1. Introduction. A number of proofs have been offered of the fact that Burgers’ equation, with Brownian external force, settles down, with time, into a statistically steady state: see, for instance, Sinai [1996], E-Khanin-Mazel-Sinai [2000], and Kuksin-Shirikyan [2001]. I propose a simple proof based on ideas of Doblin [1940] and Feller [1966]. The equation in question:

\[
\frac{\partial v}{\partial t} + v \frac{\partial v}{\partial x} = \frac{1}{2} \frac{\partial^2 v}{\partial x^2} + \epsilon \frac{db}{dt}
\]

represents an \(\infty\)-dimensional diffusion in the space of functions \(v(x): 0 \leq x < 1\) of period 1 say, with mean value \(\int_0^1 v = 0\). The external force \(\epsilon dB/dt\) is a sum of “modes” \(e_n(x) \equiv \epsilon_n \times \sqrt{2} \sin (\cos(2\pi nx))/n\), indexed by \(n \geq 1\), multiplied each by the differential of its private 1-dimensional standard Brownian motion \(b_n(t): 0 \leq t < \infty\).

It is assumed for the present proof that all modes are active, i.e. \(e_n \neq 0\) for any \(n \geq 1\), and that the force is smooth in respect to \(0 \leq x < 1\), i.e. that \(e_n\) vanishes rapidly; the second proviso permits you to realize the diffusion in the space \(C^\infty[0,1)\). The force competes with the restoring drift \((1/2)\partial^2 v/\partial x^2\), pulling back towards the origin as per \(\int_0^1 v_v'' = \int_0^1 (v')^2 \leq 0\), and with the twist \(v_v/\partial x\), so-called because \(\int_0^1 v(v') = 0\), the outcome being the statistical steady state cited at the start. The simplicity of the present method has its price: in particular, it does not yield the exponentially fast convergence of \(F_t(v) \equiv E_v[F(v_t)]\) to the invariant mean \(\int F(v)dM(v)\), which must be a consequence of the rapid return of the diffusion to the vicinity of \(v \equiv 0\). Observe, in this connection,

\[
d \int_0^1 v^2 = -\int_0^1 (v')^2 dt + 2 \int_0^1 ev db + \int_0^1 e^2 dt
\]

\[
\leq -4\pi^2 \int_0^1 v^2 dt + 2 \int_0^1 ev db + \int_0^1 e^2 dt
\]

with the obvious result that, up to the passage time \(T = \min(t: \int_0^1 v^2 = r^2)\),

\[
e^{4\pi^2 t} \leq e^{4\pi^2 t} \int_0^1 e^2 dt \leq \int_0^1 e^2 + 2 \int_0^1 e^{4\pi^2 s} \int_0^1 e^2 \sqrt{\int_0^1 e^2 - \frac{1}{4\pi^2},}
\]

