Let D be a tube domain (i.e. a bounded symmetric domain of tube type). In [D, §1], Deligne gives a description of D as the moduli space of certain Hodge structures. Using these methods, we show that D parametrizes a canonical variation \mathcal{V} of polarized real Hodge structures, which is effective of weight $= \text{rank}(D)$ and enjoys several remarkable properties. We end with some speculation on how \mathcal{V} might appear in algebraic geometry.

1.

Let D be a simple tube domain, and let G be (the real points of) the simply-connected, simple real algebraic group which acts transitively on D. Let K be a maximal compact subgroup of G; then K fixes a unique point of D and $D \simeq G/K$. The integer $n = \text{rank}(D)$ is defined to be the real rank of G, and the integer $d = \dim(D)$ is defined to be the complex dimension of the domain, which is one-half the real dimension of G/K. The quotient $2d/n$ is always an integer [S, p. 37].

Since D is tube, there is a self-adjoint homogeneous cone C in a Euclidean space N over \mathbb{R} such that $D \simeq N + iC \subseteq N_C$ [S, p. 128].

We recall [D, 1.2.6] that the simple bounded symmetric domains are classified by pairs (Δ, v), where Δ is a connected Dynkin diagram and v is a special vertex of Δ which is equivalent to the extended vertex μ under an automorphism of the affine diagram $\Delta' = \Delta \cup \{\mu\}$ [T, pp. 33-34, p. 53]. The domain is tube if v is fixed by the opposition involution of Δ.

We now tabulate the relevant pairs (Δ, v), where the special vertex is circled, and give the groups G and K associated to the tube domain D. We also describe the cone C, using the notation $S_n(F)^+$ for the cone of positive definite, $n \times n$ Hermitian symmetric matrices over the \mathbb{R}-algebras $F = \mathbb{R}, \mathbb{C}, \mathbb{H}$.

Received August 11, 1993.
\(A_{2n-1} \quad \begin{array}{c}
\cdots \\
\circ
\end{array} \quad n^{th}\text{vertex} \)

\[n \geq 1 \]

\(G = SU(n,n) \quad \text{rank}(D) = n \)

\(K = S(U(n) \times U(n)) \quad \text{dim}(D) = n^2 \)

\(C = S_n(\mathbb{C})^+ \)

\(B_n \quad n \geq 2 \quad \begin{array}{c}
\circ \\
\cdots
\end{array} \)

\(G = \text{Spin}(2,2n-1) \quad \text{rank}(D) = 2 \)

\(K = \text{Spin}(2) \times \mu_2 \text{ Spin}(2n-1) \quad \text{dim}(D) = 2n-1 \)

\(C = \text{light cone in Minkowski space } \mathbb{R}^{1,2n-2} \)

\(C_n \quad n \geq 1 \quad \begin{array}{c}
\cdots \\
\circ
\end{array} \)

\(G = Sp(2n,\mathbb{R}) \quad \text{rank}(D) = n \)

\(K = U(n) \quad \text{dim}(D) = n(n+1)/2 \)

\(C = S_n(\mathbb{R})^+ \)

\(D^\mathbb{R}_n \quad n \geq 3 \quad \begin{array}{c}
\circ \\
\cdots
\end{array} \)

\(G = \text{Spin}(2,2n-2) \quad \text{rank}(D) = 2 \)

\(K = \text{Spin}(2) \times \mu_2 \text{ Spin}(2n-2) \quad \text{dim}(D) = 2n-2 \)

\(C = \text{light cone in Minkowski space } \mathbb{R}^{1,2n-3} \)

\(D^\mathbb{H}_n \quad n \geq 2 \quad \begin{array}{c}
\circ \\
\cdots
\end{array} \)

\(G = \text{Spin}^+(4n) \quad \text{rank}(D) = n \)

\(K = U(1) \times \mu_n SU(2n) \quad \text{dim}(D) = n(2n-1) \)

\(C = S_n(\mathbb{H})^+ \)

\(E_7 \quad \begin{array}{c}
\circ \\
\end{array} \)

\(G = E_{7,3} \quad \text{rank}(D) = 3 \)

\(K = U(1) \times \mu_3 E_6 \quad \text{dim}(D) = 27 \)

\(C = S_3(\mathbb{O})^+ = \text{exceptional cone} \)

\(\mathbb{O} = \text{octonions} = \text{Cayley numbers.} \)
2.

