RADIAL VARIATION OF BLOCH FUNCTIONS

PETER W. JONES AND PAUL F. X. MÜLLER

0. The result

In 1971 J. M. Anderson [A] conjectured that for any conformal map \(\varphi \) in the unit disc there exists \(\beta, 0 \leq \beta \leq 2\pi \) such that

\[
\int_0^1 |\varphi''(re^{i\beta})|dr < \infty.
\]

More recently this problem has been posed in the works of N. Makarov [M], Ch. Pommerenke [P] and D. Gnuschke - Ch. Pommerenke [G-P]. The purpose of the present note is to prove Anderson’s conjecture. This will be done by showing the following theorem about the associated Bloch function \(b = \log |\varphi'| \).

Theorem 1. There exists \(\beta, 0 \leq \beta \leq 2\pi \) such that

\[
b(re^{i\beta}) \leq -\delta \int_0^r |\nabla b(\rho e^{i\beta})|d\rho + \frac{1}{\delta}, \quad \text{for } 0 < r < 1,
\]

where \(\delta > 0 \) is independent of \(r < 1 \).

The proof of Theorem 1 is given in section 3 where we also discuss how Anderson’s conjecture follows.

1. Preliminary inequalities

In this section we recall three estimates due to J. Bourgain, Ch. Pommerenke and A. Beurling respectively. In section 2 the construction of stopping time Lipschitz domains is based on Pommerenke’s inequality. In section 3 the selection of good directions \(e^{i\beta} \) is based on the result of J. Bourgain and estimates for harmonic measure due to A. Beurling.

We first discuss Bourgain’s inequality from [B]. For \(e^{i\alpha} \in \mathbb{T} \) we let \(\Gamma_\alpha \) be the collection of curves \(\gamma \) which admit the following parametrization. For \(0 < r < 1 \),

\[
\gamma(r) = re^{i\alpha}e^{i\theta(r)} \quad \text{where } |\theta(r)| < C(1-r) \text{ and } |\theta'(r)| < C.
\]

We fix a non-negative, harmonic function \(h \) in \(\mathbb{D} \) and we let \(K \) be an interval in \(\mathbb{T} \). Then the following result was proven in [B].
Theorem 2. There exists $e^{i\alpha} \in K$ so that for each curve $\gamma \in \Gamma_\alpha$,
\[
\delta_0 \int_\gamma |\nabla h(\zeta)| d\zeta \leq h(0),
\]
where $\delta_0 > 0$ depends only on C and $|K|$.

The Bloch space B consists of those harmonic functions $b : \mathbb{D} \to \mathbb{R}$ for which $\|b\|_B = \sup_{z \in \mathbb{D}} |\nabla b(z)|(1 - |z|)$ is finite. Pommerenke's theorem (see [P, p. 78]) is the following.

Theorem 3. Let $b : \mathbb{D} \to \mathbb{R}$ be in the Bloch space B and $\|b\|_B \leq 1$. Let $I \subset \mathbb{T}$ be an interval. Then there exists $e^{i\alpha} \in I$ so that for each $z \in \{re^{i\alpha} : 0 < r < 1\}$, the estimate $|b(z) - b(0)| \leq 22|I|^{-1}$ holds.

For a conformal map $\varphi : \mathbb{D} \to \Omega$ the function $b = \log |\varphi'|$ belongs to the Bloch space B with Bloch norm ≤ 6. This is a consequence of classical distortion theorems. (See [P].) Bloch functions are related to $|\varphi''|$ as follows. Let $g = \log \varphi'$, $g' = \varphi''/\varphi'$, hence $|\varphi''| = |g'||\varphi'|$. Let $b = \log |\varphi'|$, then b is the real part of g. Hence by the Cauchy-Riemann equations $2|g'| = |\nabla b|$, and
\[2|\varphi''| = |\nabla b||\varphi'| = |\nabla b|e^b.
\]
This identity provides a link between estimates for the variation of Bloch functions and estimates for the L^1 norm of φ''. This has been exploited in [G-P].

