EXOTIC 4-MANIFOLDS WITH $b_2^+ = 1$

Zoltán Szabó

1. Introduction

In this paper we present a new family of simply-connected smooth closed 4-manifolds with $b_2^+ = 1$.

The first examples of simply-connected smooth closed 4-manifolds that are homeomorphic but not diffeomorphic were found by Donaldson, see [D1]. Later hordes of such examples were found, see for example [FM1], [D2], [GM], [FS1], [FS3], [Ko1], [Sz1], [MSz]. While the smooth structures of simply-connected smooth closed 4-manifolds turned out to be very rich, we know much less of the $b_2^+ = 1$ case. The previously studied simply-connected smooth closed 4-manifolds with $b_2^+ = 1$ were all Kähler surfaces: $S^2 \times S^2$, $CP^2 \# n\overline{CP}^2$, $B \# n\overline{CP}^2$ and $E_{p,q} \# n\overline{CP}^2$, where B is the Barlow surface, $E_{p,q}$ is an elliptic surface with geometric genus $p_g = 0$ and two multiple fibers with multiplicity p, q, where $p > 1$, $q > 1$ and $(p,q) = 1$. These 4-manifolds all have different smooth structures, see [D1], [FM1], [Ko1], [Ko2], [Fr], [FM2].

Our first result is the following:

Theorem 1.1. There exists a family of smooth closed simply-connected 4-manifolds Y_n, parametrized by $n \geq 2$, with $b_2^+(Y_n) = 1$, $b_2^-(Y_n) = 9$ such that

(i) Y_n is irreducible.

(ii) If $k \geq 0$ and $n \neq m$ then $Y_n \# k\overline{CP}^2$ is not diffeomorphic to $Y_m \# k\overline{CP}^2$.

(iii) If $k \geq 0$, then $Y_n \# k\overline{CP}^2$ is not diffeomorphic to any Kähler surface.

It follows that Y_n form a new family of simply-connected smooth closed 4-manifolds with $b_2^+ = 1$. The construction of Y_n is presented in Section 2. We prove Theorem 1.1 in Section 3 by using Seiberg-Witten invariants in the $b_2^+ = 1$ case.

Using results of Taubes on symplectic 4-manifolds, see [T1], [T2], we can strengthen Theorem 1.1:

Received August 26, 1996.
Theorem 1.2. For all \(n \geq 2 \) neither \(Y_n \) nor \(\overline{Y}_n \) have symplectic structure.

It follows that the 4-manifolds \(Y_n \) provide new counter-examples to the Minimal Conjecture. Counter-examples with \(b_2^+ > 1 \) were given in [Sz2] using a related construction.

2. Construction of \(Y_n \)

Let us start by recalling the Kodaira-Thurston manifold [Th], which we denote by \(W \). Let \(\phi : T^2 \to T^2 \) be an orientation preserving self-diffeomorphism satisfying \(\phi_*(a_1) = a_1 + a_2, \phi_*(a_2) = a_2 \), where \(a_1, a_2 \in H_1(T^2, \mathbb{Z}) \) form a basis. Let \(Z_\phi \) denote the mapping torus of \(\phi \). Then \(W \) is defined as \(W = Z_\phi \times S^1 \).

The definition of \(Z_\phi \) gives a fibration \(T^2 \to Z_\phi \to S^1 \). We can assume that \(\phi \) has fixpoints. Let the circle \(\gamma \hookrightarrow Z_\phi \) be a section corresponding to a fixpoint. Let us fix another circle \(\delta \hookrightarrow Z_\phi \) that lies in a fiber and represents \(a_1 \). Now we define smoothly embedded 2-tori \(T_1 = \gamma \times S^1 \hookrightarrow W \) and \(T_2 = \delta \times S^1 \hookrightarrow W \). The self-intersections of \(T_1 \) and \(T_2 \) are equal to 0. It follows from [Th] that \(W \) has a symplectic structure for which \(T_1 \) is a symplectic submanifold. By fixing such a symplectic form on \(W \) we get an induced orientation on \(T_1 \).