The vertex \(v \) of \(\Delta \) determines a conjugacy class of maximal parabolic subgroups \(P = L \cdot N \) in \(G \), with unipotent radical \(N \) abelian and Levi subgroup \(L \) a real form of \(K \). The cone \(C \) is \(L \)-homogeneous in the real vector space \(N \).

The vertex \(v \) also determines a fundamental, irreducible representation \(V \) of \(G \) over \(\mathbb{R} \). The orbit of a highest weight vector in \(\mathbb{P}(V) \) is the real projective variety \(G/P \). We describe the fundamental representation \(V \), in terms of the standard representation of \(G \), in the table below.

<table>
<thead>
<tr>
<th>Type</th>
<th>(G)</th>
<th>(V)</th>
<th>dim (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>(SU(n,n))</td>
<td>(V_{\mathbb{C}} = \bigwedge^n \mathbb{C}^{2n})</td>
<td>(\binom{2n}{n})</td>
</tr>
<tr>
<td>(B, D^R)</td>
<td>(\text{Spin}(2,m))</td>
<td>(\mathbb{R}^{2n}) of (SO(2,m))</td>
<td>(2 + m)</td>
</tr>
<tr>
<td>(C)</td>
<td>(Sp(2n,\mathbb{R}))</td>
<td>(V \oplus \bigwedge^{n-2} \mathbb{R}^{2n} = \bigwedge^n \mathbb{R}^{2n})</td>
<td>(\binom{2n}{n} - \binom{2n}{n-2})</td>
</tr>
<tr>
<td>(D^H)</td>
<td>(\text{Spin}^*(4n))</td>
<td>unique (\frac{1}{2})-spin which is real</td>
<td>(2^{2n-1})</td>
</tr>
<tr>
<td>(E)</td>
<td>(E_{7,3})</td>
<td>unique miniscule representation</td>
<td>56</td>
</tr>
</tbody>
</table>

3.

We will see that the fundamental representation \(V \) gives rise to a canonical variation of polarized real Hodge structures on \(D \). To do this, following Deligne [D, §1], we must first realize \(V \) as a representation of a reductive group \(G_1 \), whose center contains \(\mathbb{G}_m \) and whose derived group is \(G \). We construct \(G_1 \) as follows.

Let \(\epsilon \) be the unique element of order 2 in the center of \(G \) which is contained in the connected component of the center of \(K \). We recall that \(Z(K)^+ \simeq U(1) \) in all cases. Let \(G_1 \) be the quotient of \(\mathbb{G}_m \times G \) by the central subgroup generated by the involution \(-1 \times \epsilon\). Since \(\epsilon \) acts as \((-1)^{n}

\text{on } V, \text{ with } n = \text{rank}(D), \text{ \(V \) extends uniquely to a representation of \(G_1 \) such that } \lambda \in \mathbb{G}_m \text{ acts by } \lambda^{-n}.

Let \(S = \text{Res}_{\mathbb{C}/\mathbb{R}} \mathbb{G}_m = \mathbb{G}_m \times U(1)/(-1 \times -1) \). A point of \(D \) determines a homomorphism \(U(1) \hookrightarrow K \hookrightarrow G \), which is an oriented isomorphism from \(U(1) \) to the connected component of the center of \(K \). Since this maps the element \(-1 \) of \(U(1) \) to the element \(\epsilon \) of \(G \), it determines a homomorphism

\[
(3.1) \quad h : S \longrightarrow G_1
\]

which is the identity on \(\mathbb{G}_m \). The \(G_1 \)-conjugacy class \(X \) of \(h \) has two connected components, each of which is isomorphic to \(D \).

