We shall explain how the following is a corollary of results of Wiles [W]:

Theorem. Suppose that E is an elliptic curve over \mathbb{Q} all of whose 2-division points are rational, i.e., an elliptic curve defined by

$$y^2 = (x - a)(x - b)(x - c)$$

for some distinct rational numbers a, b and c. Then E is modular.

Recall that Wiles proves that if E is a semistable elliptic curve over \mathbb{Q}, then E is modular [W, Thm. 0.4]. He begins by considering the Galois representations $\bar{\rho}_{E,3}$ (respectively, $\rho_{E,3}$) on the 3-division points (respectively, 3-adic Tate module) of E. If $\bar{\rho}_{E,3}$ is irreducible, then a theorem of Langlands and Tunnell is used to show that $\bar{\rho}_{E,3}$ arises from a modular form. Wiles deduces that $\rho_{E,3}$ also arises from a modular form by appealing to his results in [W, Ch. 3] and those with Taylor in [TW] to identify certain universal deformation rings as Hecke algebras. This suffices to prove that E is modular if $\bar{\rho}_{E,3}$ is irreducible. When $\bar{\rho}_{E,3}$ is reducible, Wiles gives an argument which allows one to use $\rho_{E,5}$ instead.

In fact, Wiles’ results apply to a larger class of elliptic curves than those which are semistable [W, Thm. 0.3], and this was subsequently extended in [Di] to include all elliptic curves with semistable reduction at 3 and 5. Rubin and Silverberg noted that an elliptic curve as in the above theorem necessarily has a twist which is semistable outside 2, and hence, is modular by [Di, Thm. 1.2]. The purpose of this note is to explain how, by a refinement of their observation, the above theorem follows directly from Wiles’ work, without appealing to [Di].

Lemma 1 (Rubin-Silverberg). By at most a quadratic twist, an elliptic curve as in the theorem may be brought to the form

$$E : y^2 = x(x - A)(x + B)$$

for some nonzero integers A and B with A and B relatively prime, B even and $A \equiv -1 \mod 4$. Let $C = A + B$. For odd primes p, the curve E has
good reduction at p if p is prime to ABC and multiplicative reduction at p otherwise.

Proof. Note that a curve as in the theorem is isomorphic to one defined by equation (1) for some integers A and B with $AB(A + B) \neq 0$. Let $D = \gcd(A, B)$. Twisting by $\mathbb{Q}(\sqrt{D})$, we may assume that A and B are relatively prime. By translating x or exchanging A and B, we may assume that B is even. Finally, if $A \equiv 1 \mod 4$, we twist again by $\mathbb{Q}(i)$.

The reduction type of E for odd primes p may be determined as in [Se2, §4] and [Si1, Ch. VII].

See [O, §I.1] for discussion of the reduction type and conductor of curves given by equation (1), but under certain restrictions in the case $p = 2$. See also [Da, Lemma 2.1] for a related case. We treat the reduction type at $p = 2$ in the following lemma.

Lemma 2. Suppose that E is an elliptic curve over \mathbb{Q}_2 defined by the model (1), with $A \equiv -1 \mod 4$ and B even. The reduction type, conductor exponent $f_2(E)$ and valuation of the minimal discriminant of E are given by the following table:

<table>
<thead>
<tr>
<th>$\text{ord}_2(B)$</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>$\nu \geq 5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kodaira Symbol</td>
<td>I_{III}</td>
<td>I_7^*</td>
<td>I_{III}^*</td>
<td>I_0</td>
<td>$I_{2\nu - 8}$</td>
</tr>
<tr>
<td>$f_2(E)$</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$\text{ord}2(\Delta{\text{min}})$</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>0</td>
<td>$2\nu - 8$</td>
</tr>
</tbody>
</table>

Proof. A twist of E by the unramified extension $\mathbb{Q}_2(\sqrt{-A})$ affects neither reduction type nor conductor exponent, and provides a model of the form

$$y^2 = x(x + 1)(x + s)$$

with $\text{ord}_2(s) = \text{ord}_2(B) \geq 1$ and discriminant $\Delta = 16s^2(1 - s)^2$. For the convenience of the reader, we indicate the appropriate translations of model, depending on $\text{ord}_2(s)$, so that the explicit criteria of Tate’s algorithm [T] may be used.