Now take a rational elliptic surface \(E(1) = CP^2 \# 9\overline{CP^2} \). Fix a generic fiber \(F \hookrightarrow E(1) \) of the elliptic fibration of \(E(1) \). Then \(F \) is a smoothly embedded torus of self-intersection 0, and the complex structure of \(E(1) \) induces an orientation on \(F \). Fix an orientation preserving diffeomorphism \(f : F \to T_1 \) and lift it to an orientation reversing diffeomorphism \(g \) between the closed tubular neighborhoods. Using \(g \) we get the fiber sum of \(E(1) \) and \(W \):

\[
M = (E(1) \setminus nd(F)) \cup_g (W \setminus nd(T_1)),
\]

where \(nd \) denotes the open tubular neighborhood.

Now \(T_2 \hookrightarrow M \) is a smoothly embedded torus of self-intersection 0. We define the family \(Y_n \) by performing logarithmic transformations along \(T_2 \):

Let us fix a circle \(\delta' \hookrightarrow \partial(Z_\phi \setminus nd(\delta)) \) that lies in a fiber of \(Z_\phi \) and represents \(a_1 \). In other words \(\delta' \) is a parallel copy of \(\delta \). Let \(\alpha \in H_1(\partial(M \setminus nd(T_2)), \mathbb{Z}) \) be the homology class of \(\delta' \times p \hookrightarrow \partial(M \setminus nd(T_2)) = \partial(W \setminus nd(T_2)) \), where \(p \in S^1 \). Let \(\beta \in H_1(\partial(M \setminus nd(T_2)), \mathbb{Z}) \) represent the homology class of the meridian around \(T_2 \).

For each \(n \geq 0 \) let us fix an orientation reversing diffeomorphism \(\phi_n : \partial(D^2 \times T^2) \to \partial(M \setminus nd(T_2)) \) that satisfies

\[
(\phi_n)_*(e) = \alpha + n\beta,
\]
where \(e \in H_1(\partial(D^2 \times T^2), \mathbb{Z}) \) is defined by \(e = [\partial(D^2) \times q] \), where \(q \in T^2 \).
Now we define Y_n:

$$Y_n = (M \setminus nd(T_2)) \cup_{\phi_n} (D^2 \times T^2).$$

Lemma 2.1. For all $n \geq 0$ the smooth closed 4-manifolds Y_n are simply-connected, $b_2^+(Y_n) = 1$ and $b_2^-(Y_n) = 9$.

Proof. First note that

$$\pi_1(Z_{\phi}) = \langle g_1, g_2, g_3 | [g_1, g_2] = [g_2, g_3] = 1, g_3^{-1}g_1g_3 = g_1g_2 \rangle,$$

where g_1, g_2 correspond to a_1, a_2 and g_3 corresponds to γ. Since $\pi_1(E(1) \setminus nd(F)) = 1$, it follows that $\pi_1(M) = \pi_1(Z_{\phi})/(g_3 = 1)$. So we get $\pi_1(M) = Z$ where the generator is g_1. It is not hard to see that $\pi_1(M \setminus nd(T_2)) = Z$ and the generator is represented by $\delta' \times p \mapsto \partial(M \setminus nd(T_2))$. Let $i : \partial(M \setminus nd(T_2)) \rightarrow M \setminus nd(T_2)$ be the inclusion. Since $i_*(\beta) = 0$ and $\alpha = [\delta' \times p]$, it follows that $H_1(Y_n, Z) = 0$ for all n. On the other hand $\pi_1(M \setminus nd(T_2)) = Z$ shows that $\pi_1(Y_n)$ is abelian. It follows that $\pi_1(Y_n) = 1$. The rest of the lemma is trivial. \hfill \square

3. Proof of Theorem 1.1 and Theorem 1.2

In this section we use Seiberg-Witten invariants for smooth closed oriented 4-manifolds with $b_2^+ = 1$. Let us recall that the usual Seiberg-Witten invariant for a smooth closed oriented 4-manifold X with $b_2^+(X) > 1$ is an integer valued function defined on the set of spinc structures over X. In case $H_1(X, Z)$ has no 2-torsion it is convenient to use the one-to-one correspondence between the set of spinc structures over X and set of characteristic elements in $H^2(X, Z)$. After fixing a homology orientation, i.e an orientation on $detH^2_2(X, R) \otimes detH^1(X, R)$, we have

$$SW_X : \{K \in H^2(X, Z) | K \equiv w_2(TX) \pmod{2} \} \rightarrow \mathbb{Z}.$$

K is called a basic class of X if $SW_X(K) \neq 0$.