Finally, the representation \(V \) of \(G_1 \), when combined with the morphism \(h \) of (3.1), gives rise to a polarized variation of real Hodge structures on
X (and hence on D), by the results of Deligne [D, Prop. 1.1.14], [M, Ch. II, Prop. 3.2]. We put \(\mathcal{V} = V \otimes \mathcal{O}_D \); this is an equivariant holomorphic vector bundle on \(D \) with connection \(\nabla \). Since \(\lambda \in \mathbb{G}_m \) acts as \(\lambda^{-n} \) on \(V \), the Hodge structures associated to \(V \) are pure of weight \(n = \text{rank}(D) \).

4.

We now investigate the properties of \(V \) as a variation of Hodge structure. We recall that \(\mathcal{V} \) has a filtration by holomorphic sub-bundles \(\cdots \supset F^p V \supset \cdots \), and that the quotient bundles

\[
\mathcal{W}^{p,q} = \frac{F^p \mathcal{V}}{F^{p+1} \mathcal{V}} \quad p + q = n
\]

are equivariant vector bundles on \(X \). On \(D \cong G/K \), these bundles correspond to the \(K \)-submodules \(W^{p,q} \) of \(V_C \) on which elements \(z \in U(1) = Z(K)^+ \) act by the character \(z^{-p}z^{-q} = z^{q-p} \).

Proposition 4.1. The variation of Hodge structures \(V \) is effective of weight \(n \), so \(\mathcal{W}^{p,q} = 0 \) unless both \(p, q \geq 0 \).

If \(p, q \geq 0 \) the equivariant vector bundle \(\mathcal{W}^{p,q} \) is irreducible. Both \(F^0 \mathcal{V} = W^{n,0} \) and \(\mathcal{V}/F^1 \mathcal{V} = \mathcal{W}^{0,n} \) are holomorphic line bundles on \(X \).

Proof. This results from a determination of the eigenspaces \(W^{p,q} \) for the action of \(U(1) \cong Z(K)^+ \) on \(V_C \), as representations of \(K \). Only the characters \(z^n, z^{n-2}, \ldots, z^{2-n}, z^{-n} \) occur, and we tabulate these representations below.

<table>
<thead>
<tr>
<th>Type</th>
<th>(K)</th>
<th>(W^{p,q})</th>
<th>(p, q \geq 0)</th>
<th>dim (W^{p,q})</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>(S(U(n) \times U(n)))</td>
<td>((\wedge^p \mathbb{C}^n)^* \otimes (\wedge^q \mathbb{C}^n)^*)</td>
<td>((n \choose p)(n \choose q))</td>
<td></td>
</tr>
<tr>
<td>B, D (^R)</td>
<td>(\text{Spin}(2) \times_{\mu^2} \text{Spin}(m))</td>
<td>(W^{2,0} = \mathbb{C}(-2) \otimes \mathbb{C}) (W^{1,1} = \mathbb{C} \otimes \mathbb{C}^m) (W^{0,2} = \mathbb{C}(2) \otimes \mathbb{C})</td>
<td>(1) (m) (1)</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>(U(n))</td>
<td>Irreducible summand of ((\wedge^p \mathbb{C}^n)^* \otimes (\wedge^q \mathbb{C}^n)^*) with highest weight ((= 2\omega_q))</td>
<td>((n \choose p)(n \choose q) - (n \choose p-1)(n \choose q-1))</td>
<td></td>
</tr>
<tr>
<td>D (^H)</td>
<td>(U(1) \times_{\mu_n} SU(2n))</td>
<td>(\mathbb{C}(q-p) \otimes (\wedge^{2p} \mathbb{C}^{2n})^*)</td>
<td>((2n \choose 2p))</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>(U(1) \times_{\mu_3} E_6)</td>
<td>(W^{3,0} = \mathbb{C}(-3) \otimes \mathbb{C}) (W^{2,1} = \mathbb{C}(-1) \otimes W^2_{27}) (W^{1,2} = \mathbb{C}(1) \otimes W^2_{27}) (W^{0,3} = \mathbb{C}(3) \otimes \mathbb{C})</td>
<td>(1) (27) (27) (1)</td>
<td></td>
</tr>
</tbody>
</table>
The connection $\nabla : \mathcal{V} \to \mathcal{V} \otimes \Omega^1_X$ satisfies Griffiths transversality: $\nabla(F^p\mathcal{V}) \subset F^{p-1}\mathcal{V} \otimes \Omega^1_X$. Hence, if Θ_X is the holomorphic tangent bundle of X, differentiating q times gives a morphism of equivariant vector bundles

