L^p - $L^{p'}$ -ESTIMATES FOR HYPERBOLIC EQUATIONS

MITSURU SUGIMOTO

Introduction

This expository article is based on the author's recent three papers ([4], [5], [6]) which were, or will be, published elsewhere.

We shall consider the following Cauchy problem:

(C.P.)
$$\begin{cases} Pu = 0 \\ D_t^k u_{|t=0} = g_k \quad (k = 0, 1, \dots, m-1). \end{cases}$$

The operator $P = P(D_t, D_x)$ is a homogeneous, constant-coefficient partial differential operator of degree m in $D_t, D_{x_1}, \dots, D_{x_n}$ which is strictly hyperbolic; the symbol $p(\tau, \xi)$ can be factorized as

$$\begin{cases} p(\tau,\xi) = (\tau - \varphi_1(\xi)) \cdots (\tau - \varphi_m(\xi)) \\ \varphi_1(\xi) > \cdots > \varphi_m(\xi) \quad (\xi \neq 0). \end{cases}$$

For the sake of simplicity, we shall assume that each characteristic root $\varphi_l(\xi)$ $(l=1,2,\cdots,m)$ is either identically positive for $\xi \neq 0$ or identically negative. The wave equation $(p(\tau,\xi)=\tau^2-|\xi|^2)$ is a typical example of the kind of operators we have in mind.

We shall express the solution to (C.P.) as

$$u(t) = \sum_{k=0}^{m-1} E_k(t)g_k,$$

and study the behavior of the operator norm $||E_k(t)||_{L^p \to L^{p'}}$ with respect to the time variable t, where $1 \le p \le 2$, 1/p + 1/p' = 1.

In the case of the wave equation, the behavior is well known (Strichartz [3]) and can be applied to many semi-linear problems. Our main goal is to extend them to more general hyperbolic equations.

Received January 24, 1995.

In this problem, all we need is the L^{p} -L^{p'}-boundedness of $E_{k}(1)$ because of the following:

(1)
$$[E_k(t)g_k](x) = t^k [E_k(1)(g_k(t\cdot))](t^{-1}x).$$

Furthermore, each $E_k(1)$ is a linear combination of Fourier multipliers of the following type (modulo a regularizing operator):

(2)
$$M_k = F^{-1}e^{i\varphi(\xi)}a_k(\xi)F,$$

where

$$\begin{cases} \varphi(\xi) \in C^{\omega}(\mathbf{R}^n \setminus 0) \text{ is homogeneous of order } 1, \\ a_k(\xi) \in C^{\infty}(\mathbf{R}^n) \text{ is homogeneous of order } -k \text{ for large } |\xi|. \end{cases}$$

We shall assume $\varphi(\xi) > 0$ ($\xi \neq 0$), since it is one of the characteristic roots $\{\varphi_l(\xi)\}_{l=1}^m$. (Estimates for the case $\varphi(\xi) < 0$ can easily be derived from those for the case $\varphi(\xi) > 0$). Furthermore, we shall assume $n \geq 2$ since the case n = 1 is trivial.

The following result is our starting point.

Theorem 1 (Brenner [1]). If the Gaussian curvature of the hypersurface

(3)
$$\Sigma = \{ \xi \in \mathbf{R}^n \setminus 0; \varphi(\xi) = 1 \},$$

never vanishes, then M_k is L^p - $L^{p'}$ -bounded if $k > (n+1)(\frac{1}{p} - \frac{1}{2})$. This inequality can be replaced by an equality if $p \neq 1$.

In the case of equations of order 2 (e.g. the wave equation), the hypersurfaces Σ defined by their characteristic roots satisfy the assumption of Theorem 1. The following corollary is easily obtained if we notice equation (1).

Corollary 1 (Strichartz [3]). Suppose m = 2. Then, for t > 0,

(4)
$$||E_k(t)g||_{L^{p'}} \le Ct^{k-2n(\frac{1}{p}-\frac{1}{2})} ||g||_{L^p}$$

if $k \ge (n+1)(\frac{1}{p} - \frac{1}{2})$. Here the constant C > 0 is independent of t and g.

Is the boundedness in Theorem 1 also true if the Gaussian curvature of Σ might vanish? The answer is no. That is what we shall discuss in this article. Although the L^p -boundedness of M_k is independent of any geometrical properties of Σ (Seeger-Sogge-Stein [2]), Σ has an essential effect on the L^p - $L^{p'}$ -boundedness.

1. Convex case

In this section, we shall see that the L^p - $L^{p'}$ -boundedness of operator M_k defined by (2) is really dependent on a particular geometrical property of hypersurface Σ defined by (3). Here we assume that Σ is convex. If the Gaussian curvature of Σ never vanishes, Σ is automatically convex. But the converse is not true.