which yields

\[
E_v(e^{4\pi^2 T}) \leq \frac{R^2}{r^2 - (1/4\pi^2)} \int_0^1 e^2 \quad \text{for } R^2 = \int_0^1 v^2 > r^2 > \frac{1}{4\pi^2} \int_0^1 e^2.
\]
2. The Diffusion. The equation can be solved with the help of the Cole-Hopf substitution: if \(w = \exp\left[-\int_0^1 dt \int_0^t v(\eta)d\eta\right]\), then
\[
\frac{\partial w}{\partial t} = \frac{1}{2} \frac{\partial^2 w}{\partial x^2} + w f dB + \frac{w}{2}\left[f^2 - \int_0^1 \left(\frac{w'}{w}\right)^2\right]
\]
with \(-f' = e, w > 0\) and \(\int_0^1 \ell nw = 0\), and this equation yields to the Feynman-Kač formula: \(w(t, x) = Z^{-1} E_x[\delta w(0, x_t)]\), in which \(x(t) : t \geq 0\) is an auxiliary 1-dimensional standard Brownian motion,
\[
Z = \exp\left[\int_0^t f(x_{t-})db_s\right], \text{ and } Z = \exp\left[\int_0^1 \ell nE_x(\delta w)\right]
\]
is a normalizer to keep \(\int_0^1 \ell nw = 0\). The recipe may be re-expressed in terms of the auxiliary Brownian motion tied at \(x(0) = 0\) and \(x(t) = 0\). Then a simple application of Kolmogorov-Centsov shows that the path \(w\) (and so also \(v\)) can be realized in the space of functions jointly of class \(C[0, \infty)\) in respect to \(t \geq 0\) and of class \(C^\infty[0,1]\) in respect to \(0 \leq x < 1\). In this way the diffusion is constructed: \(v = -w'/w\). The aim is now to prove the existence of the limit \(F(v) \lim_{t \to \infty} E_v[F(v_t)]\) and to identify it as the invariant mean \(\int F(v) dM(v)\). Naturally, it is essential that the mass of the distribution of \(v\) not run out to \(\infty\). I dispose of this once by the estimate employed at the end of Section 1 which yields
\[
E\left(\int_0^1 v^2\right) \leq e^{-4\pi^2 t} \int_0^1 v_0^2 + \int_0^1 e^{2} \frac{1}{4\pi^2} (1 - e^{-4\pi^2 t})
\]
whence
\[
P\left(\int_0^1 v^2 > R^2\right) \leq R^{-2} \left[e^{-4\pi^2 t} r^2 + \frac{1}{4\pi^2} \int_0^1 e^2\right] \text{ with } r^2 = \int_0^1 v_0^2.
\]

3. Equicontinuity. Let \(v^*(t, x)\) be the functional gradient \(\partial v(t, x)/\partial v(0, y)\) for fixed \(0 \leq y < 1\). You have \(\partial^2 v^* \partial t = (1/2)\partial^2 v \partial x^2 - (\partial / \partial x^2)(v^*)\) with \(v^*(0, x) dx = \text{the unit mass at } x = y\), and this may be solved by a combination of Cameron-Martin and Feynman-Kač: to wit,
\[
v^*(t, x) = E_x[e^{-\int_0^t v(t-s, x_u)dx_u - \frac{1}{2} \int_0^t v^2(t-s, x_u)dx_u - \int_0^t v'(t-s, x_u)dx_u}, x_t = y]^{1}
\]
which reduces to
\[
E_y[e^{-\int_0^t v(s, x_u)dx_u - \frac{1}{2} \int_0^t v^2(s, x_u)dx_u}, x_t = x] \equiv E_y[v, x_t = x]
\]
upon reversal of the auxiliary Brownian path as per \(x(s) \to x(t-s) (s \leq t)\). Now the chain rule in function space applied to \(F_t(v) = E_v[F(v_t)] = 2BM[F(v_t)]\) with \(F\) of class \(C^1[0, 1] \to \mathbb{R}\) and \(v + \theta \Delta v\) in place of \(v\), plain, yields
\[
F_t(v + \Delta v) - F_t(v) = \int_0^1 d\theta \int_0^1 \Delta v(y)dy BM \int_0^1 \text{grad} F E_y[v, x_t = x]dx
\]
\(^1E[I, x_t = y]\) is short for the density \((\partial / \partial y)E[I, x_t \leq y]\).
\(^2BM\) is the Brownian mean over the individual motions \(b_n : n \geq 1\).
with \(\text{grad} \, F \) taken at \(v \), so that

\[
|F_t(v + \Delta v) - F_t(v)| \leq |\text{grad} \, F|_\infty \int_0^1 |\Delta v| dy E_y(v) \leq |\text{grad} \, F|_\infty |\Delta v|_\infty
\]

in view of \(E(v) \leq 1 \). This provides compactness, permitting you to choose \(\alpha = \alpha_1 > \alpha_2 > \text{etc.} \). \(\lim_0 \) so as to make \(G_\alpha(v) = \alpha \int_0^\infty e^{-\alpha t} F_t(v) dt \) converge to a function \(G_0(v) \) of class \(C[0,1] \rightarrow \mathbb{R} \), uniformly on compact figures such as \(K = (v : \int_0^1 (v')^2 \leq R^2) \).