Next we recall a minorization for harmonic measure due to A. Beurling. Fix $e \in \mathbb{D}$ and $0 < \delta < 1$. Then we define the Stolz angle $C(e, \delta)$ to be the convex hull of $\{z \in \mathbb{D} : |z| < (1 - \delta)|e|\}$ and e. If $1/4 < \delta < 1$, then we write simply $C(e)$ for $C(e, \delta)$. Let $W \subset \mathbb{D}$ be a Lipschitz domain, $e \in \partial W$, and suppose that the cone $C(e, \delta/2)$ is contained in W. Let D be a connected subset of ∂W, so that $\text{dist}(D, e) < rC_1$ and $\text{diam}(D) > rC_2$. Then the following estimate holds.

Theorem 4. For each $z \in C(e, \delta)$, with $|e - z| < r$, the harmonic measure satisfies $\omega(z, D, W) > \eta_0$, where η_0 depends only on C_1, C_2, and δ.

Below we will be concerned with the question whether a given curve in the unit disc remains in a fixed Stolz angle or not. To decide this the following criterion which is a folk theorem uses lower estimates for harmonic measure. We fix $e^{i\alpha} \in \mathbb{T}$, and let $I_\alpha = \{e^{i\theta} : \alpha - \pi/2 < \theta < \alpha \pi/2\}$ and $J_\alpha = \{e^{i\theta} : \alpha - \pi/2 < \theta < \alpha\}$. For $z \in \mathbb{D}$ we denote by $\omega(z, I)$ the harmonic measure of I with respect to \mathbb{D} evaluated at $z \in \mathbb{D}$.

Theorem 5. For a path Γ in \mathbb{D} the following conditions are equivalent.

(i) There exists δ such that $\Gamma \subset C(e^{i\alpha}, \delta)$.

(ii) There exists $\eta > 0$ such that for each $z \in \Gamma$, there hold the lower estimates for harmonic measure $\omega(z, I_\alpha) > \eta$ and $\omega(z, J_\alpha) > \eta$.
We combine this criterion and Beurling’s estimates. Let \(f : \mathbb{D} \to W \) be the conformal map from the unit disc to the Lipschitz domain \(W \). Fix \(e \in \partial W \), and let \(e^{i\alpha} = f^{-1}(e) \). Suppose that \(C(e, \delta/2) \subset W \), and let \(\Gamma \) be a path in \(C(e, \delta) \). Then the following holds.

Theorem 6. There exists \(\delta_0 > 0 \), depending only on \(\delta \), such that \(f^{-1}(\Gamma) \) is contained in \(C(e^{i\alpha}, \delta_0) \).

2. Stopping time Lipschitz domains

In this section we define the stopping time Lipschitz domain \(W(z_0) \), and we collect some of its basic properties. We let \(b : \mathbb{D} \to \mathbb{R} \) be a Bloch function, and we fix it throughout this section. We also fix \(z \in \mathbb{D} \) with \(|z| > 15/16 \). First we construct an auxiliary domain \(V(z) \).

Let \(I = \{ \zeta \in \mathbb{T} : |z - \zeta| \leq 8(1 - |z|) \} \). The intervals \(I_1, I_2 \) have length \(1 - |z| \), they are attached to the left respectively right endpoint of \(I \). Let \(r_1 = 2|z| - 1 \), and let \(S_0 = \{ w \in \mathbb{D} : |w| = r_1 \) and \(|w - z| \leq 1 - |z| \} \). The left respectively right endpoint of \(S_0 \) are \(s_1 \) resp. \(s_0 \). By Theorem 3 there are line segments \(S_i \) connecting \(s_i \) to \(I_i \) such that

\[
|b(w) - b(s_i)| \leq 25||b||/\omega(s_i, I_i),
\]

whenever \(w \in S_i \), \(i \in \{1,2\} \). We let \(V(z) \) be the domain in \(\mathbb{D} \) which is bounded by \(S_0 \cup S_1 \cup S_2 \).

