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ON HEEGAARD DIAGRAMS

Feng Luo

1. Introduction

Given a compact orientable surface Σg of genus g, a marking m = ∪3g−3
i=1 mi

is a disjoint union of 3g − 3 pairwise non-parallel, essential unoriented simple
loops in Σg. In [HT], Hatcher and Thurston introduced two elementary moves
on markings and showed that any two markings are related by a finite sequence
of these moves. The type I (resp. type II) move on m produces a new marking
m′ = ∪3g−3

j=1 m′
j where m′

j = mj , j �= i and m′
i ∩ mi consists of one point (resp.

two points of different intersection signs) as in Figure 1. Suppose m, n are two
markings. We say that marking n contains a wave with respect to m, if there is
an arc α in n so that α∩m = α∩mi = ∂α for some i and α approaches its end
points from the same side of mi (see [VKF]). The goal of the paper is to show
the following theorem.
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Figure 1

Theorem. If m and n are two markings on Σg, then there is a marking m′

obtained from m by a finite sequence of type II moves and isotopies so that n
contains no waves with respect to m′. Furthermore, the new marking can be
found algorithmically.

Given a marking m in Σg, let H(m) be the handlebody with boundary Σg

obtained by attaching (thickened) 2-discs to Σg along mi’s and then attaching
3-balls. We say that two markings m, m′ are equivalent (or determining the same
handlebody structure) if the identity map from ∂H(m) to ∂H(m′) extends to a
homeomorphism from H(m) to H(m′). Here is another way of characterizing the
equivalence. Let D(m) be the set of essential simple loops in Σg which bound
discs in H(m). Then m and m′ are equivalent if and only if D(m) = D(m′)
which is the same as: mi ∈ D(m′), and m′

i ∈ D(m) for all i. It follows that if
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m′ is related to m by an elementary move of type II and an isotopy, denoted
by m ∼II m′, then D(m) = D(m′). One consequence of the theorem is the
following.

Corollary 1. If m, n are two markings which determine the same handlebody
structure, then they are related by a finite sequence of type II moves.

This is an analogy with the fact that any two ideal triangulations of a compact
non-closed surface are related by two elementary moves (one of them is the
diagonal switch). See Thurston [Th1], Harer [Har], Hatcher [Hat], and Mosher
[Mo].

Given a simple loop s, let Ds be a Dehn twist on s.

Corollary 2. If {s1, ..., sk} is a collection of disjoint pairwise non-isotopic sim-
ple loops in the boundary of a handlebody V so that the composition Da1

s1
...Dak

sk
,

a1...ak �= 0, of Dehn twists extends to a homeomorphism of the handlebody, then
each si is null homotopic in V .

In [CG], Casson and Gordon introduced the Heegaard diagram as a pair of
markings and established a nice criterion (the rectangle condition) on Heegaard
diagrams so that the Heegaard splitting is irreducible. Hempel [He] has made
more detailed study of 3-manifolds from the Heegaard diagram and the curve
complex point of view. As a consequence of the theorem and corollary 1, one
concludes that any 3-manifold has a special Heegaard diagram (n, m) so that n
contains no waves. It is natural to ask if one can strengthen the result so that
m contains no waves as well.

The organization of the paper is as follows. In section 2, we recall some
basic notions. We prove the theorem in section 3. In section 4, we derive the
corollaries and discuss some open questions.

2. Preliminaries

We work in the piecewise linear category. The interior and the boundary of
a manifold M will be denoted by int(M) and ∂M respectively. Given a finite
set X, |X| denotes the number of elements in X. A regular neighborhood of a
submanifold c is denoted by N(c). Regular neighborhoods are always assumed
to be small.

Let Σg,r be a compact orientable surface of genus g with r boundary com-
ponents. A curve system in Σg,r is a finite disjoint union of essential arcs and
essential, non-boundary parallel simple loops. If c and c′ are two isotopic sub-
manifolds, we denote them by c ∼= c′. The geometric intersection number I(c, c′)
between two submanifolds c and c′ is defined to be min{|s ∩ s′| : s ∼= c and
s′ ∼= c′}.

If a, b are submanifolds intersecting transversely, a wave for a with respect to
b is an arc α in a so that α∩ b = α∩ bi = ∂α where bi is a component of b and α
approaches its end points from the same side of bi. The set of all waves for a with
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respect b is denoted by Wav(a|b). We use W (a|b) to denote min{|Wav(a′|b′)| :
a′ ∼= a, b′ ∼= b}. Note that if |a ∩ b| = I(a, b), then W (a|b) = |Wav(a|b)|.

