega}(x_1) < d_{\partial \Omega}(x_2)$, by Lemma (4.2) we deduce that for ε small enough $\psi_\varepsilon(x_1^\varepsilon) < \psi_\varepsilon(x_2^\varepsilon)$. Then by (5.8) we get

\[e^{-\frac{\psi_\varepsilon(x_1^\varepsilon)}{\varepsilon}} [K_\varepsilon(x_2^\varepsilon) - K_\varepsilon(x_1^\varepsilon)] = \frac{1}{2} \gamma \left[1 - e^{-\frac{\psi_\varepsilon(x_1^\varepsilon) - \psi_\varepsilon(x_2^\varepsilon)}{\varepsilon}}\right] + o(1) \]

and the claim follows. \hfill \Box

Lemma 5.4. Let C_1, C_2 be two compact subsets of Ω. If

\[\min_{x \in C_1} d_{\partial \Omega}(x) > \max_{x \in C_2} d_{\partial \Omega}(x) \]

then
then there exists $\varepsilon_0 > 0$ such that for any $\varepsilon \in (0, \varepsilon_0)$

\begin{equation}
\min_{x \in C_1} (-K_\varepsilon)(x) > \max_{x \in C_2} (-K_\varepsilon)(x) \quad \text{in the Dirichlet case,}
\end{equation}

or

\begin{equation}
\min_{x \in C_1} K_\varepsilon(x) > \max_{x \in C_2} K_\varepsilon(x) \quad \text{in the Neumann case.}
\end{equation}

Now we prove that a suitable critical point of the distance function generates a critical point of K_ε.

Theorem 5.5. Let c be a critical value topologically nontrivial of the distance function (see Definition (2.4)). Then there exists a sequence (x_ε) of critical points of K_ε such that $\lim_{\varepsilon \to 0} x_\varepsilon = x_0$ and $d_{\partial \Omega}(x_0) = c$.

Proof. We prove the claim in Neumann case. In the Dirichlet case we consider the function $-K_\varepsilon$ and we argue in the same way. By Definition (2.4) there exist a family of subsets ∂Q_δ, Q_δ, A_δ and S_δ of Ω which satisfy (2.1), (2.2), (2.5) and (2.6), that is:

\begin{equation}
\max_{x \in \partial Q_\delta} d_{\partial \Omega}(x) < \min_{x \in S_\delta} d_{\partial \Omega}(x) \leq c \leq \max_{x \in Q_\delta} d_{\partial \Omega}(x) < \min_{x \in A_\delta} d_{\partial \Omega}(x).
\end{equation}

Then by (5.9) of Lemma (5.4) there exists $\varepsilon_0 > 0$ such that for any $\varepsilon \in (0, \varepsilon_0)$

\begin{equation}
a_{\varepsilon, \delta} = \max_{x \in \partial Q_\delta} K_\varepsilon(x) < \min_{x \in S_\delta} K_\varepsilon(x) \leq \max_{x \in Q_\delta} K_\varepsilon(x) < \min_{x \in A_\delta} K_\varepsilon(x) = b_{\varepsilon, \delta}.
\end{equation}

It is not difficult to prove that for ε and δ small enough the set \{ $x \in \Omega \mid a_{\varepsilon, \delta} \leq K_\varepsilon(x) \leq b_{\varepsilon, \delta}$ \} is complete. Now by (5.12) and Theorem (2.3) there exists $x_{\varepsilon, \delta}$ critical point of K_ε in Ω such that:

\begin{equation}
\min_{x \in S_\delta} K_\varepsilon(x) \leq K_\varepsilon(x_{\varepsilon, \delta}) \leq \max_{x \in Q_\delta} K_\varepsilon(x).
\end{equation}

Up to a subsequence we can assume that $x_{\varepsilon, \delta}$ goes to x_0 as ε and δ go to 0. It is easy to show that $d_{\partial \Omega}(x_0) = c > 0$. Therefore the claim is proved. □

Finally we want to show that a family of critical points of K_ε converges to a critical point of the distance function. Firstly we have to compute the asymptotic expansion of the gradient of K_ε.