In order to describe the dependence, we shall introduce an index for hypersurfaces in \mathbf{R}^n (that is, submanifolds of codimension 1). We define $\gamma(\Sigma)$ to be the maximal order of contact of the hypersurface Σ to its tangent hyperplanes. More precisely

Definition 1. Let Σ be a hypersurface in \mathbf{R}^n . Then, for a point $p \in \Sigma$ and for a plane H (of dimension 2) which contains the normal line of Σ at p, we define the index $\gamma(\Sigma; p, H)$ to be the order of contact of the curve $\Sigma \cap H$ to the line $T \cap H$ at p. Here T denotes the tangent hyperplane of Σ at p. Furthermore, we define the index $\gamma(\Sigma)$ by

$$\gamma(\Sigma) = \sup_{p} \sup_{H} \gamma(\Sigma; p, H).$$

Example 1. Let $\Sigma = \{ \xi \in \mathbf{R}^n \setminus 0; \varphi(\xi) = 1 \}$, where

(5)
$$\varphi(\xi) = (\xi_1^{2N} + \xi_2^{2N} + \dots + \xi_n^{2N})^{1/(2N)}$$

$$(\xi = (\xi_1, \xi_2, \dots, \xi_n), N \in \mathbf{N}).$$
 Then $\gamma(\Sigma) = 2N.$

Example 2. Let $q(\xi)$ be a polynomial of order d. Suppose $\Sigma = \{\xi \in \mathbf{R}^n; q(\xi) = 0\}$ is compact and $\nabla q(\xi) \neq 0$ on Σ . Then $\gamma(\Sigma) \leq d$.

With this index, we can state our result. The following is a generalization of Theorem 1.

Theorem 2 ([4]). Suppose Σ defined by (3) is convex. Then M_k is L^p - $L^{p'}$ -bounded if $k > (2n - \frac{2(n-1)}{\gamma(\Sigma)})(\frac{1}{p} - \frac{1}{2})$. This inequality can be replaced by an equality if $p \neq 1$.

Theorem 2 in the case $\gamma(\Sigma) = 2$ is equivalent to Theorem 1. The following theorem says that the L^p -boundedness of M_k is really dependent on the index $\gamma(\Sigma)$.

Theorem 3 ([4]). Let $\varphi(\xi)$ be defined by (5) and $a_k(\xi) = |\xi|^{-k}\chi(\xi)$, where $\chi(\xi) \in C^{\infty}(\mathbf{R}^n)$ equals 1 for large $|\xi|$ and vanishes near the origin. Then M_k is not L^p - $L^{p'}$ -bounded if $k < (2n - \frac{(n-1)}{N})(\frac{1}{p} - \frac{1}{2})$.

Now we shall apply Theorem 2 to our problem (C.P.). By virtue of Example 2, we can apply Theorem 2 with $\gamma(\Sigma) \leq m$. In fact, $\Sigma_l = \{\xi \in$

 \mathbf{R}^n ; $\varphi_l(\xi) = \pm 1$ } is a component of $\{\xi \in \mathbf{R}^n; q(\xi) = 0\}$, where $q(\xi) = p(\pm 1, \xi)$. Hence we can have the following corollary which is equivalent to Corollary 1 in the case m = 2.

Corollary 2 ([4]). Suppose P in (C.P.) satisfies the convexity condition (that is, all components of $\{\xi \in \mathbf{R}^n; p(\pm 1, \xi) = 0\}$ are convex). Then the estimate (4) holds if $k \geq (2n - \frac{2(n-1)}{m})(\frac{1}{p} - \frac{1}{2})$ and $p \neq 1$.

2. Non-convex case

In Section 1, L^p - $L^{p'}$ -estimates are given in the case that P in (C.P.) satisfies the convexity condition. But there exist hyperbolic operators which do not satisfy the convexity condition. The operator

$$P = (D_t^2 - 4D_{x_1}^2 - D_{x_2}^2)(D_t^2 - D_{x_1}^2 - 4D_{x_2}^2) - \varepsilon(D_{x_1}^2 + D_{x_2}^2)^2$$

 $(\varepsilon > 0 \text{ small enough})$ is one example.

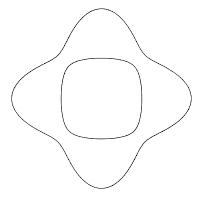


Figure 1. $\{\xi \in \mathbf{R}^2; p(\pm 1, \xi) = 0\}$

Now, we run up against a question. Can we remove the convexity assumption in Theorem 2? The objective of this section is to answer this question. We shall show that the answer is yes for n=2 but is no for general n. In order to describe the answer, we shall introduce another index.

