ON CLASSIFICATION OF DYNAMICAL r-MATRICES

OLIVIER SCHIFFMANN

ABSTRACT. Using the gauge transformations of the Classical Dynamical Yang-Baxter Equation introduced by P. Etingof and A. Varchenko in [EV], we reduce the classification of dynamical r-matrices r on a commutative subalgebra \mathfrak{i} of a Lie algebra \mathfrak{g} to a purely algebraic problem, under some assumption on the symmetric part of r. We then describe, for a simple complex Lie algebra \mathfrak{g}, all non skew-symmetric dynamical r-matrices on a commutative subalgebra $\mathfrak{i} \subset \mathfrak{g}$ which contains a regular semisimple element. This interpolates results of P. Etingof and A. Varchenko ([EV], when \mathfrak{i} is a Cartan subalgebra) and results of A. Belavin and V. Drinfeld for constant r-matrices ([BD]). This classification is similar, and in some sense simpler than the Belavin-Drinfeld classification.

1. The classical Yang-Baxter equation

Let \mathfrak{g} be a Lie algebra. The CYBE is the following algebraic equation for an element $r \in \mathfrak{g} \otimes \mathfrak{g}$:

\[
[r^{12}, r^{13}] + [r^{12}, r^{23}] + [r^{13}, r^{23}] = 0.
\]

(1)

Solutions of this equation are called r-matrices. In the theory of quantum groups, one is mainly interested in r-matrices satisfying

\[
r + r^{21} \in (S^2 \mathfrak{g})^\mathfrak{g}.
\]

(2)

See [CP] for the links with the theory of quantum groups, and [Che] for links with Conformal Field Theory and the Wess-Zumino-Witten model on \mathbb{P}^1. The geometric interpretation of the CYBE was given by Drinfeld in terms of Poisson-Lie groups ([Dr1]).

2. The Belavin-Drinfeld classification

Notations. Let \mathfrak{g} be a simple complex Lie algebra with a nondegenerate invariant form $(\ , \)$, $\mathfrak{h} \subset \mathfrak{g}$ a Cartan subalgebra and Δ the root system. For $\alpha \in \Delta$, let \mathfrak{g}_α denote the root subspace associated to α. Let W be the Weyl group and s_α, $\alpha \in \Delta$ the reflection with respect to α^\perp. Finally, let $\Omega \in S^2 \mathfrak{g}$ and $\Omega_\mathfrak{h} \in S^2 \mathfrak{h}$ be the inverse elements to the form $(\ , \)$. Notice that $(S^2 \mathfrak{g})^\mathfrak{g} = C\Omega$.

For any polarization $\mathfrak{g} = \mathfrak{n}_- \oplus \mathfrak{h} \oplus \mathfrak{n}_+$, we denote by Π or $\Pi(\mathfrak{n}_\pm)$ the corresponding set of simple positive roots, by Δ_+ the set of positive roots and by $\mathfrak{b}_+ = \mathfrak{n}_+ \oplus \mathfrak{h}$ the Borel subalgebras. For $\Gamma \subset \Pi$, set $(\Gamma) = \mathbb{Z}\Gamma \cap \Delta$, and let \mathfrak{g}_Γ be the subalgebra generated by \mathfrak{g}_α, $\alpha \in (\Gamma)$. We will write $\mathfrak{g}_\Gamma = \mathfrak{n}_+(\Gamma) \oplus \mathfrak{h}(\Gamma) \oplus \mathfrak{n}_-(\Gamma)$.
for the induced polarization and $W(\Gamma)$ for the subgroup of W generated by s_{a}, $a \in \Gamma$. Let us fix a polarization of \mathfrak{g}.

Definition. A Belavin-Drinfeld triple is a triple $(\Gamma_1, \Gamma_2, \tau)$ where $\Gamma_1, \Gamma_2 \subset \Pi$ and $\tau : \Gamma_1 \rightarrow \Gamma_2$ is a norm-preserving bijection satisfying the following “nilpotency” condition:

“For any $\gamma_1 \in \Gamma_1$, there exists $n > 0$ such that $\tau^n(\gamma_1) \in \Gamma_2 \setminus \Gamma_1$.”