If $\text{ord}_2(s) = 1$, then $\text{ord}_2(\Delta) = 6$. Put $y + x$ for y in (2) to get

$$y^2 + 2xy = x^2 + sx^2 + s.$$

If $\text{ord}_2(s) = 2$, then $\text{ord}_2(\Delta) = 8$. Put $x + 2$ for x in (3), to get

$$y^2 + 2xy + 4y = x^3 + (s + 6)x^2 + (5s + 12)x + (6s + 8).$$

If $\text{ord}_2(s) = 3$, use the model (3) with $\text{ord}_2(\Delta) = 10$. If $\text{ord}_2(s) \geq 4$, the model (3) is not minimal and may be reduced to

$$y^2 + xy = x^3 + \frac{s}{4}x^2 + \frac{s}{16}x.$$
with discriminant \(s^2(1-s)^2/256 \). Thus, (4) has good reduction if \(\text{ord}_2(s) = 4 \) and multiplicative reduction if \(\text{ord}_2(s) \geq 5 \). \(\square \)

To show that an elliptic curve over \(\mathbb{Q} \) is modular, we may replace it with one to which it is isomorphic over \(\overline{\mathbb{Q}} \). We may therefore assume that \(E \) is defined by equation (1) with \(A \) and \(B \) as in Lemma 1. If \(E \) has good or multiplicative reduction at \(p = 2 \), then \(E \) is semistable and we can conclude from [W, Thm. 0.4] that \(E \) is modular. In view of Lemma 2, we may therefore also assume, henceforth, that \(\text{ord}_2(B) = 1 \), 2 or 3.

Let \(\ell \) be an odd prime. Choose a basis for \(E[\ell] \), the kernel of multiplication by \(\ell \) on \(E \), and let \(\overline{\rho}_{E, \ell} \) denote the representation \(G_{\mathbb{Q}} \to \text{GL}_2(\mathbb{F}_\ell) \) defined by the action of \(G_{\mathbb{Q}} = \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \) on \(E[\ell] \). For each prime \(p \), we fix an embedding \(\mathbb{Q} \leftrightarrow \mathbb{Q}_p \) and regard \(G_p = \text{Gal}(\mathbb{Q}_p/\mathbb{Q}_p) \) as a decomposition subgroup of \(G_{\mathbb{Q}} \) at a place over \(p \). Thus, \(\rho_{E, \ell}|_{G_p} \) is equivalent to the representation of \(G_p \) defined by its action on \(E[\ell](\mathbb{Q}_p) \). Let \(I_p \subset G_p \) denote the inertia group.

Recall the special role played by the prime \(\ell = 3 \) in Wiles’ approach. We simply write \(\rho \) for \(\rho_{E,3} \). If \(\rho \) is irreducible, then \(\rho \) is modular by the theorem of Langlands and Tunnell (see [W, Ch. 5]). Since \(E \) has good or multiplicative reduction at 3, we need only verify certain hypotheses on \(\rho \) in order to apply [W, Thm. 0.3] to conclude that \(E \) is modular. We shall see that if \(E \) has additive reduction at \(p = 2 \), then those hypotheses are satisfied, the crucial point being the verification of a local condition at \(p = 2 \). The irreducibility of \(\rho \) in this case is a byproduct of our verification. In fact, we have the following stronger result:

Lemma 3. If \(\text{ord}_2(B) = 1, 2 \) or 3 and \(\ell \) is an odd prime, then \(\overline{\rho}_{E, \ell}|_{I_2} \) is absolutely irreducible.

Proof. For the moment, consider the more general case of a representation \(\psi : I \to \text{SL}_2(\mathbb{F}_\ell) \), where \(I \) is the inertia group of a finite Galois extension of \(p \)-adic fields and \(\ell \neq p \) is a prime. Let \(b(\psi) \) denote the wild conductor exponent [Se2, §4.9]. If \(b(\psi) \) is odd, then \(\psi \) is irreducible. Indeed, were \(\psi \) to be reducible, it would be equivalent to a representation of the form

\[
\begin{pmatrix}
\chi & * \\
0 & \chi^{-1}
\end{pmatrix}
\]

But then, because \(b \) is integer-valued and additive on short exact sequences, \(b(\psi) = 2b(\chi) \) would be even.
Under the hypotheses of this lemma, the elliptic curve E has additive reduction at 2 and odd conductor exponent $f_2(E) = 2 + b(\rho_{E, \ell}/I_2)$, independent of the choice of odd prime ℓ. Since $\det \rho_{E, \ell}/G_2$ is an unramified character associated to $Q_2(\mu_\ell)$, the image of I_2 under $\rho_{E, \ell}$ is contained in $\text{SL}_2(\mathbb{F}_\ell)$. It follows that $\rho_{E, \ell}/I_2$ is absolutely irreducible.