The domain \(V(z) \) satisfies

\[
\sup |b(w) - b(z)| \leq ||b||_B/\omega_0,
\]

where the supremum is taken over \(S_0 \cup S_1 \cup S_2 \), and where \(\omega_0 = \min\{\omega(s_1, I_1), \omega(s_2, I_2)\}/30 \). The boundary of \(V(z) \) intersects \(\mathbb{T} \) in an interval \(J \). For the harmonic measure of \(J \) we have the lower estimate \(w(z,J,V(z)) \geq 1/3 \). Moreover we observe the following.

\[(2.1) \quad \text{The angle formed by} \ S_1 \text{ and} \ J, \text{ resp.} \ S_2 \text{ and} \ J \text{ is less than} \ \pi/5.\]

Next fix \(z_0 \in \mathbb{D} \) with \(|z_0| \geq 15/16 \), and \(M \in \mathbb{N} \) large enough. We now turn to the construction of \(W(z_0) \). Using a stopping time \(W(z_0) \) is obtained as a subdomain of \(V(z_0) \). For an interval \(I \subseteq \mathbb{T} \) we let \(T(I) = \{ w \in \mathbb{D} : w/|w| \in I \text{ and } |I|/2 < 1 - |w| < |I| \} \). Now we let \(\{I_i : i \in \mathbb{N}\} \) be the collection of maximal dyadic intervals with the property that there exists \(z_i \in T(I_i) \) with

\[(2.2) \quad b(z_i) - b(z_0) \leq -M.\]

The stopping time Lipschitz domain is defined as

\[
W(z_0) = V(z_0) \setminus \bigcup_{i=1}^{\infty} V(z_i).
\]
For \(z_0 = 0 \) we define the points \(z_i \) using the stopping time condition (2.2). By (2.4), each point \(z_i \) satisfying (2.2) must have modulus \(\geq 15/16 \). Hence \(V(z_i) \) is well defined and we put \(W(0) = \mathbb{D} \setminus \bigcup_{i=1}^{\infty} V(z_i) \).

The following list of remarks collects the basic properties of \(W(z_0) \).

Remarks.

1. It follows from (2.1) that \(W(z_0) \) is a Lipschitz domain with starcenter \(z_0 \). The Lipschitz constant is independent of \(z_0 \).
2. Suppose that \(w \in \partial V(z_i) \) for some \(i > 0 \), and suppose also that \(|w| < 1 \). Then for \(M \) large enough we have that
 \[
 -2M < b(w) - b(z_0) < -M/2.
 \]
3. For \(M \) large enough we have \(V(z_i) \subset V(z_0) \). Moreover the estimate \(b(z_i) - b(z_0) < -M \) implies that
 \[
 1 - |z_i| \leq (1 - |z_0|)/16.
 \]
4. Let \(I(z_0) = \{ \zeta \in \mathbb{T} : |\zeta - z_0/|z_0|| \leq (1 - |z_0|)/4 \} \). Pick \(\zeta_0 \in I(z_0) \). Let \(R \) be the ray connecting \(0 \) to \(\zeta_0 \), and let \(L = R \setminus V(z_0) \). Then \(L \) is contained in the Stolz angle \(C(z_0) \).
5. Let \(K(z_0) \) be the convex hull of \(z_0 \) and \(I(z_0) \), and let \(D = K(z_0) \cap \partial W(z_0) \), then by Theorem 4, \(\omega(z_0, D, W(z_0)) > \omega_0 \), where \(\omega_0 > 0 \) is a universal constant.