Proposition 5.6. Let x_ε be a sequence in Ω such that $\lim_{\varepsilon \to 0} x_\varepsilon = x_0 \in \Omega$. Then

\begin{equation}
\nabla K_\varepsilon(x_\varepsilon) = -\frac{1}{\varepsilon} \gamma \alpha(x_0) e^{-\frac{\psi_\varepsilon(x_\varepsilon)}{\varepsilon}} + o\left(\frac{1}{\varepsilon} e^{-\frac{\psi_\varepsilon(x_\varepsilon)}{\varepsilon}}\right), \quad \text{in the Dirichlet case,}
\end{equation}

or

\begin{equation}
\nabla K_\varepsilon(x_\varepsilon) = \frac{1}{\varepsilon} \gamma \alpha(x_0) e^{-\frac{\psi_\varepsilon(x_\varepsilon)}{\varepsilon}} + o\left(\frac{1}{\varepsilon} e^{-\frac{\psi_\varepsilon(x_\varepsilon)}{\varepsilon}}\right), \quad \text{in the Neumann case,}
\end{equation}

where $\alpha(x_0) \in \partial d_{\partial \Omega}(x_0)$ (see (3.1)) and γ is a positive constant (see Proposition 5.2).

Proof. See Lemma (4.1) of [20]. □
THEOREM 5.7. Let \(x_\varepsilon \) be a critical point of \(K_\varepsilon \) such that \(x_0 = \lim_{\varepsilon \to 0} x_\varepsilon \in \Omega \). Then \(x_0 \) is a critical point of the distance function.

Proof. Since \(x_\varepsilon \) is a critical point of \(K_\varepsilon \) by Proposition (5.6) we get

\[
0 = \nabla K_\varepsilon(x_\varepsilon) = \frac{1}{\varepsilon} \gamma \alpha(x_0) e^{-\frac{\phi(x_\varepsilon)}{\varepsilon}} + o \left(\frac{1}{\varepsilon} e^{-\frac{\phi(x_\varepsilon)}{\varepsilon}} \right),
\]

where \(\alpha(x_0) \in \partial d_{\partial \Omega}(x_0) \) and \(\gamma \) is a positive constant. By (5.16) we deduce

\[
\gamma \alpha(x_0) + o(1) = 0,
\]

which implies \(\alpha(x_0) = 0 \). Then \(x_0 \) is a critical point of the distance function since \(0 \in \partial d_{\partial \Omega}(x_0) \) (see Definition (1.7)). □

Proof of Theorem (0.1). It follow by Proposition (5.2) and Theorem (5.5). □

Proof of Theorem (0.2). It follow by Proposition (5.2) and Theorem (5.7). □

6. Existence of multi-peak solutions. Let \(H_\varepsilon \) be the Hilbert space

\[
H_\varepsilon = \left\{ u \in H^2(\Omega_\varepsilon) \mid \frac{\partial u}{\partial \nu_\varepsilon} = 0 \text{ on } \partial \Omega_\varepsilon \right\}
\]

Define

\[
S_\varepsilon(u) = \Delta u - u + (u^+)^p \quad \text{for} \quad u \in H_\varepsilon.
\]

Then solving equation (0.1) or equation (4.2) is equivalent to solve the following one

\[
S_\varepsilon(u) = 0, \quad u \in H_\varepsilon.
\]

Fix \(X = (x^1, \ldots, x^K) \in M_K(\Omega) \). Let us consider the linearized operator \(L_\varepsilon : H_\varepsilon \to L^2(\Omega_\varepsilon) \) given by

\[
L_\varepsilon(v) = \Delta v - v + p \left(\sum_{i=1}^{K} \mathcal{P}_{\Omega_\varepsilon,x_i} U \right)^{p-1} v.
\]