Let $(\Gamma_1, \Gamma_2, \tau)$ be a Belavin-Drinfeld triple. For each choice of Chevalley generators $(e_{\alpha}, f_{\alpha}, h_{\alpha})_{\alpha \in \Gamma_i}$, $i = 1, 2$, the isomorphism τ induces a Lie algebra isomorphism $\mathfrak{g}_{\Gamma_1} \rightarrow \mathfrak{g}_{\Gamma_2}$ (by $e_{\alpha} \mapsto e_{\tau(\alpha)}$, $f_{\alpha} \mapsto f_{\tau(\alpha)}$, $h_{\alpha} \mapsto h_{\tau(\alpha)}$). Define a partial order on Δ_+ by setting $\alpha < \beta$ if there exists $n > 0$ such that $\tau^n(\alpha) = \beta$ (in particular, $\alpha \in \Gamma_1$ and $\beta \in \Gamma_2$).

Definition. A basis $(x_{\alpha})_{\alpha \in \Delta}$ of $n_+ \oplus n_-$ is called admissible if $(x_{\alpha}, x_{-\alpha}) = 1$ and $\tau(x_{\alpha}) = x_{\tau(\alpha)}$ for $\alpha \in \langle \Gamma_1 \rangle$.

Theorem 1 (Belavin-Drinfeld). Let \mathfrak{g} be a simple complex Lie algebra.

1. Let $(\Gamma_1, \Gamma_2, \tau)$ be a Belavin-Drinfeld triple, (x_{α}) an admissible basis, and let $r_0 \in \mathfrak{h} \otimes \mathfrak{h}$ be such that

\[r_0 + r_0^{21} = \Omega_{\mathfrak{h}}, \]

\[(\tau(\alpha) \otimes 1)r + (1 \otimes \alpha)r = 0 \quad \text{for} \quad \alpha \in \Gamma_1. \]

Then

\[r = r_0 + \sum_{\alpha \in \Delta_+} x_{-\alpha} \otimes x_{\alpha} + \sum_{\alpha, \beta \in \Delta_+, \alpha < \beta} x_{-\alpha} \wedge x_{\beta} \]

is an r-matrix satisfying $r + r^{21} = \Omega$.

2. Any r-matrix satisfying $r + r^{21} = \Omega$ is of the above type for a suitable polarization of \mathfrak{g}.

This theorem is proved in [BD]. For instance, the standard r-matrix for a fixed polarization $r = \frac{\Omega_{\mathfrak{h}}}{2} + \sum_{\alpha \in \Delta_+} x_{-\alpha} \otimes x_{\alpha}$ corresponds to $\Gamma_1 = \Gamma_2 = \emptyset$.

Remark. Skew-symmetric r-matrices admit a well known interpretation in terms of nondegenerate 2-cocycles on Lie subalgebras of \mathfrak{g} ([Dr1]), but their classification is unavailable since it requires a classification of Lie subalgebras in \mathfrak{g}.

3. The dynamical Yang-Baxter equation

Let \mathfrak{g} be a Lie algebra over \mathbb{C} and $\mathfrak{l} \subset \mathfrak{g}$ a subalgebra. An element $x \in \mathfrak{g} \otimes \mathfrak{g}$ will be called \mathfrak{l}-invariant if

\[[k \otimes 1 + 1 \otimes k, x] = 0 \quad (\forall k \in \mathfrak{l}). \]
For \(x \in g^\otimes 3 \), we let \(\text{Alt}(x) = x^{123} + x^{231} + x^{312} \). Let \(D \subset \mathfrak{l}^* \) be any open region.