The following result is well known (see [Hat1]). See Figure 2.

Lemma 1. Given a1, a2, a3 ∈ Z≥0 so that a1 + a2 + a3 is even, there exists a
curve system c unique up to isotopy in Σ0,3 so that |c ∩ bi| = ai where ∂Σ0,3 =
b1 ∪ b2 ∪ b3. Furthermore, W (c|∂Σ0,3) = 0 if and only if ai + aj ≥ ak for
i �= j �= k �= i.

b

b

c

1

2

3b

Figure 2

We say that two disjoint 0-spheres in S1 are unlinked if they bound two
disjoint intervals. As a consequence of lemma 1, we have the following result.

Lemma 2.

(a) If a, b are curve systems in Σ1,1 so that ∂b = ∅, then W (a|b) = 0.
(b) If a is an essential arc in Σ0,4 with a ∈ Wav(a|∂Σ0,4) and b is a curve

system with ∂b = ∅ and I(a, b) > 0, then W (a|b) > 0.
(c) If a, b are essential arcs intersecting transversely in Σ0,3 so that ∂a,

∂b lie in the same boundary component of Σ0,3 and are unlinked in the
component, then Wav(a|b) �= ∅.

 b
a

 b

a

 b

a

Figure 3

Indeed, to see part (a), we may assume that |a ∩ b| = I(a, b) after an iso-
topy. Now the result follows from lemma 1 by cutting the surface open along b.
Parts (b) and (c) follow from the Jordan curve theorem and the outer most arc
argument. See Figure 3.

3. Proof of the theorem

We prove the theorem by induction on the complexity (W (n|m), I(n, m)) in
the lexicographic order.

Suppose that W (n|m) > 0. We isotopy m, n so that |m ∩ n| = I(m, n) and if
mi

∼= nj , then mi ⊂ int(N(n)), nj ⊂ int(N(m)). Let Σg− int(N(m)) = ∪2g−2
i=1 Pi

where Pi
∼= Σ0,3. By the choice of N(n) and N(m), each intersection n ∩ Pi is

a curve system in Pi. Take a wave e ∈ Wav(n|m), say, e ⊂ n1 and ∂e ⊂ m1.
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We first note that N(m1) intersects two distinct 3-holed spheres, say P1 and P2.
Indeed, if otherwise, say, ∂N(m1) ⊂ ∂P1, then N(m1)∪P1 = Σ1,1 and n1 ∩Σ1,1

is a curve system in Σ1,1. Let e∗ be the component of n1 ∩ Σ1,1 which contains
the wave e. Then |e∗ ∩ m1| = I(e∗, m1) but W (e∗|m1) > 0. This contradicts
lemma 2(a).

Now let Σ0,4 = P1 ∪ N(m1) ∪ P2 with e ⊂ P1 ∪ N(m1), and let e∗ be the
component of the curve system n ∩ Σ0,4 which contains the wave e as in Figure
4.

e* e*

m 1m 1m 1m 1

e* e*

(a)

  e

(b) (c) (d)

   e    e    e

P P1 2

Figure 4

There are four cases we need to consider: case 1, e∗ = n1 and |e∗ ∩ m1| = 2;
case 2, |e∗ ∩ m1| > 2; case 3, |e∗ ∩ m1| = 2 and ∂e∗ does not lie in a boundary
component of Σ0,4; case 4, |e∗ ∩ m1| = 2 and ∂e∗ lies in a boundary component
of Σ0,4. See Figure 4.

Case 1. e∗ = n1 and |e∗ ∩ m1| = 2. Then n1 intersects m1 at two points of
different signs and n1 ∩ mi = ∅ for i ≥ 2. Let m′

1 = n1 and m′
i = mi, i ≥ 2.

Then m′ = ∪m′
i is obtained from m by a type II move.

We claim that W (n|m′) < W (n|m). Take b ∈ Wav(n|m′). If b ∩ Σ0,4 = ∅,
then b ∈ Wav(n|m). If b ∩ Σ0,4 �= ∅ and ∂b ⊂ mi for i ≥ 2, then b ∩ m1 �= ∅
(due to b∩m′

1 = ∅). Thus by lemma 2(b) applied to b∩Σ0,4 and m1 in Σ0,4, we
conclude that b contains a wave b′ ∈ Wav(n|m) so that ∂b′ ⊂ m1. This produces
an injective map from Wav(n|m′) to Wav(n|m) whose image misses the wave e.
Thus W (n|m′) < W (n|m). Note that we also have W (m′|n) ≤ W (m|n) in this
case (see remark at the end of the proof).