It is easy to see that the cokernel of \(L_\varepsilon \) coincides with its kernel. Choose approximate cokernel and kernel as

\[
K_{\varepsilon,X} = \text{span} \left\{ \frac{\partial \mathcal{P}_{\Omega_\varepsilon,x_i} U}{\partial x_j^i} \mid i = 1, \ldots, K, \ j = 1, \ldots, N \right\} \subset H_\varepsilon,
\]

\[
C_{\varepsilon,X} = \text{span} \left\{ \frac{\partial \mathcal{P}_{\Omega_\varepsilon,x_i} U}{\partial x_j^i} \mid i = 1, \ldots, K, \ j = 1, \ldots, N \right\} \subset L^2(\Omega_\varepsilon).
\]

Now we state the following lemmas, which allow us to reduce problem (4.2) to a finite dimensional problem.

Lemma 6.1. For any compact set \(C \subset M_K(\Omega) \) there exists \(\varepsilon_0 > 0 \) such that for any \(\varepsilon \in (0, \varepsilon_0) \) and \(X \in C \) there exists a unique \(\Phi_{\varepsilon,X} \in K_{\varepsilon,X}^+ \) such that

\[
S_\varepsilon \left(\sum_{i=1}^{K} \mathcal{P}_{\Omega_\varepsilon,x_i} U + \Phi_{\varepsilon,X} \right) \in C_{\varepsilon,X}.
\]
Moreover $\Phi_{\varepsilon,X}$ is C^1 in X and

\begin{equation}
\|\Phi_{\varepsilon,X}\|_{H^2(\Omega_\varepsilon)} \leq C e^{-(1+\sigma)\frac{D_K(x)}{\varepsilon}},
\end{equation}

where C is a positive constant, $\sigma = \min\{1, p - 1\}$ and D_K is defined in (3.3).

\textbf{Proof.} The proof relies on a contraction mapping argument. The claim can be proved by collecting some results obtained in [9] and [23]. □

We now define the function $K_\varepsilon : M_K(\Omega) \rightarrow \mathbb{R}$ by

\begin{equation}
K_\varepsilon(x^1, \ldots, x^K) = J_\varepsilon(\sum_{i=1}^{K} \mathcal{P}_{\varepsilon,x_i} U + \Phi_{\varepsilon,X}),
\end{equation}

where the "rescaled" energy functional $J_\varepsilon : H^1(\Omega_\varepsilon) \rightarrow \mathbb{R}$ is defined in (5.3).

Firstly we compute the asymptotic expansion of K_ε.

\textbf{PROPOSITION 6.2.} $X_\varepsilon = (x_1^\varepsilon, \ldots, x_K^\varepsilon)$ is a critical point of K_ε if and only if $u_\varepsilon = \sum_{i=1}^{K} \mathcal{P}_{\varepsilon,x_i} U + \Phi_{\varepsilon,X}$ is a solution of (4.2). Moreover the following estimate holds uniformly on compact sets of $M_K(\Omega)$

\begin{equation}
K_\varepsilon(x) = KA - \frac{1}{2} \gamma e^{-\frac{\Psi_\varepsilon(x)}{\varepsilon}} + o \left(e^{-\frac{\Psi_\varepsilon(x)}{\varepsilon}} \right),
\end{equation}

where

\begin{equation}
A = \frac{1}{2} \int_{\mathbb{R}^N} (|\nabla U|^2 + U^2) - \frac{1}{p + 1} \int_{\mathbb{R}^N} U^{p+1}, \quad \gamma = \int_{\mathbb{R}^N} U^p(y)e^{-\Psi_\varepsilon(y)}dy.
\end{equation}

\textbf{Proof.} See [9] and [23]). □

The next results play a crucial role in connecting the topological structure of the sublevels of the function D_K with the topological structure of the sublevels of the function K_ε.