Remark. When Lemma 3 applies, an analysis of the group structure of $\text{SL}_2(\mathbb{F}_3)$ shows that the image of wild ramification at $p = 2$ under ρ, and hence, $\rho_{E, \ell}$, for any odd ℓ, is isomorphic to the quaternion group of order 8.

Under the hypotheses of Lemma 3, we see that even the restriction of $\rho = \rho_{E,3}$ to $\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}(\mu_3))$ is absolutely irreducible. Using Lemma 3, one can also easily check the local conditions on ρ appearing as hypotheses in [W, Thm. 0.3]. Since it is left to the reader of [W] to verify that those local conditions are sufficient to apply the central result [W, Thm. 3.3], we shall explain directly how this is done in the case with which we are concerned. Again, we consider, more generally, $\rho_{E, \ell}$ for odd primes ℓ.

First recall that $\rho_{E, \ell}$ is unramified at p if $p \neq \ell$ is a prime of good reduction, i.e., if p does not divide ℓABC.

Next we recall how the Tate parametrization is used to describe $\rho_{E, \ell}/G_p$ for primes p at which E has multiplicative reduction (see [Se2, §2.9]). Let F denote the unramified quadratic extension of \mathbb{Q}_p in $\overline{\mathbb{Q}}_p$. Then E has split multiplicative reduction over F and the Tate parametrization (see [Si2, §V.3]) provides an isomorphism

$$\mathbb{Q}_p^\times/q^2 \cong E(\mathbb{Q}_p)$$

of $\text{Gal}(\mathbb{Q}_p/F)$-modules for some $q \in \mathbb{Q}_p$ with $\text{ord}_p(q) > 0$. From this it follows that for each prime ℓ, there is a filtration of $\text{Gal}(\mathbb{Q}_p/F)$-modules

$$0 \to \mathbb{Z}_\ell(1) \to T_\ell(E) \to \mathbb{Z}_\ell \to 0,$$

where $T_\ell(E)$ is the ℓ-adic Tate module and $\mathbb{Z}_\ell(1) = \varprojlim \mu_{\ell^n}(\mathbb{Q}_p)$. One then checks that the representation of G_p on $T_\ell(E)$ is equivalent to one of the form

$$\chi \otimes \begin{pmatrix} \epsilon & * \\ 0 & 1 \end{pmatrix}$$

where χ is either trivial or the unramified quadratic character of G_p, and ϵ is the cyclotomic character given by the action of G_p on $\mathbb{Z}_\ell(1)$. It follows that the representation of G_p on $E[\ell]$ is of this form as well, but with ϵ now defined by the action of G_p on μ_ℓ.

Suppose now that $p \neq \ell$ is an odd prime dividing ABC. Then the above analysis of multiplicative reduction applies to $\rho_{E, \ell}/G_p$, and shows that $\rho_{E, \ell}$ is either unramified or type (A) at p in the terminology of [W,
Suppose next that \(p = \ell \). If \(p \) divides \(ABC \), then the above analysis of multiplicative reduction shows that \(\bar{\rho}_{E, \ell} |_{G_p} \) is ordinary at \(p \) in the terminology of [W, Ch. 1]. If on the other hand \(p \) does not divide \(ABC \), then the elliptic curve \(E \) has good reduction at \(p \). In fact, the equation (1) defines an elliptic curve \(E \) over \(\mathbb{Z} \) such that \(E_{\mathbb{Q}} \) is isomorphic to \(E_{\mathbb{Q}} \) (see [Si2, §IV.5]). The kernel of multiplication by \(\ell \) on \(E \) is a finite flat group scheme \(E[\ell] \) over \(\mathbb{Z}_p \). The representation \(\bar{\rho}_{E, \ell} |_{G_p} \) is given by the action of \(G_p \) on \(E[\ell](\bar{\mathbb{Q}}_p) \), which we may identify with \(E[\ell](\bar{\mathbb{Q}}_p) \). In this sense, \(\bar{\rho}_{E, \ell} |_{G_p} \) arises from a finite flat group scheme over \(\mathbb{Z}_p \). Now \(\bar{\rho}_{E, \ell} |_{G_p} \) is reducible if and only if \(E \) has ordinary reduction at \(p \), i.e., if and only if \(E_{\mathbb{F}_p} \) is ordinary. In that case \(\bar{\rho}_{E, \ell} \) is ordinary at \(p \) in the sense of [W]. On the other hand, \(\bar{\rho}_{E, \ell} |_{G_p} \) is irreducible if and only if \(E_{\mathbb{F}_p} \) is supersingular, in which case \(\bar{\rho}_{E, \ell} \) is flat at \(p \) in the sense of [W, Ch. 1].