I prefer this mode of convergence to the plain \(\lim_\infty F_t(v) \) as it avoids a difficulty with the non-compactness of \(C[0,1] \).

4. \(G_0(v) \) is Constant in Respect to \(v \). The point is that the diffusion comes close to the origin \(v \equiv 0 \) so that the path emanating from that place is typical; this is the idea of Dobšin [1940]. Let a small number \(r \) and a big number \(R \) be fixed, let \(K \) be the compact figure \((v : \int_0^1 (v')^2 \leq r^2 \& \int_0^1 (v')^2 \leq R^2) \), and let \(T \) be the smaller of the passage time to \(K \) and an adjustable integer \(N = 1, 2, 3 \text{ etc.} \). Then

\[
G_\alpha(v) = \alpha E_v \int_0^T e^{-\alpha t} F_t(v) dt + E_v [e^{-\alpha T} G_\alpha(v_T)]
\]

implies 1) \(G_0(v) = E_v[G_0(v_T)] \) since \(T \leq N ; 2 \) the same with \(T \) now equal to the passage time to \(K \), by making \(N \uparrow \infty \); and 3) \(G_0(v) = G_0(0) \) by making \(r \downarrow 0 \) so that \(K \) shrinks to the origin. It is here that the proviso \(e_n \neq 0 (n \geq 1) \) is used. Of course 2) is correct only if the passage time to \(K \) is finite with probability one. This is so provided \(R \) is big enough.

Proof. If, for some small \(r \) and big \(R \), the passage time \(T \) is infinite, then for every \(t \geq 0 \), either \(\int_0^1 ev > r^2 \) or \(\int_0^1 (v')^2 > R^2 \). Let \(E \) be the set of times \(s \leq t \) when \(\int_0^1 ev > r^2 \) and \(E' \) its complement, on which you must have \(\int_0^1 (v')^2 > R^2 \). Two cases arise.

Case 1: \(\int_0^\infty e^{4\pi^2 t} \left(\int_0^1 ev \right)^2 dt < \infty \). Then

\[
d \int_0^1 v^2 = -\int_0^1 v^2 \, dt + 2 \int_0^1 ev \, db + \int_0^1 e^2 \, dt,
\]

\[
\leq -\frac{1}{2} \int_0^1 (v')^2 \, dt - 2\pi^2 \int_0^1 v^2 \, dt + 2 \int_0^1 ev \, db + \int_0^1 e^2 \, dt,
\]

and the resulting estimate

\[
e^{2\pi^2 t} \int_0^1 v^2 \leq \int_0^1 v_0^2 - \frac{1}{2} \int_0^t e^{2\pi^2 s} \int_0^1 (v')^2 \, ds + 2 \int_0^t e^{2\pi^2 s} \int_0^1 ev \, db + \int_0^1 e^2 \times \frac{e^{2\pi^2 t}}{2\pi^2}
\]
implies\(^3\)

\[
\int_0^t ds e^{2\pi^2 s} \int_0^1 (v')^2 \leq \int_0^1 e^s \times e^{2\pi^2 s} \text{ for } t \uparrow \infty.
\]

But now

\[
2e^{2\pi^2 t} \geq \int_0^1 e^{2\pi^2 s} (\int_0^1 ev)^2 + \int_0^t e^{2\pi^2 s} \int_0^1 (v')^2
\]

\[
\geq r^2 \int_E e^{4\pi^2 s} + R^2 \int_{E'} e^{2\pi^2 s}
\]

cannot be balanced as \(t \uparrow \infty \) if \(R \) is too big in comparison to \(\int_0^1 e^2 \), no matter how small the fixed number \(r > 0 \) may be.

