ON THE SHAPE OF PROJECTIVE PLANE ALGEBRAIC CURVES

Norbert A'Campo

1. Introduction

In this paper, a metric curve is a projective plane algebraic curve with the induced metric from the standard Study-Fubini metric on \mathbf{P}^2 . In [B] Fedor A. Bogomolov proved that there is no finite upper bound for the diameter of metric curves. His theorem disproves a conjecture of S. Frenkel and proves a conjecture of M. Gromov. The space of curves of fixed degree is compact and hence the least upper bound $\operatorname{diam}(d)$ of the diameters of metric curves of degree d is a real number. In [1] is stated that presumably $\operatorname{diam}(d)$ grows like $\log(d)$. The following theorem extends the result of Bogomolov:

Theorem. For any $\epsilon > 0$, any compact metric tree admits an ϵ -isometric embedding in a nonsingular metric curve.

A metric tree is a tree equipped with a path metric. A map $f: X \to Y$ between metric spaces $(X, \operatorname{dist}_X)$ and $(Y, \operatorname{dist}_Y)$ is an ϵ -isometric embedding if for any $a, b \in X$ the inequality $|\operatorname{dist}_X(a, b) - \operatorname{dist}_Y(f(a), f(b))| < \epsilon$ holds. The proof uses as in [1] a concentration lemma for intersection points.

Question. Does the above theorem hold for compact metric graphs?

2. Concentration of intersection points

Lemma. Let C be a nonsingular curve given by a homogeneous equation F(x, y, z) = 0 of degree $d \ge 3$. For any $\epsilon > 0$ and any $p \in C$ there exist a natural number N and a homogeneous deformation G(x, y, z) of $F(x, y, z)^N$ such that the curve C' given by the equation G(x, y, z) = 0 meets the curve

Received July 28, 1995.

C in less then g(C) = 1/2(d-1)(d-2) points which are all in the ϵ -ball with center p on the metric curve C.

Proof. We consider the Abel-Jacobi map $u: Div(C) \to J(C)$, which sends p to 0, and its restriction $u^{(g)}: C^{(g)} \to J(C), g = g(C)$, to the g-th symmetric power of C. The holomorphic map $u^{(g)}$ is surjective [2], hence open. The image U under $u^{(g)}$ of the q-symmetric power of the open ϵ -ball with center p on C is open in J(C) and contains 0. Choose natural numbers R, M such that rU = J(C) for all natural numbers r > R and such that $Md^2 \geq R$. Put N := Mg. Let X be the vectorfield on \mathbf{P}^2 of an infinitesimal projective motion and let s be the projection of its restriction to C in the normal bundle $L:=(T\mathbf{P}^2)_{|C|}/TC$ of C in \mathbf{P}^2 . Let S be the divisor of the section s and $u(S) \in J(C)$ its image. In the g-th symmetric power of the open ϵ -ball with center p on C, choose $m := (p_1, \ldots, p_q)$ such that $u^{(g)}(m) \in U$ satisfies $Nu(S) = Md^2u^{(g)}(m)$ in J(C). The Abel-Jacobi Theorem asserts the existence of a meromorphic function f on Cwith $(f) = -NS + Md^2 \sum_{1 \leq i \leq g} p_i$. The holomorphic section $t := fs^N$ of $L^{\otimes N}$ has its zeros at the points p_1, \ldots, p_q . To the section t corresponds a deformation G(x,y,z) of $F(x,y,z)^N$ which completes the lemma. \square

3. Proof of the Theorem

The Study-Fubini metric of \mathbf{P}^2 will be normalized to 1. Any ball of radius strictly smaller then 1 in \mathbf{P}^2 is contractible; hence, since any curve C in \mathbf{P}^2 carries a nontrivial homology class, its diameter in \mathbf{P}^2 exceeds 1 and a fortiori its diameter as a metric curve exceeds 1 too. The sphere L_p with center p of radius 1 in \mathbf{P}^2 is a line, so we have an even stronger fact: for any point p on a curve C and for all $q \in C \cap L_p$, $\operatorname{dist}_C(p,q) \ge \operatorname{dist}_{\mathbf{P}^2}(p,q) = 1$.

Subdividing the edges of a metric T tree by introducing new vertices of valency 2 until all edges are of length less then 1/2 does not change T as a metric space, so we need only prove the theorem for metric trees with edges all of length not exceeding 1/2.

Now we will prove the theorem by induction on the number of edges for any compact tree with edges all of length not exceeding 1/2 and any $0 < \epsilon < 1$. To start the induction, observe that trees with 0 or 1 edges admit isometric embeddings in any nonsingular curve of degree $d \geq 3$. Let T be a tree with n+1 edges, $n \geq 1$, all of length not exceeding 1/2, and let $1 > \epsilon > 0$. The tree T admits a decomposition $T = T' \cup E$, where E is a terminal edge of T. By the induction hypothesis, there exists an $\epsilon/4$ -isometric embedding $f': T' \to C'$ of T' in a metric nonsingular curve C' of

degree $d \geq 3$. Let $p' \in C'$ be the image of the attaching vertex v of the edge E. Using the lemma we construct a curve C'' which intersects the curve C' in at most g(C') points all in a $\epsilon/4$ -ball with center p' on C'. Choose $q \in C''$ and $p \in C' \cap C''$ with $\mathrm{dist}_{C''}(q,C' \cap C'') = \mathrm{dist}_{C''}(q,p) \geq 1 - \epsilon/2 \geq 1/2$; choose a distance realizing path γ in C'' from p to q; let $f_E : E \to \gamma \subset C''$ be the isometric embedding with $f_E(v) = p$. Moreover, deform the map f' to an $\epsilon/2$ -isometric embedding $f' : T' \to C'$ with f'(v) = p. The maps f' and f_E glue to an $\epsilon/2$ -isometric embedding $f' \cup f_E : T \to C' \cup C''$. Finally, we deform $C' \cup C''$ by a small deformation to a nonsingular curve C and lift the $\epsilon/2$ -isometric embedding $f' \cup f_E : T \to C' \cup C''$ to an ϵ -isometric embedding $f : T \to C$.

References

- F. A. Bogomolov, On the diameter of plane algebraic curves, Mathematical Research Letters 1 (1994), 95–98.
- P. A. Griffiths, translated from the Chinese by Kuniko Weltin, Introduction to Algebraic Curves, Translations of Mathematical Monographs, A.M.S., vol. 76, 1989.

M athematisches Institut der Universität, Rheinsprung 21, CH-4051, Basel, Switzerland

E-mail address: nacampo@math.unibas.ch