In the $b_2^+(X) = 1$ case however SW_X depends on other parameters as well. Let us recall, see [Wi], [KM], [M], that the perturbed Seiberg-Witten moduli space $M_X(K, g, h)$ is defined as the solution space of the Seiberg-Witten equations

$$F_A^+ = q(\phi) + ih, \quad D_A \phi = 0$$

divided by the gauge-group. Here q is a riemannian metric on X, A is an S^1 connection on the line bundle L with $c_1(L) = K$, ϕ is a section of the positive spin bundle corresponding to the spinc structure determined by K, F_A^+ is the self-dual part of the curvature of A, q is a certain quadratic map, D_A is the Dirac operator coupled with A, and h is an arbitrary closed real-valued self-dual 2-form on X.

EXOTIC 4-MANIFOLDS WITH $b_2^+ = 1$
If \(b^+_2(X) \geq 1\) and \(h\) is generic then the moduli space \(\mathcal{M}_X(K,g,h)\) is a closed manifold with formal dimension \(d = (K^2 - 2e(X) - 3\text{sign}(X))/4\), where \(d < 0\) implies that \(\mathcal{M}_X(K,g,h)\) is empty. If \(d < 0\) then \(SW_X(K) = 0\) by definition. In the \(d \geq 0\) case one defines

\[
SW_X(K, g, h) = ([\mathcal{M}_X(K, g, h)], \mu^{d/2}),
\]

where \(\mu \in H^2(\mathcal{M}_X(K, g, h), \mathbb{Z})\) is the Euler-class of the base fibration.

In the \(b^+_2(X) = 1\) case \(SW_X(K, g, h)\) depends on \(g\) and \(h\), since if one varies the metric \(g\) and the perturbing 2-form \(h\) in a generic one-parameter family then the corresponding cobordism could contain singularities (where \(\phi \equiv 0\)).

In this paper we work with the \(b^+_2(X) = 1\), \(H_1(X, Z) = 0\) case, where the dependence is as follows.

Lemma 3.1. (See [KM], [M, p105]) Let \(X\) be a smooth closed oriented 4-manifold with \(b^+_2(X) = 1\) and \(H_1(X, Z) = 0\). Fix a homology orientation of \(H^2_+(X, \mathbb{R})\). For each riemannian metric \(g\) let \(\omega^+(g)\) be the unique \(g\)-harmonic self-dual 2-form that has norm 1 and is compatible with the orientation of \(H^2_+(X, \mathbb{R})\). Then for each characteristic elements \(K \in H^2(X, Z)\) with \(d = (K^2 - 2e(X) - 3\text{sign}(X))/4 \geq 0\) we have

- If \((2\pi K + h_1) \cdot \omega^+(g_1)\) and \((2\pi K + h_2) \cdot \omega^+(g_2)\) are not zero and have the same signs then
 \[
 SW_X(K, g_1, h_1) = SW_X(K, g_2, h_2)
 \]

- If \((2\pi K + h_1) \cdot \omega^+(g_1) < 0 < (2\pi K + h_2) \cdot \omega^+(g_2)\), then
 \[
 SW_X(K, g_1, h_1) = SW_X(K, g_2, h_2) + (-1)^{d/2}.
 \]

It follows that if furthermore \(b^-_2(X) \leq 9\) then we have a preferred Seiberg-Witten invariant.

Lemma 3.2. Let \(X\) be a smooth closed oriented 4-manifold with \(H_1(X, Z) = 0\), \(b^+_2(X) = 1\) and \(b^-_2(X) \leq 9\). Then for every characteristic element \(K \in H^2(X, Z)\), pair of riemannian metrics \(g_1, g_2\) and small enough perturbing 2-forms \(h_1, h_2\) we have

\[
SW_X(K, g_1, h_1) = SW_X(K, g_2, h_2).
\]

Proof. Let \(K \in H^2(X, Z)\) be a characteristic element for which \(d \geq 0\). Then \(2e(X) + 3\text{sign}(X) = 4 + 5b^+_2(X) - b^-_2(X) \geq 0\), implies \(K^2 \geq 0\). As a corollary we have that \(K \cdot \omega^+(g_1)\), \(K \cdot \omega^+(g_2)\) are non-zero and have the same signs. Now Lemma 3.2 follows from Lemma 3.1. \(\square\)