\textbf{LEMMA 6.3.} Let $X_1^\varepsilon, X_2^\varepsilon$ be sequences in $M_K(\Omega)$ such that $\lim_{\varepsilon \to 0} X_1^\varepsilon = X_1 \in M_K(\Omega)$, $\lim_{\varepsilon \to 0} X_2^\varepsilon = X_2 \in M_K(\Omega)$ and $D_K(X_1) < D_K(X_2)$. Then there exists $\varepsilon_0 > 0$ such that for any $\varepsilon \in (0, \varepsilon_0)$

\begin{equation}
K_\varepsilon(X_1^\varepsilon) < K_\varepsilon(X_2^\varepsilon).
\end{equation}

\textbf{Proof.} We argue as in the proof of Lemma (5.3) using asymptotic expansion (6.3).

\textbf{LEMMA 6.4.} Let C_1, C_2 be two compact subsets of $M_K(\Omega)$. If

\[\min_{X \in C_1} D_K(X) > \max_{X \in C_2} D_K(X) \]

then there exists $\varepsilon_0 > 0$ such that for any $\varepsilon \in (0, \varepsilon_0)$

\begin{equation}
\min_{X \in C_1} K_\varepsilon(X) > \max_{X \in C_2} K_\varepsilon(X).
\end{equation}
THE ROLE OF THE DISTANCE FUNCTION IN SOME ELLIPTIC PROBLEMS

Now we prove that a suitable critical point of the function \(D_K \) generates a critical point of \(K_\varepsilon \).

Theorem 6.5. Let \(c \) be a critical value topologically nontrivial of the function \(D_K \) (see Definition (2.4)). Then there exists a sequence \((X_\varepsilon) \) of critical points of \(K_\varepsilon \) such that \(\lim_{\varepsilon \to 0} X_\varepsilon = X_0, \, D_K(X_0) = c \) and \(X_0 \in M_K(\Omega) \).

Proof. By definition (2.4) there exist a family of \(Q_\delta, A_\delta, S_\delta \) of \(M_K(\Omega) \), which satisfy (2.1), (2.2), (2.3) and (2.6), namely:

\[
\max_{X \in \partial Q_\delta} D_K(X) < \min_{X \in S_\delta} D_K(X) \leq c \leq \max_{X \in Q_\delta} D_K(X) < \min_{X \in A_\delta} D_K(X)
\]

and

\[
\lim_{\delta \to 0} \min_{X \in S_\delta} D_K(X) = \lim_{\delta \to 0} \max_{X \in Q_\delta} D_K(X) = c.
\]

Then by (6.5) of Lemma (6.4) for any \(\delta \) small enough there exists \(\varepsilon_0(\delta) > 0 \) such that for any \(\varepsilon \in (0, \varepsilon_0) \)

\[
\max_{X \in \partial Q_\delta} K_\varepsilon(X) < \min_{X \in S_\delta} K_\varepsilon(X) \leq \max_{X \in Q_\delta} K_\varepsilon(X) < \min_{X \in A_\delta} K_\varepsilon(X).
\]

Finally we want to show that a family of critical points of \(K_\varepsilon \) converges to a critical point of the function \(D_K \). Firstly we have to compute the asymptotic expansion of the gradient of \(K_\varepsilon \).

First of all we have to compute the expansion of the gradient of \(K_\varepsilon \).

Proposition 6.6. For any \(X \in M_K(\Omega) \)

\[
\nabla K_\varepsilon(X) = \frac{\gamma}{\varepsilon} \beta_\varepsilon(X) e^{-\frac{\Phi_\varepsilon(X)}{\varepsilon}} + o\left(\frac{1}{\varepsilon}\right),
\]

where \(\beta_\varepsilon(X) \in \partial D_K(X) \) (see Lemma sottodiffik)) and \(\gamma \) is a positive constant (see Theorem (6.2)).

Proof. See Lemma (5.1) of [21].