\[(5.1) \quad \nabla^q : \text{Sym}^q \Theta_X \to \text{Hom}(F^n\mathcal{V}, F^p\mathcal{V}/F^{p+1}\mathcal{V}),\]

where $p + q = n$.

Proposition 5.2. The morphism ∇^q is surjective for all $0 \leq q \leq n$, and $\nabla : \Theta_X \to \text{Hom}(F^n\mathcal{V}, F^{n-1}\mathcal{V}/F^n\mathcal{V})$ is an isomorphism.

Proof. Since $\text{Hom}(F^n\mathcal{V}, F^p\mathcal{V}/F^{p+1}\mathcal{V}) \simeq \mathcal{W}^{p,q} \otimes (F^n\mathcal{V})^{-1}$ is an irreducible equivariant bundle, it suffices to check that $\nabla^q \neq 0$. This reduces to the study of the action of elements in $N_C \subset G_C$ on the eigenspace $W^{n,0}$ of \mathcal{V}_C (cf. [D, Prop. 1.1.14]). We leave the details to the reader. Since $\dim(W^{n-1,1}) = \dim(X) = d$ and the map ∇ is surjective, it is an isomorphism.

The maps ∇^q defined in (5.1) give a surjection $f = \bigoplus_{q \geq 0} \nabla^q$ of vector bundles on X:

\[(5.3) \quad \text{Sym}^\bullet(\Theta_X) = \bigoplus_{q \geq 0} \text{Sym}^q \Theta_X \xrightarrow{f} \bigoplus_{q=0}^n \mathcal{W}^{p,q} \otimes (\mathcal{W}^{m,0})^{-1} \to 0.\]

The kernel of f is a graded ideal $I = \bigoplus_{q \geq 2} I^q$ of $\text{Sym}^\bullet(\Theta_X)$, probably generated by the irreducible equivariant bundle $I^2 = \ker(\nabla^2 : \text{Sym}^2 \Theta_X \to \mathcal{W}^{n-2,2} \otimes (\mathcal{W}^{m,0})^{-1})$.

6.

If D is any tube domain, it admits a product decomposition $D = D_1 \times D_2 \times \cdots \times D_k$ into simple tube domains of the type classified in §1. The variation $\mathcal{V} = \mathcal{V}_1 \otimes \mathcal{V}_2 \otimes \cdots \otimes \mathcal{V}_k$ of polarized real Hodge structures on D is effective of weight $n = \text{rank}(D) = \sum_{i=1}^k n_i$, $F^n\mathcal{V} = F^{n_1}\mathcal{V}_1 \otimes F^{n_2}\mathcal{V}_2 \otimes \cdots \otimes F^{n_k}\mathcal{V}_k$ is a holomorphic line bundle on D, $\nabla^q : \text{Sym}^q \Theta_D \to \text{Hom}(F^n\mathcal{V}, F^p\mathcal{V}/F^{p+1}\mathcal{V})$ is surjective for all $0 \leq q \leq n$, and $\nabla = \nabla^1$ is an isomorphism. These properties characterize \mathcal{V} on D.