Definition 2. Let Σ be a hypersurface in \mathbb{R}^n , and let $\gamma(\Sigma; p, H)$ be the same index as in Definition 1. Then we define index $\gamma_0(\Sigma)$ by

$$\gamma_0(\Sigma) = \sup_p \inf_H \gamma(\Sigma; p, H).$$

We easily obtain $\gamma_0(\Sigma) \leq \gamma(\Sigma)$ from Definitions 1 and 2. Equality holds when n=2. But, in the case $n\geq 3$, $\gamma_0(\Sigma)$ and $\gamma(\Sigma)$ do not necessarily coincide with each other. Here is an example.

Example 3. Suppose $n \geq 3$. Let $\Sigma = \{ \xi \in \mathbf{R}^n \setminus 0; \varphi(\xi) = 1 \}$, where

(6)
$$\varphi(\xi) = \left\{ (\xi_1^2 + \dots + \xi_{n-1}^2 - \xi_n^2)^{2N} + \xi_n^{4N} \right\}^{1/(4N)}$$

$$(\xi = (\xi_1, \xi_2, \dots, \xi_n), N \in \mathbf{N}).$$
 Then $\gamma(\Sigma) = 4N, \gamma_0(\Sigma) = 2N.$

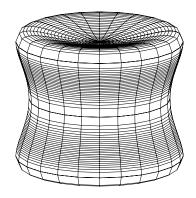


Figure 2. Σ (n = 3, N = 1)

We shall state our result. Let Σ be defined by (3) again.

Theorem 4 ([5]). M_k is $L^p ext{-}L^{p'} ext{-bounded if } k > (2n - \frac{2}{\gamma_0(\Sigma)})(\frac{1}{p} - \frac{1}{2})$. This inequality can be replaced by an equality if $p \neq 1$.

This result says that the convexity assumption in Theorem 2 can be removed in the case n=2. Although it appears to be a bad result for larger n, it is optimal in the following sense.

Theorem 5 ([5]). Suppose $n \ge 3$. Let $\varphi(\xi)$ be defined by (6) and $a_k(\xi) = |\xi|^{-k}\chi(\xi)$, where $\chi(\xi) \in C^{\infty}(\mathbf{R}^n)$ equals 1 for large $|\xi|$ and vanishes near the origin. Then M_k is not $L^1 - L^{\infty}$ -bounded if $k < n - \frac{1}{2N}$.

We can easily see, by Plancherel's theorem, that Theorem 4 is optimal for p=2. Theorem 5 states that it is also optimal for another endpoint, p=1. It also states that we cannot remove the convexity assumption in Theorem A in the case n>4.

By the same reason as we obtain Corollary 2 from Theorem 2, we can obtain the following corollary from Theorem 4 with $\gamma_0(\Sigma) \leq m$, which is a generalization of Corollaries 1 and 2 in the case n = 2.

Corollary 3. The estimate (4) holds if $k \ge (2n - \frac{2}{m})(\frac{1}{p} - \frac{1}{2})$ and $p \ne 1$.

3. Special case (n = 3)

In previous sections, we have exactly determined the relation between the L^p - $L^{p'}$ -boundedness of M_k defined by (2) and a geometrical property of Σ defined by (3) in the case n=2. But, in the case $n\geq 3$, there still remains the problem "What about the optimality of Theorem 4 for 1 ?".

To our surprise, it is not optimal in spite of the optimality for p=1,2, and the boundedness is dependent more intricately on a geometrical property of Σ in the non-convex case. In the following, we shall exhibit such a strange phenomenon in the simplest case $n=3, \gamma_0(\Sigma)=2$ which we shall assume hereafter. We can improve Theorem 4 in this special case.

From now on, we shall microlocalize the problem. That is, we shall assume that $a_k(\xi)$ in (2) is supported in a sufficiently small conic neighborhood of a particular point $\omega \in S^2$, say $\omega = (0,0,1)$. Then Σ defined by (3) can be expressed as

$$\{(y, h(y)); y = (y_1, y_2) \in U\}$$

in the neighborhood, where $h(y) \in C^{\omega}(U)$ and $U \subset \mathbf{R}^2$ is an open neighborhood of the origin. For the sake of simplicity, we shall assume $\nabla h(0,0) = 0$. We remark that

rank
$$h''(0,0) \neq 0$$
,

which is derived from the assumption that $\gamma_0(\Sigma) = 2$. In particular,

$$\det h''(0,0) \neq 0$$

if the Gaussian curvature of Σ never vanishes.