Case 2. |e∗∩m1| ≥ 3. Take three intersection points x, y, z in e∗∩m1 so that
x, y (and y, z) are adjacent intersection points in e∗. Then the arcs xy and yz
(in e∗) are in Wav(n|m) as in Figure 5(a).
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Figure 5

Let zx be the arc in m1 so that y /∈ zx. Let m′
1 = xy ∪ yx ∪ zx and

m′
i = mi for i ≥ 2. Then m′ = ∪m′

i is obtained from m by a type II move
and an isotopy. We claim that W (n|m′) < W (n|m). To see this, we choose a
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marking m′′ ∼= m′ so that |m′′ ∩ n| = I(m′′, n) as follows. Let m′′
i = mi for

i ≥ 2 and m′′
1 = x′y′ ∪ y′z′ ∪ z′x′ where x′y′ ∪ y′z′ is a parallel copy of xy ∪ yx

(x′y′ ∪ y′z′ ⊂ ∂N(m′
1)) and z′x′ is a slight translation of zx along m1 as in

Figure 5(c). Now take b ∈ Wav(n|m′′). If b ∩ Σ0,4 = ∅, then b ∈ Wav(n|m). If
b ∩ Σ0,4 �= ∅ and ∂b ⊂ mi for i ≥ 2 (see Figure 5(d)), then b ∩ m1 �= ∅ (due to
b∩m′′

1 = ∅). Thus, by lemma 2(b) applied to b∩Σ0,4 and m1 in Σ0,4, we conclude
that b contains a wave b′ in Wav(n|m) so that ∂b′ ⊂ m1. Finally, if ∂b ⊂ m′′

1 ,
then ∂b ⊂ z′x′. Let P be the 3-holed sphere in Σ0,4 obtained by cutting Σ0,4

open along m′′
1 so that b ⊂ P , and let b̂ = m1 ∩P − z′x′. Both b and b̂ are waves

for ∂P . If b̂ ∩ b = ∅, then b ∈ Wav(n|m). If b̂ ∩ b �= ∅ (see Figure 5(e)), then by
lemma 2(c), b contains a wave b′ ∈ Wav(n|m) with ∂b′ ⊂ m1. Since the waves
xy and yx in Wav(n|m) are eliminated, we have W (n|m′′) < W (n|m). Note
that we have W (m′|n) ≤ W (m|n) in this case.

P1 P2

e*

m 1

 e α

b

b
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Figure 6

Case 3. |e∗ ∩m1| = 2 and ∂e∗ lies in two boundary components, as in Figure
6. Let P ′

2 be the 3-holed sphere in Σ0,4 bounded by m1 so that P2 ⊂ P ′
2. Let α

be an essential arc in P ′
2 with end points ∂e so that int(α)∩ e∗ = ∅ as in Figure

6(b) (there are two choices of such arcs up to isotopy). Let m′
1 = e ∪ α and

m′
i = mi for i ≥ 2. Then the marking m′ = ∪m′

i is obtained from m by a type
II move. We claim that W (n|m′) < W (n|m). To see this we take m′′ ∼= m′ as
follows m′′

i = mi for i ≥ 2 and m′′
1 is as in Figure 6(c) so that m′′

1 ∩m′
1 = α and

m′′
1 ∩ e∗ = ∂e. Take b ∈ Wav(n|m′′). If b ∩ Σ0,4 = ∅, then b ∈ Wav(n|m). If

b∩Σ0,4 �= ∅ and ∂b ⊂ mi for i ≥ 2 as in Figure 6(d), then b intersects m1 since b
is disjoint from m′′

1 . Thus by lemma 2(b) applied to b∩Σ0,4 and m1 in Σ0,4, we
conclude that b contains a wave b′ ∈ Wav(n|m) so that ∂b′ ⊂ m1. If ∂b ⊂ m′′

1 ,
then ∂b is in α. We consider the three-holed sphere P bounded by m′′

1 so that
b ⊂ P . Then by lemma 2(c) applied to b and m1 ∩ P in P , since b∩m1 �= ∅, we
conclude that b contains a wave b′ ∈ Wav(n|m) with ∂b′ ⊂ m1.