The CDYBE is the following differential equation for a holomorphic \(\mathfrak{l} \)-invariant function \(r : D \to g \otimes g \):

\[
\text{Alt}(dr) + [r^{12}, r^{13}] + [r^{12}, r^{23}] + [r^{13}, r^{23}] = 0,
\]

(7)

where the differential of \(r \) is considered as a holomorphic function

\[
dr : D \to g \otimes g \otimes g, \quad \lambda \mapsto \sum_i x_i \otimes \frac{\partial r^{23}}{\partial x_i}(\lambda), \quad (\lambda \in \mathfrak{l}^*),
\]

for any basis \((x_i)\) of \(\mathfrak{l} \). In this case,

\[
\text{Alt}(dr) = \sum_i x_i^{(1)} \frac{\partial r^{23}}{\partial x_i} + \sum_i x_i^{(2)} \frac{\partial r^{31}}{\partial x_i} + \sum_i x_i^{(3)} \frac{\partial r^{12}}{\partial x_i}.
\]

The solutions to this equation are called dynamical \(r \)-matrices. Dynamical \(r \)-matrices which are relevant to the theory of quantum groups are those satisfying the following condition, analogous to (2):

\[
\text{Generalized unitarity: } r(\lambda) + r^{21}(\lambda) \in (S^2 g)^g.
\]

(8)

Remark. The CDYBE was first written down by G. Felder and C. Wiezcerkowski in connection with the Wess-Zumino-Witten model on elliptic curves ([FW]). The relation with elliptic quantum groups is explained in [Fe]. A geometric interpretation of the CDYBE analogous to the theory of Poisson-Lie groups for the CYBE is given in [EV].

4. Gauge transformations

We recall some results from [EV]. We suppose here that \(\mathfrak{l} \) is commutative and we let \(D \) be the formal polydisc centered at the origin. Let \(G \) be a complex Lie group such that \(\text{Lie}(G) = g \), and let \(L \) be the connected subgroup of \(G \) such that \(\text{Lie}(L) = \mathfrak{l} \). Let \(G^L \) be the centralizer of \(L \) in \(G \) and \(g^L \) its Lie algebra. We will denote by \((g \otimes g)^L\) the space of all \(\mathfrak{l} \)-invariant elements in \(g \otimes g \).

Let \(g : D \to G^L \) be any holomorphic function; the 1-form \(\eta = g^{-1}dg \) gives rise to a function \(\overline{\eta} : D \to \mathfrak{l} \otimes g^L \). If \(r : D \to (g \otimes g)^L \) is an \(\mathfrak{l} \)-invariant function satisfying (8), we set

\[
r^g = (g \otimes g)(r - \overline{\eta} + \overline{\eta}^{21})(g^{-1} \otimes g^{-1}).
\]

Proposition 1. The function \(r \) is a dynamical \(r \)-matrix if and only if the function \(r^g \) is.

Thus the group \(\text{Map}(D, G^L) \) is a gauge transformation group for the CDYBE. Notice that this group is not commutative if \(G^L \) isn’t.

Theorem 2. Let \(\rho, r : D \to g^\otimes 2 \) be two dynamical \(r \)-matrices satisfying (8) such that \(r(0) = \rho(0) \). There exists \(g \in \text{Map}(D, G^L) \) such that \(\rho = r^g \).
This shows that the space of dynamical r-matrices is, up to gauge equivalence, finite dimensional. Proofs of the above results can be found in [EV].

We will now prove a converse of Theorem 2 which reduces the CDYBE to a purely algebraic equation under some assumption on the symmetric part Ω of r: let $\Omega \in (S^2 g)^g$, let $g\Omega$ be the ideal in g generated by the components of Ω and denote by $g\Omega = \bigoplus_{\lambda} g\Omega(\lambda)$ the generalized weight space decomposition of $g\Omega$ with respect to the adjoint action of l. The condition we will need is the following:

\[(*) \quad g^l \text{ acts semisimply on } g\Omega(0). \]

Suppose that (*) is fulfilled and let $z(g^l)$ denote the center of g^l. Then we have a decomposition $g\Omega(0) = z_0(g^l) \oplus V$ where $z_0(g^l) = z(g^l) \cap g\Omega(0)$ and V is the sum of all non-trivial irreducible g^l-modules in $g\Omega(0)$. It is clear that $l \cap V = \{0\}$. We will say that a complement l' of l in g is admissible if $V \subset l'$, and write $\pi : g \to l$ for the projection along l'. Notice that by g^l-invariance of Ω,

\[(9) \quad \Omega \in z^2_0(g^l) \oplus S^2 V \oplus \bigoplus_{\lambda \neq 0} g\Omega(\lambda) \otimes g\Omega(-\lambda). \]