Case 2: \(\int_0^\infty e^{4\pi^2 t} \int_0^1 (ev)^2 dt = \infty \). You have

\[
e^{2\pi^2 t} \int_0^1 v'^2 \leq \int_0^t v'^2 - \frac{1}{2} \int_0^t e^{2\pi^2 s} \int_0^1 (v')^2 ds + 2 \int_0^t e^{2\pi^2 s} \int_0^1 ev db + \int_0^1 e^s \times e^{2\pi^2 t}
\]

as before, and an application of the law of the iterated logarithm to the Brownian integral produces the over-estimate of the right side by

\[
\int_0^1 v'^2 \int_0^t v'^2 - \frac{1}{2} \int_0^t e^{2\pi^2 s} \int_0^1 (v')^2 ds \times \ell n \ell n \text{ (ditto)} + \int_0^1 e^s \times e^{2\pi^2 t},
\]

valid i.o. as \(t \uparrow \infty \), so that, i.o.,

\[
N \times \int_0^t e^{4\pi^2 s} \left(\int_0^1 ev \right)^2 + \frac{1}{2} \int_0^t e^{2\pi^2 s} \int_0^1 (v')^2 + \leq \int_0^1 v'^2 + \int_0^1 e^2 \times e^{2\pi^2 t}
\]

for any \(N = 1, 2, 3 \) etc. you like, and

\[
N r \sqrt{\int_E e^{4\pi^2 s}} + \frac{R^2}{2} \int_{E'} e^{2\pi^2 s} \leq 2 \int_0^1 e^s \times e^{2\pi^2 t} \text{ i.o.}
\]

But then \(\int_{E'} e^{2\pi^2 s} \) is small compared to \(e^{2\pi^2 t} \), \(R \) being large, so that

\[
\int_E e^{4\pi^2 s} = \frac{e^{4\pi^2 t} - 1}{4\pi^2} - \int_{E'} e^{4\pi^2 s} \geq \frac{e^{4\pi^2 t} - 1}{4\pi^2} - e^{2\pi^2 t} \int_{E'} e^{2\pi^2 s}
\]

is comparable to \((1/4\pi^2)e^{4\pi^2 t} \), and the preceding display may be unbalanced by choice of \(N \).

\(^3\)\(\int_0^\infty I db \) is finite if \(\int_0^\infty I^2 dt < \infty \) for any non-anticipating \(I \).

\(^4\)The point is that \(\int_0^t I db \) looks like a standard 1-dimensional Brownian motion run with the clock \(\int_0^t I^2 \).
5. **Identification of $G_0(0)$**. To complete the proof, it is necessary to know that $G_0(0)$ does not depend upon the mode of approach of α to 0^+. Then $G_0(0) = \int F(v) dM(v)$ with invariant M: in fact, G_α formed with $F_\alpha(v) = E_v[F(v_t)]$ in place of F is nothing but $E_v[G_\alpha(v_t)]$ with the old G_α so that

$$\int F_t(v) dM(v) = E_v[G_\alpha(v_t)] = G_0(0) = \int F(v) dM(v),$$

as advertised. The uniqueness of the invariant measure is now self evident, too. The omitted identification of $G_0(0)$ is simple. Take $F \geq 0$ an dt he compact figure $K = \{v : \int_0^1 (v')^2 \leq R^2\}$. This is harmless to the generality of F, R being adjustable. Let m_α be the maximum of G_α; obviously, $m_\alpha \downarrow m_0 \geq 0$ as $\alpha \downarrow 0$ and $G_0 \leq m_0$. It is to be proved that $G_0 \equiv m_0$.

Proof. Let T be the passage time to K. Then, with the cut-off in F, $F(v_t) = 0$ for $t \leq T$, and $G_\alpha(v) = E_v[e^{-\alpha T}G_\alpha(v_T)];$ in particular, G_α peaks at some place $v_\alpha \in K$. Now, with $\alpha =$ the old α_n of §3 and $n \uparrow \infty$, you have $m_\alpha = G_\alpha(v_\alpha)$, and the convergence of $G_\alpha(v)$ to the constant $G_0(0)$, which is uniform on the compact K, implies $m_0 = G_0(v_0)$ for some $v_0 \in K$. Then $m_0 = G_0(0)$ in short, the full limit $G_\alpha(v) = m_0$ exists. This nice trick is adapted from Feller [1966].

REFERENCES