From now on we denote the invariant described in Lemma 3.2 by \(SW_X(K)\). Our first result in this section is the following.
Theorem 3.3. Let \(Y_n \), for \(n \geq 0 \), be defined as in Section 2. Let \(SW_{Y_n} \) be defined according to Lemma 3.2. Then we have

- \(SW_{Y_n}(\pm L) = \pm n \), where \(L = PD[T_1] \)
- \(SW_{Y_n}(L') = 0 \) for all \(L' \neq \pm L \).

The main input in the proof of Theorem 3.3 is a surgery formula that relates \(SW_M \), \(SW_{Y_0} \) and \(SW_{Y_n} \). This result is a special case of the more general surgery formulas in [MMSz].

Lemma 3.4. (See [MMSz], cf. also [Sz2]). For a characteristic element \(K \in H^2(M, \mathbb{Z}) \) that satisfies \(\langle K, [T_2] \rangle = 0 \), let \(\overline{K} \) denote the corresponding characteristic element in \(Y_n \). Then we have

\[
SW_{Y_n}(\overline{K}) = SW_{Y_0}(\overline{K}) + n \sum_{i=-\infty}^{\infty} SW_M(K + 2iF),
\]

where \(F = PD[T_2] \), \(SW_{Y_n} \) is defined according to Lemma 3.2 and \(SW_M \) is well-defined since \(b^+_2(M) = 2 \).

Proof of Theorem 3.3. We compute \(SW_M \), \(SW_{Y_0} \) and then apply Lemma 3.4. Note first that the symplectic sum construction of Gompf, see [G], implies that \(M \) has a symplectic structure where the canonical class of the symplectic structure is equal to \(PD[T_1] \). It follows from [T1] that

\[
SW_M(\pm PD[T_1]) = \pm 1.
\]

On the other hand using the generalized adjunction formula, see [KM], [MMSz], it is an easy exercise to show that \(SW_M(L') = 0 \) for all \(L' \neq \pm PD[T_1] \).

It is not hard to show, cf. [Sz2], that \(Y_0 \) contains a smoothly embedded torus with self-intersection 1. Applying the generalized adjunction formula to the \(b^+_2 = 1 \) case, it follows that \(SW_{Y_0} \) vanishes.

Now applying Lemma 3.4, we get

\[
SW_{Y_n}(\pm PD[T_1]) = \pm n
\]

and \(SW_{Y_n}(L') = 0 \) for all \(L \neq \pm PD[T_1] \).

Proof of Theorem 1.1. Suppose that there exists \(n \geq 2 \) such that \(Y_n \) is not irreducible, i.e. \(Y_n = X \# Z \) with neither \(X \) nor \(Z \) being a homotopy \(S^4 \). Since \(\pi_1(Y_n) = 1, b^+_2(Y_n) = 1 \), \(X \) or \(Z \) is negative definite with \(b_2 > 0 \). Now Lemma 3.2 and the blow-up formula of [FS2] for Seiberg-Witten invariants contradicts Theorem 3.3 and this proves (i).

In order to prove (ii), (iii) we need to study the chamber structure of \(Y_n \# k\overline{CP^2} \). For a smooth closed oriented 4-manifold \(X \) with \(b^+_2(X) = 1 \) and \(H_1(X, \mathbb{Z}) = 0 \) we define the set of chambers in the following way.
Fix an orientation of $H^2_+(X, R)$. Let $\Omega = \{ x \in H^2(X, R) | x^2 = 1 \}$. Let Ω^+ denote the positive component of Ω. If $K \in H^2(X, Z)$ is a characteristic element, i.e $K \equiv w_2(TX) \pmod 2$, and $K^2 \geq 2e(X) + 3\text{sign}(X)$ then we define a wall

$$w(K) = \{ x \in \Omega^+ | x \cdot K = 0 \}.$$

The union of these walls W is locally compact in Ω^+. We define the set of chambers of X as the set of connected components of $\Omega^+ \setminus W$. Note that the chambers are open.