We will denote by $CYB : g^2 \to g^3$ the map:

\[r \mapsto [r_{12}, r_{13}] + [r_{12}, r_{23}] + [r_{13}, r_{23}]. \]

It is more convenient to work with the skew-symmetric part of r. If $r(\lambda) + r^{21}(\lambda) = \Omega \in (S^2(g))^g$, we set $s(\lambda) = r(\lambda) - \frac{\Omega}{2}$. It is easy to see that the CDYBE for r is equivalent to the following equation for s:

\[(10) \quad \text{Alt}(ds) + CYB(s) + \frac{1}{4} CYB(\Omega) = 0. \]

Recall that as Ω is symmetric and invariant, $CYB(\Omega) = [\Omega_{13}, \Omega_{23}]$.

Theorem 3. Let G be a complex Lie group and $L \subset G$ a connected commutative subgroup. Let g, l, g^l denote the Lie algebras of G, L and G^L. Let $\Omega \in (S^2 g)^g$. Then

1. Let l' be any complement of l in g. Any dynamical r-matrix $r(\lambda)$ on l such that $r(\lambda) + r^{21}(\lambda) = \Omega$ is gauge equivalent to a dynamical r-matrix $\tilde{r}(\lambda)$ such that $\tilde{r}(0) \in \Omega_g + (\Lambda^2(l'))^l$.

2. Suppose that condition (*) is true and let l' be any admissible complement of l in g. Let $r_0 \in \frac{\Omega}{2} + (\Lambda^2(l'))^l$ satisfy
(11) \[CYB(r_0) \in \text{Alt}(l \otimes g \otimes g), \]
such that \(s_0 = r_0 - \Omega/2 \) is a regular point of the algebraic manifold
\[M_\Omega = \{ s \in (\Lambda^2(l'))^1 | CYB(s + \Omega/2) \in \text{Alt}(l \otimes g \otimes g) \}. \]

Then there exists a dynamical r-matrix \(r(\lambda) : D \to \Omega + \Lambda^2(l')^1 \) such that \(r(0) = r_0 \).

The condition (*) is satisfied in the following two interesting special cases: when \(\Omega = 0 \) (triangular case) or when \(g_l \) acts semisimply on \(g \) (for instance, \(G \) is reductive and \(L \) is contained in a maximal torus of \(G \) or more generally, if \(G_L \) is reductive).

The proof of this theorem will occupy the rest of this section. Let us first prove part 1:

Lemma 1. Any dynamical r-matrix such that \(r(\lambda) + r^{21}(\lambda) = \Omega \) is gauge-equivalent to a dynamical r-matrix \(\tilde{r}(\lambda) \) such that \(\tilde{r}(0) \in \Omega + \Lambda^2(l')^1 \).

Proof. Let \(\eta \in l \otimes g_l^1 \) be such that \(r(0) - \eta + \eta^{21} \in \Omega + \Lambda^2(l')^1 \). There exists a function \(g : D \to G_L^1 \) such that \(g^{-1}dg(0) = \eta \) (see [EV], Lemma 1.3). It is easy to see that \(\tilde{r} = r^g \) satisfies the desired conditions. \(\square \)

Let us now prove part 2. We will interpret the CDYBE (10) as a consistent system of differential equations defined on \(M_\Omega \).

For \(s \in M_\Omega \), (10) is equivalent to

\[(\pi \otimes 1 \otimes 1) \text{Alt}(ds) = -(\pi \otimes 1 \otimes 1)(CYB(s) + \frac{1}{4}CYB(\Omega)). \]

This reduces to

(12) \[ds = -(\pi \otimes 1 \otimes 1)([s^{12}, s^{13}] + \frac{1}{4}CYB(\Omega)), \]
or, in coordinates \((x_i) \), where \((x_i) \) is a basis of \(l \),

\[\frac{\partial s}{\partial x_i} = -(x_i \otimes 1 \otimes 1)([s^{12}, s^{13}] + \frac{1}{4}CYB(\Omega)). \]

Lemma 2. The system (12) is consistent.
Lemma 3.