We end with some remarks on the irreducible representation $V = V_1 \otimes V_2 \otimes \cdots \otimes V_k$ of $G = G_1 \times G_2 \times \cdots \times G_k$ for the general tube domain D. Let
Let \(n \) be the real rank of \(G \), and let \(\{ \gamma_1, \gamma_2, \cdots, \gamma_n \} \) be a system of strongly orthogonal, non-compact positive roots for a compact torus \(T \) in \(G \) [S, p. 60]. Then

\[
\lambda = \frac{1}{2}(\gamma_1 + \gamma_2 + \cdots + \gamma_n)
\]

is the highest weight for \(T \) on \(V_\mathbb{C} \). In particular, the restriction of \(V \) to the subgroup \(\text{SL}_2(\mathbb{R})^n \) of \(G \) given by the strongly orthogonal roots contains the irreducible representation \((\mathbb{R}^2)^{\otimes n}\), and the rank of \(W^{p,q} \) is \(\geq \binom{n}{p} \).

Let \(S^\bullet(V) = \bigoplus_{n \geq 0} S^n(V) \) be the symmetric algebra on \(V \), and let \(S^\bullet(G) \) denote the sub-algebra of \(G \)-invariants. We find [K, Tables II and III] that \(V \) is a polar representation of \(G \), and that \(S^\bullet(V)^G \) is free, if and only if \(n \leq 4 \). More precisely:

\[
S^\bullet(V)^G = \begin{cases}
\mathbb{R} & \text{if } n = 1 \\
\mathbb{R}[f_2] & \text{if } n = 2 \\
\mathbb{R}[f_4] & \text{if } n = 3 \\
\mathbb{R}[f_2, \cdots, f_k] & \text{if } n = 4
\end{cases}
\]

where \(\deg f_2 = 2, \deg f_4 = 4 \), and there are \(\geq 4 \) independent invariants \(f_d \) of degrees \(d = 2, \cdots, k \) when \(n = 4 \). For example, when \(G = \text{SL}_2(\mathbb{R})^4 \) and \(V = (\mathbb{R}^2)^{\otimes 4} \), the invariants are freely generated by polynomials \(f_2, f_4, f_4', f_6 \) of degrees \(d = 2, 4, 4, 6 \). For the three simple tube domains \(D \) of rank 4, the degrees of the generating invariants are given by the degrees of the generating invariants for the reflection representations of the Weyl groups of type \(E \):

\[
\begin{align*}
G &= \text{Sp}_8(\mathbb{R}) & V &= \Lambda_0^4 \mathbb{R}^8 & d &= 2, 5, 6, 8, 9, 12 & W(E_6) \\
G &= \text{SU}_{4,4} & V_\mathbb{C} &= \Lambda_1^4 \mathbb{C}^8 & d &= 2, 6, 8, 10, 12, 14, 18 & W(E_7) \\
G &= \text{Spin}_{16}^* & V &= \frac{1}{2} \text{spin} & d &= 2, 8, 12, 14, 18, 20, 24, 30 & W(E_8)
\end{align*}
\]

We return to the case when \(D \) is simple. Let \(\check{D} = G_\mathbb{C}/P_\mathbb{C} = (G_1)_\mathbb{C}/(P_1)_\mathbb{C} \) be the compact dual of \(D \), and let \(X = D^\pm \hookrightarrow \check{D} \) be the Borel embedding [S, pp. 58–59]. Then \(X \) is the unique open orbit of \(G_1 \) on \(\check{D} \).