For every chamber C we define $SW^C_X(K)$ to be equal to $SW_X(K, g, h)$ where $[\omega^+(g)] \in C$ and h is small enough. It follows from Lemma 3.1, that if $K \cdot C_1, K \cdot C_2$ have opposite signs then

$$SW^{C_1}_X(K) = SW^{C_2}_X(K) \pm 1$$

and if $K \cdot C_1, K \cdot C_2$ have the same signs then

$$SW^{C_1}_X(K) = SW^{C_2}_X(K).$$

K is called a basic class of C if $SW^C_X(K) \neq 0$. Let $\text{dist}(C)$ denote the maximum of $A \cdot B$ where A, B are basic classes of C. We claim the following.

Lemma 3.5. Let $n \geq 1$ and $k \geq 0$. Then every chamber C of $Y_n \# k\mathbb{CP}^2$ has at least one basic class K with $SW^C_{Y_n \# k\mathbb{CP}^2}(K) = \pm n$, and there exists a chamber C_0 satisfying that

$$SW^C_{Y_n \# k\mathbb{CP}^2}(K') = \pm n$$

for all basic classes K' of C_0. Furthermore if a chamber C of $Y_n \# k\mathbb{CP}^2$ have $\text{dist}(C) = k$, then all basic classes A of C satisfies

$$A = (2l + 1)L + \sum_{i=1}^{k} (-1)^{\delta_i} E_i$$

with some $l \in \mathbb{Z}$, $\delta_i = 0, 1$ for $i = 1, \ldots, k$, where $L = PD[T_1]$ and E_i is the exceptional class of the i-th copy of \mathbb{CP}^2.

Proof. Let us fix the orientation of $H^2_+(Y_n \# k\mathbb{CP}^2, R)$ in such a way that $L \cdot \omega > 0$ for all $\omega \in \Omega^+$. There is a unique chamber C_0 of $Y_n \# k\mathbb{CP}^2$ for which $C_0 \cap \text{Im}(i)$ is not empty, where $i : H^2(Y_n, R) \to H^2(Y_n \# k\mathbb{CP}^2, R)$ is the obvious inclusion. Let us fix $\omega_0 \in C_0 \cap \text{Im}(i)$. It follows from
Theorem 3.3 and the blow-up formula that all basic classes of C_0 are given by $\pm L \pm E_1 \cdots \pm E_k$ and

$$SW^{C_0}_{Y_n \# k\mathbb{C}P^2}(\pm L \pm E_1 \cdots \pm E_k) = \pm n.$$

Now let C be another chamber of $Y_n \# k\mathbb{C}P^2$ and fix $\omega \in C$. Then ω decomposes as $\omega = \omega_1 + \sum_{i=1}^{k} (-1)^{\epsilon_i} l_i E_i$, where ω_1 lies in $Im(i)$, $\epsilon_i = 0, 1$ and $l_i \geq 0$. Let $K = L + \sum_{i=1}^{k} (-1)^{\epsilon_i} t_i E_i$. It is easy to see that $K \cdot \omega > 0$, $K \cdot \omega_0 > 0$. It follows that

$$SW^C_{Y_n \# k\mathbb{C}P^2}(K) = SW^{C_0}_{Y_n \# k\mathbb{C}P^2}(K) = \pm n.$$

Now suppose $dist(C) = k$ and there is a basic class A of C that is not a basic class of C_0. A decomposes as

$$A = A_0 + \sum_{i=1}^{k} (-1)^{\delta_i} l_i E_i,$$

where $A_0 \in Im(i)$, $\delta_i = 0, 1$, $l_i \geq 1$ and odd. After multiplying A by -1 if necessary, we can assume that $A \cdot \omega_0 > 0$. Note that since $A_0^2 \geq 0$ we have $A_0 \cdot L \geq 0$, where equality implies that A_0 is an odd multiple of L.