3. The selection of a good ray

In this section we fix a conformal map \(\varphi \) in the unit disc, and we will select \(e^{i\beta} \in \mathbb{T} \) such that

\[
\int_{0}^{1} |\varphi''(re^{i\beta})|dr < \infty.
\]

Let \(b = \log |\varphi'| \) be the Bloch function associated to the Riemann map \(\varphi \). The ray \(L = \{ re^{i\beta} : 0 < r < 1 \} \) will be chosen so that on \(L \) there are points \(Q_k \) satisfying

\[
b(Q_k) - b(Q_{k-1}) < -M/3,
\]
and

\[
\int_{l_k} |\nabla b(\zeta)|d|\zeta| \leq C_0 M,
\]
where \(l_k \) is the line segment connecting \(Q_k \) and \(Q_{k-1} \). Note that (3.2) and (3.3) imply Theorem 1 and (3.1). Indeed, summing (3.2) gives

\[
b(Q_k) < -kM/3.
\]

Using (3.3) we obtain from (3.4),

\[
b(\zeta) < -kM/3 + C_0 M, \text{ for } \zeta \in l_k.
\]
Clearly (3.3) and (3.5) imply the conclusion in Theorem 1. Now recall that 2|φ''| = |∇b|e^b, together with (3.3) and (3.5) this identity gives the following estimate.

\[
\int_0^1 |φ''(re^{iβ})|dr = \int_0^1 |∇b(re^{iβ})|e^{b(re^{iβ})}dr \leq \sum_{k=0}^{∞} \int_{I_k} |∇b(ζ)|e^{b(ζ)}dζ
\]

\[
\leq e^{C_0M} \sum_{k=0}^{∞} e^{-kM/3} \int_{I_k} |∇b(ζ)||dζ| \leq C_0e^{C_0M}M.
\]

Now we begin the proof of Theorem 1. First we give an inductive definition of an auxiliary sequence of points \(e_k \in \mathbb{D} \). Their limit will be the point \(e^{iβ} \) satisfying the required properties (3.2) and (3.3).

Fix \(M \in \mathbb{N} \) large enough and assume \(b(0) = 0 \). Let \(W(0) \) be the stopping time Lipschitz domain constructed in section 2. Clearly we have \(0 \in W(0) \). Let \(f : \mathbb{D} \to W(0) \) be the Riemann map normalized such that \(f(0) = 0 \).

We use the conformal map \(f \) to pull back \(b \) from \(W(0) \) to the unit disc \(\mathbb{D} \). The composition \(h = b \circ f \) is harmonic and satisfies \(h > -2M \) in \(\mathbb{D} \), and \(h(0) = 0 \). By Bourgain’s theorem there exists \(e^{iα} \in \mathbb{T} \) such that

\[
δ_0 \int_γ |∇h(ζ)||dζ| \leq M, \text{ for } γ \in Γ_α.
\]

Now we let \(e_1 = f(e^{iα}) \). We distinguish between the cases \(|e_1| = 1 \) and \(|e_1| < 1 \). If we have \(|e_1| < 1 \), then by (2.3) we have \(b(e_1) < -M/2 \). If \(|e_1| = 1 \), then we stop the construction of the points \(\{e_k\} \).

Next we give the induction step in the construction of the points \(\{e_k\} \). We are given \(e_1, \ldots, e_l \), points in \(\mathbb{D} \), so that \(I(e_{k+1}) \subset I(e_k) \) and \(|I(e_{k+1})| < |I(e_k)|/4 \), for \(1 \leq k \leq l-1 \). Let \(D = ∂W(e_l) \cap K(e_l) \). \(D \) is connected, and by Remark 5 in Section 2, for the harmonic measure we have the estimate \(w(e_l, D, W(e_l)) \geq ω_0 \).

Let \(f : \mathbb{D} \to W(e_l) \) with \(f(0) = e_l \) be the Riemann map for the domain \(W(e_l) \), then \(K = f^{-1}(D) \) is an interval and \(|K| \geq ω_0 \).