The equivariant vector bundles \(W^{p,q} \) on \(X \) are all pull-backs of algebraic vector bundles on \(\check{D} \). The line bundles \(\omega = W^{0,0} \) and \(\mathcal{L} = W^{0,n} \) give the two generators of \(\text{Pic}(\check{D}) \cong \mathbb{Z} \). The line bundle \(\mathcal{L} \) is ample on \(\check{D} \), and the canonical bundle of \(\check{D} \) is isomorphic to \(\omega^{2d/n} \).

Let \(\Sigma \subset \partial D \) be the Shilov boundary of \(D \), which is the unique closed orbit \(G/P \) of \(G \) in \(D \). An interesting question is to study the behavior of
the variation \mathcal{V} as one approaches a point σ of the Shilov boundary Σ of X. The resulting mixed Hodge structure \mathcal{V}_σ “mirrors” that of \mathcal{V}. One has $W_{p,q}^p = 0$ unless $p = q$, and the dimension of $W_{p,p}^p$ is equal to the dimension of W_{n-p}^n, with $p + q = n$.

Let $\mathcal{A}^q = W_{p,q} \otimes (W_{n,0})^{-1} = W_{p,q} \otimes L$. The exact sequence (5.3) of holomorphic, equivariant, algebra bundles

$$0 \longrightarrow I \longrightarrow \text{Sym}^* (\Theta) \longrightarrow \bigoplus_{q=0}^n \mathcal{A}^q \longrightarrow 0$$

on X extends, as a sequence of complex algebraic, equivariant, algebra bundles, to $\hat{\mathcal{D}} = G_C/P_C$. It then descends to a sequence of algebra bundles over the real algebraic variety $\Sigma = G/P$, with complex points $\hat{\mathcal{D}}$. This gives an algebra structure $\bigoplus_{q=0}^n \mathcal{A}^q_\mathbb{R}$ on the limit mixed Hodge structure \mathcal{V}_σ at points σ of Σ, with ample cone $C \subset N = (\mathcal{A}^1_\mathbb{R})_\sigma$.

8.

Another interesting question is whether the variation \mathcal{V} occurs in nature (i.e. algebraic geometry). There one obtains local systems of \mathbb{Q}-vector spaces, so the first requirement is to specify a descent $(G_\mathbb{Q}, V_\mathbb{Q})$ of the pair (G, V) from \mathbb{R} to \mathbb{Q}. In the cases C_n (n odd) and E_7, V is a faithful representation of G and there is a unique descent of the pair (G, V) to \mathbb{Q}. The resulting group $G_\mathbb{Q}$ is split over \mathbb{Q}_p for all finite primes p. In the cases C_n (n even), and in certain of the cases B and D^R, one can specify a descent by insisting that $G_\mathbb{Q}$ is split over \mathbb{Q}_p for all finite primes p. In the other cases, a descent requires some choice — such as an imaginary quadratic field or a definite quaternion algebra over \mathbb{Q}.

Assume that a descent $(G_\mathbb{Q}, V_\mathbb{Q})$ of the pair (G, V) has been specified. One can then ask if there is a family $f : Y \to S$ of smooth complex polarized projective varieties, where the base $S = \Gamma \setminus D$ is uniformized by D and Γ is an arithmetic subgroup of $G_\mathbb{Q}$, such that $V_\mathbb{Q}$ is the pull-back to D of the variation $(R^n f_* \mathcal{O}_{\mathbb{Q}})_{\text{primitive}} = V_Y$ on S. The limit mixed Hodge structure $\bigoplus_{q=0}^n \mathcal{A}^q_\mathbb{Q}$ will then be associated to degenerations in the family $f : Y \to S$ over the 0-dimensional cusps $\Gamma \setminus G_\mathbb{Q}/P_\mathbb{Q}$ of the Satake compactification \overline{S}.

9.