Since A is a basic class of C but not a basic class of C_0, it follows that $A \cdot \omega_1 < 0$. Let

$$A' = A_0 + \sum_{i=1}^{k} (-1)^{\epsilon_i} t_i E_i.$$

It is easy to see, that $A' \cdot \omega_1 < 0 < A' \cdot \omega_0$ and so A' is a basic class of C. Now

$$A' \cdot K = A_0 \cdot L + \sum_{i=1}^{k} t_i \geq A_0 \cdot L + k \geq k,$$

where $A' \cdot K = k$ implies that $t_i = 1$ for all $i = 1, \ldots, k$ and A_0 is an odd multiple of L. This finishes the proof of Lemma 3.5. \(\Box\)

Now suppose that contrary to (ii) of Theorem 1.1 there is a diffeomorphism $f : Y_n \# k\mathbb{C}P^2 \to Y_m \# k\mathbb{C}P^2$, with $n \neq m$. It is clear that f has to be orientation preserving. Let us fix the chamber C_0 of $Y_n \# k\mathbb{C}P^2$ as in Lemma 3.5, and let C be the pullback of C_0 under f^*. Then for all characteristic elements K of $Y_n \# k\mathbb{C}P^2$ we have

$$SW^{C_0}_{Y_n \# k\mathbb{C}P^2}(K) = SW^{C}_{Y_m \# k\mathbb{C}P^2}(f^* K).$$

This contradicts the first part of Lemma 3.5 and the contradiction proves (ii).
Note that a simply-connected Kähler surface with $b_2^+ = 1$ is either rational, a surface of general type or a non-rational elliptic surface, in which case it is equal to one of $E_{p,q} \# k\overline{\mathbb{C}P}^2$ where $p > 1$, $q > 1$, $(p,q) = 1$ and $k \geq 0$.

Since $\mathbb{C}P^2 \# k\overline{\mathbb{C}P}^2$ has a chamber where the Seiberg-Witten invariant vanishes, it follows from Lemma 3.5, that $Y_n \# k\overline{\mathbb{C}P}^2$ with $n \geq 1$ is not diffeomorphic to any rational surface.

The Seiberg-Witten invariants of surfaces of general type are known. It is proved for example in [M], that any surface of general type S with $b_2^+(S) = 1$ has a chamber C, in which $SW^C_X(K) = \pm 1$ for all basic classes of C. It follows now from Lemma 3.5, that if $n \geq 2$, then $Y_n \# k\overline{\mathbb{C}P}^2$ is not diffeomorphic to S.

Now we deal with $E_{p,q}$, where $p > 1$, $q > 1$, $(p,q) = 1$. Since $b_2^+(E_{p,q}) = 1$, $b_2^-(E_{p,q}) = 9$, it follows from Lemma 3.2 that $E_{p,q}$ has a unique chamber. Let K denote the canonical class of $E_{p,q}$. It is proved in [M], that $SW_{E_{p,q}}(\pm K) = \pm 1$ and all basic classes K' of $E_{p,q}$ satisfy $K' = tK$, where $|t| \leq 1$.

Suppose that there is a diffeomorphism $f : Y_n \# k\overline{\mathbb{C}P}^2 \to E_{p,q} \# k\overline{\mathbb{C}P}^2$, with $n \geq 2$. After fixing a homology orientation for $Y_n \# k\overline{\mathbb{C}P}^2$, f induces an orientation on $H^2_+(E_{p,q} \# k\overline{\mathbb{C}P}^2, R)$. Let C_1 be the unique chamber of $E_{p,q} \# k\overline{\mathbb{C}P}^2$ for which $C_1 \cap Im(i)$ is not empty, where $i : H^2(E_{p,q}, R) \to H^2(E_{p,q} \# k\overline{\mathbb{C}P}^2, R)$ is the obvious inclusion. The blow-up formula shows that every basic class of C_1 can be written as $tK + \sum_{i=1}^k (-1)^{\delta_i} D_i$ with some $|t| \leq 1$, $\delta_i = 0, 1$, where D_i denotes the exceptional class of the i-th copy of $\overline{\mathbb{C}P}^2$. Furthermore

$$SW^C_{E_{p,q} \# k\overline{\mathbb{C}P}^2}(\pm K \pm D_1 \cdots \pm D_k) = \pm 1.$$

It follows that $\text{dist}(C_1) = k$.