In order to show how the boundedness is dependent on Σ , we shall classify functions h(y) which are real analytic at the origin and satisfy $\nabla h(0,0) = 0$, rank $h''(0,0) \neq 0$. We may assume that $h''_{11}(0,0) \neq 0$, otherwise rotate the variable y appropriately. Then we define the functions $b_0(y_2)$ and $b_1(y_2)$, which are real analytic at the origin, by the equations

(7)
$$\begin{cases} h_1'(b_1(y_2), y_2) = 0, b_1(0) = 0 \\ b_0(y_2) = h(b_1(y_2), y_2). \end{cases}$$

They are uniquely determined near the origin by the implicit function theorem. The curve $\{(b_1(t), t, b_0(t))\}$ is the ridge of the $mountain \Sigma$ when we see it parallel to the y_2 -axis.

Definition 3. Let b_j be defined by (7) and δ_j be the smallest integer $m \geq 2$ such that $b_j^{(m)}(0) \neq 0$ (j = 0, 1). Then we say that h(y) is of type I if $\delta_0 < \infty$, type II if $\delta_0 = \infty$, $\delta_1 < \infty$, and type III if $\delta_0 = \delta_1 = \infty$.

We remark that the definition above is well-defined. That is, when $\tilde{h}(y) = h(yT)$ satisfies $\tilde{h}_{11}''(0,0) \neq 0$ for an orthogonal matrix T, \tilde{h} defines the same δ_0 , and the same δ_1 if $\delta_0 = \infty$.

Typical examples are the following:

Example 4. The function h(y) is of type I with $\delta_0 = 2$ if and only if $\det h''(0,0) \neq 0$.

Example 5. [I] $h(y) = 1 - (y_1^2 - y_2^N)$ is of type I $(b_0 = y_2^N, b_1 = 0)$. [II] $h(y) = 1 - (y_1 - y_2^N)^2$ is of type II $(b_0 = 0, b_1 = y_2^N)$. [III] $h(y) = 1 - y_1^2$ is of type III $(b_0 = b_1 = 0)$.

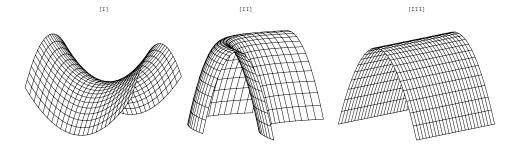


Figure 3. $\{(y, h(y))\}$

Each type has a different type of estimate.

Theorem 6 ([6]). Suppose h(y) is of type * (*=I, II, III). Then M_k is L^p - $L^{p'}$ -bounded if $k > k_*(p)$. This inequality can be replaced by an equality if $p \neq 1$ and $* \neq II$. Here

$$k_*(p) = \begin{cases} (5 - \frac{2}{\delta_0})(\frac{1}{p} - \frac{1}{2}) & \text{if } * = I\\ \max\{6(\frac{1}{p} - \frac{1}{2}) - \frac{1}{2}, (5 - \frac{1}{2\delta_1 - 1})(\frac{1}{p} - \frac{1}{2})\} & \text{if } * = II\\ 5(\frac{1}{p} - \frac{1}{2}) & \text{if } * = III. \end{cases}$$

We easily see that Theorem 6 is an improvement of Theorem 4 in the case n=3 and $\gamma_0(\Sigma)=2$. In fact, since Σ defined by (3) is a compact analytic hypersurface, it cannot contain any lines. Hence Σ is expressed microlocally by a function of type either I or II.

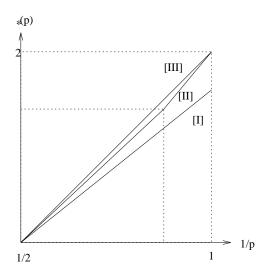


Figure 4. Graph of $k_*(p)$

References

- 1. P. Brenner, On L_p - $L_{p'}$ estimates for the wave-equation, Math. Z. **145** (1975), 251–254.
- A. Seeger, C. D. Sogge and E. M. Stein, Regularity properties of Fourier integral operators, Ann. Math., II. Ser. 134 (1991), 231–251.
- 3. R. Strichartz, A priori estimates for the wave equation and some applications, J. Funct. Anal. 5 (1970), 218-235.
- 4. M. Sugimoto, A priori estimates for higher order hyperbolic equations, Math. Z. **215** (1994), 519–531.
- 5. _____, Estimates for hyperbolic equations with non-convex characteristics, Math. Z. (to appear).
- 6. ______, Estimates for hyperbolic equations of space dimension 3, (in preparation).

Department of Mathematics, Faculty of Science, Osaka University, Toyonaka, Osaka 560, Japan

E-mail address: sugimoto@math.wani.osaka-u.ac.jp