Case 4. |e∗ ∩ m1| = 2 and ∂e∗ lies in a boundary component b2 of Σ0,4. The
end points of e∗ decomposes b2 into two arcs. One of the arc, denoted by α,
makes the simple loop e∗ ∪ α non-boundary parallel in Σ0,4. Let m′

1 = e∗ ∪ α
and m′

i = mi for i ≥ 2. Then the marking m′ = ∪m′
i is obtained from m

by an isotopy and a type II move. We claim that W (n|m′) ≤ W (n|m) and
I(n, m′

1) ≤ I(n, m2)−2 where m2 is the component of m isotopic to the boundary
component b2.
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To see the claim, take b ∈ Wav(n|m′). If b∩Σ0,4 = ∅, then b ∈ Wav(n|m). If
b ∩ Σ0,4 �= ∅ and ∂b ⊂ mi for i ≥ 2, then b ∩ m1 �= ∅ (due to b ∩ m′

1 = ∅). By
lemma 2(b) applied to b∩Σ0,4 and m1 in Σ0,4, b contains a wave b′ ∈ Wav(n|m)
with ∂b′ ⊂ m1 (see Figure 7(c)). Finally, if ∂b ⊂ m′

1, then ∂b ⊂ α. Now if
b ∩ m1 = ∅, then b gives rise to a wave b′ in Wav(n|m) so that b ⊂ b′ and
b′ ⊂ b ∪ N(m2). If b ∩ m1 �= ∅ and b �= e∗, by lemma 2(c) (applied to the three-
holed sphere P bounded by m′

1 which contains b), we conclude that b contains
a wave b′ ∈ Wav(n|m) with ∂b′ ⊂ m1. Thus, W (n|m′) ≤ W (n|m). The second
statement I(n, m′

1) ≤ I(n, m2) − 2 follows from the construction.
Since the intersection number I(n, m) may increase during this process, the

complexity is not reduced. However, the wave e∗ gives rise to a wave e′ for m′

with ∂e′ ⊂ m2 and e∗ ⊂ e′. We shall proceed at this new wave e′ instead of any
other waves in n. If any of the previous three cases occur for e′, the complexity
is reduced and we finish the proof by induction. Therefore, it remains to show
that case 4 cannot occur indefinitely. To prove this, let us exam the change in
the N-tuple of non-negative even integers (I(n, m1), ..., I(n, mN )) = (a1, ..., aN ),
where N = 3g − 3. The algorithm states that at the first step, we replace one
coordinate of the N -tuple (a1, ..., aN ), say ai0 , by a

(1)
i0

, where 0 ≤ a
(1)
i0

≤ ai1 − 2
for some i1 �= i0. Let the new N -tuple be (a(1)

1 , ..., a
(1)
N ). Now we replace a

(1)
i1

by a
(2)
i1

where 0 ≤ a
(2)
i1

≤ a
(1)
i2

− 2 for some i2 �= i1. Suppose in the k-th step
we obtain the N -tuple (a(k)

1 , ...., a
(k)
N ) where 0 ≤ a

(k)
ik−1

≤ a
(k)
ik

− 2. Then in

the (k + 1)−th step, we replace a
(k)
ik

by a
(k+1)
ik

where 0 ≤ a
(k+1)
ik

≤ a
(k)
ik+1

− 2
for some ik+1 �= ik. We claim that after at most 1/2(ΣN

i=1ai+ max(a1, ..., aN ))
steps, the N -tuple is the zero vector (0, ..., 0). Indeed, first of all 0 ≤ a

(k)
i ≤

max(a1, ..., aN ) − 2 for all k and i by the construction. Furthermore,

ΣN
i=1a

(k+1)
i = ΣN

i=1a
(k)
i − a

(k)
ik

+ a
(k+1)
ik

≤ ΣN
i=1a

(k)
i + a

(k)
ik+1

− a
(k)
ik

− 2

= ΣN
i=1a

(k)
i + a

(k+1)
ik+1

− a
(k)
ik

− 2.

Now consider the sum of all these inequalities from 0 to k − 1. We obtain,

ΣN
i=1a

(k)
i ≤ ΣN

i=1ai + a
(k)
ik

− 2k

≤ ΣN
i=1ai + max(a1, ..., aN ) − 2k − 2.
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Thus the conclusion follows. This shows that after max (a1, ..., aN ) steps, the
complexity is reduced. The proof of the theorem is complete by induction. �
Remarks. 1. In cases 3 and 4, it can be shown using lemma 2 that we have the
following estimate of the number of waves: W (m′|n) ≤ 2W (m|n) + 1. However,
this estimate is not good enough to eliminate all waves Wav(n|m) and Wav(m|n)
using the type II moves. (The estimate W (m′|n) ≤ 2W (m|n) will work).

2. H. Masur ([Ma], lemma 1.1) showed that given an essential simple loop
c, then c ∈ D(m) if and only if for each m′ with D(m′) = D(m), either c is in
D(m) or Wav(c|m′) �= ∅. This also follows from the proof above.

4. Proof of the corollaries and some questions

The proof of the corollaries is based on the following simple lemma.