Let C denote the image of C_1 under f^*. Then C is a chamber of $Y_n \# k\overline{\mathbb{C}P}^2$ with $\text{dist}(C) = k$. It follows then from the second part of Lemma 3.5, that $f^*(V_i) = V_0$, where $V_0 = \langle L, E_1, \ldots, E_k \rangle$ and $V_1 = \langle K, D_1, \ldots, D_k \rangle$. Since $L^2 = K^2 = 0$, it follows that $f^*(K)$ is a multiple of L. Just as in the proof of Lemma 3.5, we have a basic class K' of C such that $K' = L + \sum_{i=1}^k (-1)^{\delta_i} E_i$ with $SW^C_{Y_n \# k\overline{\mathbb{C}P}^2}(\pm K') = \pm n$, and for all $j > 0$ we have

$$1) \quad SW^C_{Y_n \# k\overline{\mathbb{C}P}^2}(K' + 2jL) = 0.$$

Let A be the unique characteristic element of $E_{p,q} \# k\overline{\mathbb{C}P}^2$ with $f^*(A) = \ldots$
K'. It follows that

$$SW^{C_1}_{E_p,q \neq kCP^2}(A) = \pm n,$$

which implies $A = tK + \sum_{i=1}^{k} (-1)^{i}E_i$, with $|t|$ strictly less than 1. Now $A + (1 - t)K, A - (1 + t)K$ are basic classes of C_1 and consequently $f^*(A + (1 - t)K) = K' + 2j_1L, f^*(A - (1 + t)K) = K' + 2j_2L$ are basic classes of C. Since one of j_1, j_2 is positive, this contradicts (1). This finishes the proof of Theorem 1.1.

Proof of Theorem 1.2. We first need a result of Taubes on symplectic 4-manifolds.

Lemma 3.6. (See [T1], [T2]). Let X be an oriented symplectic 4-manifold with $H_1(X,Z) = 0$ and $b_2^+(X) = 1$. For all characteristic element L of X and symplectic form ω with $\omega^2 = 1$ we define

$$SW^\omega_X(L) = SW_X(L, g, -r\omega),$$

where $\omega^+(g) = \omega$ and r is large enough. Then we have

$$SW^\omega_X(-K) = \pm 1,$$

where K is the canonical class of the symplectic structure. Furthermore for all characteristic element K' with $SW^\omega_X(K') \neq 0$ we have

$$-K \cdot \omega \leq K' \cdot \omega,$$

where equality implies $-K = K'$.

Now suppose that there exists an $n \geq 2$ for which Y_n has a symplectic structure. By multiplying with (-1) if necessary, we can assume that $L \cdot \omega > 0$, where $L = PD[T_1]$. Lemma 3.1 shows that if a characteristic element K' of Y_n satisfies $K' \cdot \omega < 0$, then we have

$$SW_{Y_n}(K') = SW_{Y_n}^\omega(K').$$

Now it follows from Theorem 3.3 that

$$(2) \quad SW_{Y_n}^\omega(-L) = \pm n$$

and for all K' with $SW_{Y_n}^\omega(K') \neq 0$ we have

$$-L \cdot \omega \leq K' \cdot \omega.$$
Final remark

Starting with any smooth closed four-manifold X that contains a smoothly embedded torus $T \hookrightarrow X$ with self-intersection 0 and satisfies $\pi_1(X \setminus nd(T)) = 1$, one can define a family of simply-connected 4-manifolds Z_n by making the fiber sum of X and the Kodaira-Thurston manifold W along T, T_1 and then using ϕ_n to make a logarithmic transformation along T_2. In this way one can construct interesting simply-connected 4-manifolds. For example one can start with the $K3$ surface which contains three disjoint Gompf nuclei, see [GM]. By using the above construction repeatedly along the three fibers contained in the different nuclei we get a three parameter family of homotopy $K3$ surfaces, $Z_{n,m,k}$. It easily follows from Theorem 3.3 and [Sz2] that if $n \geq 2, m \geq 2, k \geq 2$, then $Z_{n,m,k}$ is non-symplectic.

As another generalization of [Sz2] Fintushel and Stern recently constructed a surprisingly rich family of non-symplectic homotopy $K3$ surfaces, and also proved that $Z_{n,m,k}$ arise as a special case of their construction.

Acknowledgements

I would like to thank John Morgan and Tom Mrowka for their help during the course of this work, and Ron Stern for helpful discussions.

References

EXOTIC 4-MANIFOLDS WITH $b_2^+ = 1$

Mathematics Department, Princeton University, Princeton, NJ 08544 USA
E-mail address: szabo@math.princeton.edu