Again, the conformal map \(f \) is used to pull back \(b \) from \(W(e_l) \) to the unit disc. The composition \(h = b \circ f - b \circ f(0) \) is harmonic and satisfies \(h > -2M \) in \(\mathbb{D} \) and \(h(0) = 0 \). By Bourgain’s theorem there exists \(e^{iα} \in K \) such that

\[
(3.6) \quad δ_0 \int_γ |∇h(ζ)||dζ| \leq M, \text{ for } γ \in Γ_α.
\]

Let \(e_{l+1} = f(e^{iα}) \). As \(e_{l+1} \) is a point in \(D = ∂W(e_l) \cap K(e_l) \) it follows from (2.4) that

\[
(3.7) \quad I(e_{l+1}) \subset I(e_l) \text{ and } |I(e_{l+1})| < |I(e_l)|/4.
\]

If \(|e_{l+1}| < 1 \), then by (2.3),

\[
(3.8) \quad b(e_{l+1}) - b(e_l) < -M/2.
\]

Otherwise, i.e., when \(|e_{l+1}| = 1 \) we stop the construction of the points \(\{e_k\} \).
Having completed the construction of the points \(\{e_k\} \) we let \(e^{i\beta} = \lim e_k \). By (3.7) the limit exists and lies in \(T \). Moreover it follows that \(e^{i\beta} = \bigcap I(e_k) \). We let \(L \) be the ray connecting 0 and \(e^{i\beta} \). By (3.7) the limit exists and lies in \(T \). Moreover it follows that \(e^{i\beta} = \bigcap I(e_k) \). We let \(L \) be the ray connecting 0 and \(e^{i\beta} \). Notice that \(L \) intersects the boundary \(\partial W(e_k) \) at least once and at most twice. We let \(Q_k \) be the point in \(L \cap \partial W(e_k) \) that has the smaller modulus. If we let \(l_k \) be the line segment connecting \(Q_k \) and \(Q_{k+1} \) then clearly \(l_k \) coincides with \(L \cap \{W(e_k) \setminus V(e_{k+1})\} \). Moreover by Remark 4,

\[
(3.9) \quad l_k \text{ is a subset of } C(e_{k+1}).
\]

Now we wish to verify (3.2) and (3.3). We fix \(k \in \mathbb{N} \) and let \(f : \mathbb{D} \to W(e_k) \) be the conformal map that was used in the definition of \(e_{k+1} \in \partial W(e_k) \). Then we had determined \(\alpha \) by \(f(e^{i\alpha}) = e_{k+1} \). Now (3.9) and Theorem 6 imply that the curve

\[
f^{-1}(l_k) \text{ is contained in } C(e^{i\alpha}).
\]

Moreover by the distortion theorem, the curve \(f^{-1}(l_k) \) can be decomposed into say \(F_1 \cup \cdots \cup F_{m_0} \), with a universal \(m_0 \), so that each of the \(F_i \) is contained in a curve \(\gamma \in \Gamma_\alpha \). By (3.6) this implies that

\[
\int_{f^{-1}(l_k)} |\nabla h(\zeta)||d\zeta| \leq C_0 M,
\]

where \(h = b \circ f - b \circ f(e_k) \). A change of variables gives the desired

\[
\int_{l_k} |\nabla b(\zeta)||d\zeta| \leq C_0 M.
\]

To obtain (3.2) from (3.8) we observe that \(L \) hits the boundary \(\partial W(e_k) \) near \(e_k \). More precisely, the hyperbolic distance between \(Q_k \) and \(e_k \) is bounded independent of \(k \). Hence from (3.8) we obtain

\[
b(Q_{k+1}) - b(Q_k) < -M/3,
\]

provided that \(M \) is large enough.

References

Department of Mathematics, Yale University, New Haven, CT 06520

E-mail address: jones@math.yale.edu, muller@math.yale.edu