Proof. Set \(X : M_\Omega \to I \otimes g \otimes g \), \(s \mapsto (\pi \otimes 1 \otimes 1)([s^{12}, s^{13}] + \frac{1}{4} CYB(\Omega)) \). By definition, the curvature of (12) is given by

\[
\sum_{i,j} x_i \otimes x_j \otimes \left(\frac{\partial^2 s}{\partial x_i \partial x_j} - \frac{\partial^2 s}{\partial x_j \partial x_i} \right)
= (\pi \otimes \pi \otimes 1 \otimes 1) \left(\left\{ [s^{23}, [s^{12}, s^{14}]] + [s^{23}, \frac{1}{4} CYB(\Omega)^{124}] + [[s^{12}, s^{13}], s^{24}] + \left[\frac{1}{4} CYB(\Omega)^{123}, s^{24} \right] } \right.
- \left\{ [s^{13}, [s^{21}, s^{24}]] + [s^{13}, \frac{1}{4} CYB(\Omega)^{214}] + [[s^{21}, s^{23}], s^{14}] + \left[\frac{1}{4} CYB(\Omega)^{213}, s^{14} \right] \right\}
= (\pi \otimes \pi \otimes 1 \otimes 1) \left(\left\{ [s^{23}, [s^{12}, s^{14}]] + [[s^{12}, s^{13}], s^{24}] - [s^{13}, [s^{21}, s^{24}]] - [[s^{21}, s^{23}], s^{14}] \right\}
+ \frac{1}{4} \left\{ [s^{13} + s^{23}, CYB(\Omega)^{124}] - [s^{14} + s^{24}, CYB(\Omega)^{123}] \right\} \right).
\]

By the Jacobi identity,

\[
[s^{23}, [s^{12}, s^{14}]] = [[s^{21}, s^{23}], s^{14}], \quad [[s^{12}, s^{13}], s^{24}] = [s^{13}, [s^{21}, s^{24}]].
\]

By \(g \)-invariance of \(CYB(\Omega) \), we have

\[
[s^{13} + s^{23}, CYB(\Omega)^{124}] = [s^{34}, CYB(\Omega)^{124}],
[s^{14} + s^{24}, CYB(\Omega)^{123}] = -[s^{34}, CYB(\Omega)^{123}].
\]

Overall, we have the following expression for the curvature of (12):

\[
\frac{1}{4} (\pi \otimes \pi \otimes 1 \otimes 1)([CYB(\Omega)^{123} + CYB(\Omega)^{124}, s^{24}] - \frac{1}{4} ([\pi \otimes \pi \otimes 1) CYB(\Omega), s])
\]

But (9) and the fact that \(l' \) is admissible imply that \((\pi \otimes \pi \otimes 1) CYB(\Omega) = 0 \). Thus, (12) is consistent.

Lemma 3. The system (12) is defined on \(M_\Omega \), i.e the vector fields defined by (12) are tangent to \(M_\Omega \).

Proof. Let \(x^* \in \mathfrak{g}^* \), and set \(h = (x^* \otimes 1 \otimes 1) ([s^{12}, s^{13}] + \frac{1}{4} CYB(\Omega)) \). Since \(s \in \Lambda^2(\mathfrak{l}') \) we have \((x^* \otimes 1 \otimes 1) [s^{12}, s^{13}] \in \Lambda^2(\mathfrak{l}') \). Moreover, the admissibility of \(\mathfrak{l}' \) and (9) together imply that \((x^* \otimes 1 \otimes 1)(CYB(\Omega)) \in (\Lambda^2 \mathfrak{l}')^l \) since \([l \otimes 1, S^2 z_0(\mathfrak{g}')] = 0 \). Thus \(h \in \Lambda^2 \mathfrak{l}' \).