Lemma 3. Suppose c is an essential simple loop in Σg which is null homotopic
in the handlebody H(m) associated to a marking m and Wav(c|m) = ∅. Then c
is isotopic to a component of m.

Proof. Since Wav(c|m) = ∅, there are no bi-gons in c∪m. Thus, |c∩m| = I(c, m).
We claim that |c∩m| = 0. If not, consider the intersections of the meridian discs
bounded by c and m in the handlebody. The outer most arc of the intersection
in the disc bounded by c gives rise to a wave in Wav(c|m) which contradicts
the assumption. Now the only essential simple loop which is disjoint from m is
isotopic to the components of m. Thus the result follows. �

Corollary 1 follows directly from lemma 3 and the theorem since if two mark-
ings n, m are equivalent and Wav(n|m) = ∅, then n ∼= m.

Proof of Corollary 2. By extending the set of simple loops {s1, ..., sk} to a
marking n and using the theorem, we construct a marking m which determines
the handlebody V so that Wav(si|m) = ∅ for each i. We claim that each si is
isotopic to a component of m. To see this, consider the image of m under the
composition f = Da1

s1
...Dak

sk
. By the definition of the Dehn twist, the marking

f(m) has no waves with respect to m. But f(m) is equivalent to m by the
assumption on f . Thus by lemma 3, we conclude that f(m) is isotopic to m.
This is possible only if each si is isotopic to a component of m. �

Given a compact orientable 3-manifold M , a Heegaard splitting is a triple
(F, V1, V2) where F is an embedded orientable surface of genus g in M and V1

and V2 are two handlebodies in M so that V1 ∩ V2 = F and V1 ∪ V2 = M .
Two Heegaard splittings (F, V1, V2) and (F ′, V ′

1 , V ′
2) of M are equivalent if there

is an orientation preserving homeomorphism h : M → M so that h(Vi) =
V ′

i (i = 1, 2). One translates the above setup into 2-dimensional setting as
follows. Let φ : Σg → F be a homeomorphism. Then the two handlebodies
V1 and V2 are homeomorphic to H(m1) and H(m2) for some markings m1 and
m2 on Σg by homeomorphisms H(mi) → Vi which extends φ in the boundary
(i=1,2). Thus a Heegaard splitting of a 3-manifold can be described as a pair of
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markings (m1, m2) on Σg. Now let φ′ : Σg → F ′ be a homeomorphism for the
Heegaard surface F ′ and let (n1, n2) be a pair of markings on Σg corresponding
to the Heegaard splitting (F ′, V ′

1 , V ′
2). Then the equivalence relation between

(F, V1, V2) and (F ′, V ′
1 , V ′

2) states that there is a self-homeomorphism f of Σg

(f = φ′−1hφ) so that D(f(mi)) = D(ni) (i = 1, 2). This motivates the following
definition.

Definition.

(a) Two Heegaard diagrams (m1, m2) and (n1, n2) are related by an elemen-
tary move if either m1 ∼II n1, m2 = n2 or m1 = n1, and m2 ∼II n2.

(b) Two Heegaard diagrams (m1, m2) and (n1, n2) are homeomorphic (resp.
isotopic) if there is a homeomorphism h (resp. isotopy) of the surface so
that h(mi) = ni, i=1,2 (h may not preserve the order of the indices of
mi

j).
(c) Two Heegaard diagrams are equivalent if they are related by a finite

sequence of elementary moves and a homeomorphism.

One obvious question is whether there is an algorithm to decide if two Hee-
gaard diagrams are equivalent. Solutions of this question has applications to
the homeomorphism problem for irreducible non-Haken 3-manifolds in view of
the work of Rubinstein and Scharlemann ([RS]) on the stabilization problem for
Heegaard splittings.

Given a marking m and a simple loop c, there is an algorithm to decide if
c ∈ D(m) (Whitehead [Wh], see also [ER]). Thus, given two Heegaard diagrams,
there is an algorithm to decide if they are related by elementary moves. On
the other hand, given a marking m on Σg, Dehn-Thurston’s theory gives a
parametrization of the space of isotopy classes of curve systems CS(Σg) on Σg

using the marking ([De], [FLP], [Th]). Thus each Heegaard diagram (m1, m2)
has a Dehn-Thurston coordinate (a1, t1, ..., a3g−3, t3g−3) where ai = I(m2, m1

i )
and ti is the twisting number of m2 at m1

i . As a consequence, there is an
algorithm to check if two Heegaard diagrams are homeomorphic. Also Dehn-
Thurston theory gives an efficient way to list all isotopy classes of Heegaard
diagrams.
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