Theorem 6.7. Let \(X_\varepsilon = (x_1^\varepsilon, \ldots, x_K^\varepsilon) \) be a critical point of \(K_\varepsilon \) such that for \(i = 1, \ldots, K \) \(x_0^i = \lim_{\varepsilon \to 0} x_\varepsilon^i \in \Omega \). Then \(X_0 = (x_0^1, \ldots, x_0^K) \in M_K(\Omega) \) and \(X_0 \) is a critical point of the function \(D_K \).

Proof. First of all we prove that \((x_0^1, \ldots, x_0^K) \in M_K(\Omega) \), namely \(x_0^i \neq x_0^j \) if \(i \neq j \) (see [21], Theorem (6.1)).

Secondly we show that \(X_0 \) is a critical point of the function \(D_K \). Since \(X_\varepsilon \) is a critical point of \(K_\varepsilon \) by Proposition (6.6) we get

\[
0 = \nabla K_\varepsilon(X_\varepsilon) = \frac{1}{\varepsilon} \gamma \beta_\varepsilon(X_\varepsilon) e^{-\frac{\Phi_\varepsilon(X_\varepsilon)}{\varepsilon}} + o\left(\frac{1}{\varepsilon}\right),
\]

where \(\beta(X_\varepsilon) \in \partial D_K(X_\varepsilon) \) and \(\gamma \) is a positive constant. By (6.10) we deduce

\[
\beta(X_\varepsilon) + o(1) = 0.
\]

Let \(X_0 = \lim_{\varepsilon \to 0} X_\varepsilon \). By using Remark (1.4) we get \(\lim_{\varepsilon \to 0} \beta(X_\varepsilon) = \beta(X_0) \in \partial D_K(X_0) \) and by (6.11) we deduce that \(\beta(X_0) = 0 \). Then \(X_0 \) is a critical point of the function \(D_K \) since \(0 \in \partial D_K(X_0) \) (see Definition (1.7)).

Proof of Theorem (0.3). It follow by Proposition (6.2) and Theorem (6.5).

Proof of Theorem (0.4). It follow by Proposition (6.2) and Theorem (6.7).
7. Examples.

Example 7.1. (A domain with one hole) Let \(\Omega = \Sigma \setminus \sigma \) where \(\sigma \subset \Sigma \) are open sets. Assume \(\max_\Omega \omega \geq \frac{1}{2} \text{dist} (\partial \sigma, \partial \Sigma) \). Then \(c_1 = \omega(x_1) = \max_\Omega \omega \) and \(c_2 = \omega(x_2) = \frac{1}{2} \text{dist} (\partial \sigma, \partial \Sigma) \) are two critical values topologically nontrivial of the distance function.

Proof. The existence of \(c_1 \) is trivial. Let us prove the existence of \(c_2 \). Let \(y_0 \in \partial \Sigma \) and \(z_0 \in \partial \sigma \) such that \(|y_0 - z_0| = \text{dist} (\partial \sigma, \partial \Sigma) \). Set \(x_0 = \frac{y_0 + z_0}{2} \). Then \(\omega(x_0) = \frac{1}{2}|y_0 - z_0| \). Let:

\[
S = \{ x \in \Sigma \mid \text{dist} (x, \partial \sigma) = \omega(x_0) \}
\]

and

\[
Q = \{ ty_0 + (1 - t)z_0 \mid t \in [\delta, 1 - \delta] \}
\]

for some \(\delta > 0 \).

Then it is easy to prove that the sets \(Q \) and \(S \) satisfies assumptions (2.1), (2.2) and (2.3):

\[
\max_{x \in \partial Q} \omega(x) < \min_{x \in S} \omega(x) = \omega(x_0) = \max_{x \in Q} \omega(x).
\]

That proves that \(\omega(x_0) \) is a critical value topologically nontrivial of the distance function in the sense of Definition (2.4). \(\square \)