The simplest geometric families $f : Y \to S$ to study are those where the fibres Y_s have dimension $n = \text{rank}(D)$ and trivial canonical class $(c_1(Y_s) = 0$, or equivalently $\Omega^n_{Y_s} \simeq \mathcal{O}_{Y_s}$). Then $F^n V_Y = f_* \Omega^n_{Y/S}$ is a holomorphic
line bundle on S, and (when S is a universal family) the Kodaira-Spencer map:

$$\nabla : \Theta_S \longrightarrow \text{Hom}(F^n\mathcal{V}_Y, F^{n-1}\mathcal{V}_Y / F^n\mathcal{V}_Y)$$

is an isomorphism (cf. [Tn]). Hence, several of the key properties of $\mathcal{V}_\mathbb{Q}$ established in §4 hold for \mathcal{V}_Y.

For example, if one takes the descent $G_\mathbb{Q} = Sp(2n, \mathbb{Q})$ of $G = Sp(2n, \mathbb{R})$ to \mathbb{Q}, which is the only choice when n is odd and is split at all finite primes p in general, then $\mathcal{V}_\mathbb{Q}$ is the pull-back of \mathcal{V}_Y for a universal family $f : Y \to S$ of polarized abelian varieties of dimension n.

10. More generally, $\mathcal{V}_\mathbb{Q}$ might arise from a sub-Hodge structure $\mathcal{V}_{Y,p} \subset \mathcal{V}_Y$ on S, where p is a projector in the primitive cohomology of dimension n. For example, if $G = \text{Spin}(2,10)$, the homogeneous cone C associated to D is isomorphic to $S_2(\mathbb{O})^+$, the cone of 2×2 positive definite symmetric matrices over the octonions. Since the octonions have a unique descent to \mathbb{Q}, one obtains a descent $G_\mathbb{Q}$ for G which is split at all finite primes p. In this case $\mathcal{V}_\mathbb{Q}$ has type $(1,10,1)$ and arises as the pull-back of $\mathcal{V}_Y^{n=1}$, for a universal family $f : Y \to S$ of polarized K3 surfaces with an Enriques involution σ (which is generically fixed point free on Y_s).

Can such a geometric realization be found in the case when $G = E_{7,3}$ and $C = S_3(\mathbb{O})^+$? Here there is a unique descent $(G_\mathbb{Q}, \mathcal{V}_\mathbb{Q})$ to \mathbb{Q}, and one is looking for a family of 3-folds $f : Y \to S$ with trivial canonical class, such that $\mathcal{V}_\mathbb{Q}$ is the pull-back of a sub-Hodge structure $\mathcal{V}_{Y,p} \subset \mathcal{V}_Y$.

The Hodge numbers of $\mathcal{V}_\mathbb{Q}$ are $(1,27,27,1)$. Hence we must have $h^{1,0}(Y_s) \geq 27$; the general theory of 3-folds with $c_1 = 0$ then shows that one must have $h^{1,0}(Y_s) = h^{2,0}(Y_s) = 0$. For reasons of mirror symmetry, it seems unlikely that $\mathcal{V}_\mathbb{Q}$ is the pull-back of the entire 3-cohomology \mathcal{V}_Y. The simplest guess, in analogy with the case where $C = S_2(\mathbb{O})^+$, is that $\mathcal{V}_\mathbb{Q}$ arises from a sub-Hodge structure $\mathcal{V}_Y^{n=1}$, where σ is an involution which generically has 16 isolated fixed points on Y_s. Then $F^3(\mathcal{V}_Y^{n=-1})$ is a line bundle on S.

Any geometric realization $f : Y \to S$ of the variation \mathcal{V} associated with $G = E_{7,3}$ must be fairly complicated, as Deligne has remarked that the associated Hodge structures have no Picard-Lefshetz degenerations. This excludes the many constructions of 3-folds with $c_1 = 0$ which are given as smooth complete intersections in weighted projective spaces. Perhaps the existence of small resolutions of nodes in dimension 3 can be profitably used in this context.
References

Department of Mathematics, Harvard University, Cambridge, MA 02138
E-mail address: gross@math.harvard.edu