Finally, suppose that \(p = 2 \) and \(E \) has additive reduction at 2. Then \(\text{ord}_2(B) = 1, 2 \) or 3, and \(\bar{\rho}_{E, \ell} |_{I_2} \) is absolutely irreducible by Lemma 3. We claim that \(\bar{\rho}_{E, \ell} |_{G_2} \) is of type (C) at 2 in the terminology of Wiles [W, Ch. 1]. Recall that this means that \(H^1(G_2, W) = 0 \), where \(W \) is the \(G_2 \)-module of endomorphisms of \(E[\ell](\bar{\mathbb{Q}}_2) \) of trace zero. From the triviality of the local Euler characteristic ([Se1, Thm. II.5]), we have

\[
\#H^1(G_2, W) = \#H^0(G_2, W) \cdot \#H^2(G_2, W).
\]

By local Tate duality ([Se1, Thm. II.1]), we have

\[
\#H^2(G_2, W) = \#H^0(G_2, W^*)
\]

where \(W^* = \text{Hom}(W, \mu_\ell) \). Therefore, we wish to prove that \(H^0(G_2, W) \) and \(H^0(G_2, W^*) \) both vanish. But in fact \(H^0(I_2, W) \) and \(H^0(I_2, W^*) \) already vanish. Indeed, \(I_2 \) acts trivially on \(\mu_\ell \), from which we deduce that there is a (noncanonical) isomorphism \(W^* \cong W \) of \(I_2 \)-modules; hence, it suffices to show that \(H^0(I_2, W) = 0 \). Since \(I_2 \) acts absolutely irreducibly on \(\mathbb{F}_p^2 \), Schur’s lemma implies that the only \(I_2 \)-invariant endomorphisms of \(\mathbb{F}_p^2 \) are scalars. But the only scalar in \(W \) is zero.

Specializing to the case \(\ell = 3 \), we now conclude that the representation \(\rho_{E, 3} \) of \(G_\mathbb{Q} \) on \(T_3(E) \) arises from a modular form. Indeed, Wiles [W, Thm. 3.3] establishes an isomorphism between the universal deformation ring of type \(\mathcal{D} \) and the Hecke algebra \(T_{\mathcal{D}} \), where \(\mathcal{D} = (\cdot, \Sigma, \mathbb{Z}_3, \emptyset) \) with

- as flat or Selmer according to whether or not \(E \) has supersingular reduction at 3;
- \(\Sigma \) as the set of primes dividing \(3ABC \).
Since $\rho_{E,3}$ defines a deformation of ρ of type D, the universal property of the deformation ring thus provides a homomorphism $T_D \to \mathbb{Z}_3$ with the following property: for all p not dividing $3ABC$, the Hecke operator T_p is sent to $a_p = p + 1 - N_p$ where N_p is the number of \mathbb{F}_p-points on the reduction of $E \mod p$.

The definition of T_D ensures that this homomorphism arises from a normalized eigenform of weight two whose p^{th} Fourier coefficient is a_p for all such p. Hence E is modular.

Acknowledgements

The authors are grateful to Kevin Buzzard, Ken Ribet and Karl Rubin for comments on an earlier version of this note.

References

D.P.M.M.S., 16 MILL LANE, UNIV. OF CAMBRIDGE, CAMBRIDGE, CB2 1SB, UK

E-mail address: f.diamond@pmms.cam.ac.uk

DEPARTMENT OF MATHEMATICS, QUEENS COLLEGE (CUNY), FLUSHING, NY 11367

E-mail address: kramer@qcvaxa.acc.qc.edu