Example 7.2. (A domain with two holes) Let \(\Omega = \Sigma \setminus (\overline{\sigma_1} \cup \overline{\sigma_2}) \) where \(\sigma_i \subset \Sigma \) are open sets, \(\sigma_1 \) and \(\sigma_2 \) are strictly convex and \(\sigma_1 \cap \sigma_2 = \emptyset \). Assume

\[
(7.1) \quad \text{dist} (\partial \sigma_1, \partial \Sigma) < \text{dist} (\partial \sigma_2, \partial \Sigma) < \text{dist} (\partial \sigma_1, \partial \sigma_2)
\]

Then \(c_1 = \omega(x_1) = \max_\Omega \omega, c_2 = \omega(x_2) = \frac{1}{2} \text{dist} (\partial \sigma_1, \partial \Sigma), c_3 = \omega(x_3) = \frac{1}{2} \text{dist} (\partial \sigma_2, \partial \Sigma) \) and \(c_4 = \omega(x_4) = \frac{1}{2} \text{dist} (\partial \sigma_1, \partial \sigma_2) \) are four critical values topologically nontrivial of the distance function.

Proof. The existence of \(c_1 \) is trivial. First of all we prove the existence of \(c_2 \) and \(c_3 \). Let \(i = 1, 2 \). Let \(y_0^i \in \partial \Sigma \) and \(z_0^i \in \partial \sigma_i \) such that \(|y_0^i - z_0^i| = \text{dist} (\partial \sigma_i, \partial \Sigma) \). Set \(x_0^i = \frac{y_0^i + z_0^i}{2} \). Then \(\omega(x_0^i) = \frac{1}{2}|y_0^i - z_0^i| \). Let:

\[
S_i = \{ x \in \Sigma \mid \text{dist} (x, \partial \sigma_i) = \omega(x_0^i) \}
\]

and

\[
Q_i = \{ ty_0^i + (1 - t)z_0^i \mid t \in [\delta, 1 - \delta] \}
\]

for some \(\delta > 0 \).

We point out that (7.1) ensures that \(\omega(x) = \text{dist} (x, \partial \sigma_i) \quad \forall x \in S_i \). Then it is easy to prove that the sets \(Q_i \) and \(S_i \) satisfies assumptions (2.1), (2.2) and (2.3):

\[
\max_{x \in \partial Q_i} \omega(x) < \min_{x \in S_i} \omega(x) = \omega(x_0^i) = \max_{x \in Q_i} \omega(x).
\]

That proves that \(\omega(x_0^i) \) is a critical value topologically nontrivial of the distance function in the sense of Definition (2.4).
Now we prove the existence of c_4. Since σ_1 and σ_2 are strictly convex there exist exactly two points $z_1 \in \partial \sigma_1$ and $z_2 \in \partial \sigma_2$ such that $|z_1 - z_2| = \text{dist} (\partial \sigma_1, \partial \sigma_2)$. Set $x_0 = \frac{z_1 + z_2}{2}$. Then $d_{\Omega}(x_0) = \frac{1}{2}|z_1 - z_2|$. Let for some $\delta > 0$

$$Q = \{tz_1 + (1-t)z_2 \mid t \in [\delta, 1-\delta]\},$$

$$S = \{\text{hyperplane perpendicular to } Q \text{ crossing the point } x_0 \} \cap B(x_0, \delta).$$

and

$$A = \{\text{hyperplane perpendicular to } Q \text{ crossing the point } x_0 \} \cap \partial B(x_0, \delta).$$

Then it is easy to prove that the sets Q, S and A satisfies assumptions (2.1), (2.2) and (2.3):

$$\max_{x \in \partial Q} d_{\Omega}(x) < \min_{x \in S} d_{\Omega}(x) = d_{\Omega}(x_0) = \max_{x \in Q} d_{\Omega}(x) < \min_{x \in A} d_{\Omega}(x).$$

That proves that $d_{\Omega}(x_0)$ is a critical value topologically nontrivial of the distance function in the sense of Definition (2.4). □

If the domain has a lot of holes the existence of many critical values topologically nontrivial of the distance function strongly depends on the geometry of the holes.

Example 7.3. *(A domain with k handles)* Let Ω be a domain with k handles. Then there exist at least $2k + 1$ distinct critical values topologically nontrivial of the distance function: $k+1$ local maxima of d_{Ω} and k local saddle levels.

Note that we can have more than a critical point at the same level.

Example 7.4. Let Ω be the dumbell. Then d is a critical value topologically nontrivial of D_2. Moreover one can choose the dumbell so that $(0, d, 0, -d)$ is the unique critical point of V_2 at level d.

We prove that the point $(0, d, 0, -d)$ is a "local saddle point" of D_2. Fix $\varepsilon > 0$ and set

$$Q_\varepsilon = \{(0, x_2^1) \in \Omega \mid \|x_2^1 - d\| \leq \varepsilon\} \times \{(0, x_2^2) \in \Omega \mid \|x_2^2 + d\| \leq \varepsilon\}$$

$$\partial Q_\varepsilon = \{(0, d \pm \varepsilon)\} \times \{(0, x_2^1) \in \Omega \mid \|x_2^1 - d\| \leq \varepsilon\}$$

$$\cup \{(0, x_2^1) \in \Omega \mid \|x_2^1 - d\| \leq \varepsilon\} \times \{(0, -d \pm \varepsilon)\}$$

For $\delta > 0$ and $\rho > 0$ set

$$C_\delta = \{x \in \Omega \mid d_{\Omega}(x) = d + \delta\}$$

$$S_\delta = \left(B\left((0, d), \rho \right) \cap C_\delta\right) \times \left(B\left((0, -d), \rho \right) \cap C_\delta\right)$$

$$A_\delta = \left(\partial B\left((0, d), \rho \right) \cap C_\delta\right) \times \left(B\left((0, -d), \rho \right) \cap C_\delta\right)$$

$$\cup \left(B\left((0, d), \rho \right) \cap C_\delta\right) \times \left(\partial B\left((0, -d), \rho \right) \cap C_\delta\right).$$

Then by using Remark (2.2) it is easy to check that if we choose δ and ρ small enough ∂Q_δ, Q_δ, A_δ and S_δ are subsets of $\Omega \times \Omega$ which satisfy (2.1), (2.2) and (2.3) and

$$\max_{\partial Q_\delta} D_2 = d - \varepsilon < \min_{S_\delta} D_2 = d - \delta < d = \max_{Q_\delta} D_2 < \min_{A_\delta} D_2 = d + \delta.$$
Moreover \(\lim_{\delta \to 0} \min S^\delta d = d. \) By Lemma (3.7) we deduce that the sets \(\{X \in \mathcal{M}_K(\Omega) \text{ s.t. } c \leq D_K(X)\} \) are complete for any \(c > 0. \) Therefore \(d \) is a critical value of \(D_2. \)

Finally by using Remark (3.4) and Remark (3.3) one can construct a dumbell in such a way the distance function is differentiable at any \(x \) with \(d(x) = d \) and by using Corollary (3.9) one can check that \((0, d, 0, -d) \) is the unique critical point of \(D_2 \) at level \(d. \) \(\square \)

Remark 7.5. We note that in the dumbell the points \((a, r, a, -r)\) and \((b, R, b, -R)\) are two local maximum points of the function \(D_2 \) at different levels \(D_2(a, r, a, -r) = r \) and \(D_2(b, R, b, -R) = R. \)

However we point out that such points are not isolated critical points of \(D_2 \) at levels \(r \) and \(R, \) respectively. In fact if \(x^1 \) is a point close enough to the point \((a, r),\) which belongs to the sphere centered at \((a, 0)\) with radius \(r \) and \(x^2 \) is the point diametrically opposite, it is easy to check that \((x^1, x^2)\) is a local maximum point of the function \(D_2 \) at level \(r. \)

References

THE ROLE OF THE DISTANCE FUNCTION IN SOME ELLIPTIC PROBLEMS