To conclude the proof of Lemma 3 and Theorem 3, we now show that

\[
[s^{12}, h^{13}] + [s^{12}, h^{23}] + [s^{13}, h^{23}]
+ [h^{12}, s^{13}] + [h^{12}, s^{23}] + [h^{13}, s^{23}] \in \text{Alt}(I \otimes g \otimes g).
\]
To make the presentation more clear, we will use the pictorial technique to represent expressions and make computations: we associate to each morphism from a \(n \)-tensor to a \(m \)-tensor a diagram in the following way: the operation of taking the commutator is represented by

\[
\begin{array}{c}
\text{a} \\
\Downarrow
\end{array}
\begin{array}{c}
\text{b} \\
\text{[a,b]}
\end{array}
\]

Applying a linear form \(x^* \) will be denoted by

\[
\begin{array}{c}
\text{a} \\
\Downarrow
\end{array}
\begin{array}{c}
\text{x*} \quad x^*(a)
\end{array}
\]

Finally, we will represent \(s \) and \(\Omega/2 \), which can be thought of as maps from a 0-tensor to a 2-tensor, by

\[
\begin{array}{c}
\Omega/2 \\
\Downarrow
\end{array}
\]

For instance,

\[
\text{CYB}(s) = + + +
\]

Lemma 4. We have \(x^{*(3)}[CYB(s + \Omega/2)^{123}, s^{34}] \in \text{Alt}(l \otimes g \otimes g) \) or, in pictures (modulo \(\text{Alt}(l \otimes g \otimes g) \))

\[
\begin{array}{c}
\Downarrow
\end{array}
\begin{array}{c}
\text{CYB}(s) \quad = \quad + \quad + \quad +
\end{array}
\]

Proof. Recall that \(CYB(s + \Omega/2) \in \text{Alt}(l \otimes g \otimes g) \). Thus the only part of the above expression which can lie outside of \(\text{Alt}(l \otimes g \otimes g) \) is obtained from the \(g \otimes g \otimes l \)-part of \(CYB(s) \). But if \(y \in l \),

\[
(x^* \otimes 1)[y \otimes 1, s] = -(x^* \otimes 1)[1 \otimes y, s]
\]
by t-invariance of s. This last expression is zero since $s \in (\Lambda^2(l'))^t$. Lemma 4 is proved.

It is clear how to generalize Lemma 4 to other expressions of the form

$$x^{s(k)}[CYB(s + \Omega/2)^{123}, s^{k4}].$$

Now, (13) can be drawn as

![Diagram of expressions](attachment:image.png)
but by Lemma (4) we have, modulo $\text{Alt}(l \otimes g \otimes g)$,

$$
\begin{align*}
&\quad + \quad = \quad + \\
&\quad + \quad = \quad + \\
&\quad + \quad = - \quad -
\end{align*}
$$

It is easy to check that the sum of the terms of type $[\text{CYB}(s), s]$ in this last expression is zero by the Jacobi identity. Moreover, by g-invariance of Ω, we have

$$
\begin{align*}
&\quad = - \\
&\quad = \\
&\quad =
\end{align*}
$$
Thus, modulo $\text{Alt}(\mathfrak{l} \otimes \mathfrak{g} \otimes \mathfrak{g})$, (13) reduces to

\[
\begin{array}{ccc}
\begin{array}{c}
\end{array} & + & \begin{array}{c}
\end{array} & + & \begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array} & + & \begin{array}{c}
\end{array} & + & \begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array} & + & \begin{array}{c}
\end{array} & - & \begin{array}{c}
\end{array} \\
\end{array}
\]

The sums of terms in each column is zero by Jacobi Identity. This concludes the proof of Theorem 3.

\[\Box\]

5. Classification of dynamical r-matrices

Let \mathfrak{g} be a simple Lie algebra and let $\Omega \in (S^2\mathfrak{g})^\mathfrak{g}$ be the Casimir element. In that case, (8) becomes

\[(14) \quad r(\lambda) + r^{21}(\lambda) = \epsilon \Omega.\]

We will classify all solutions of equations (6,7,14) when $\epsilon \neq 0$ and when \mathfrak{l} contains a semisimple regular element. In particular, in this case, the centralizer \mathfrak{h} of \mathfrak{l} is the unique Cartan subalgebra containing \mathfrak{l}. Notice that we can assume that $\epsilon = 1$ (since the assignment $r(\lambda) \rightarrow \epsilon r(\epsilon \lambda)$ is a gauge transformation of (7)). We can also assume that the restriction of $(\ ,\)$ to \mathfrak{l} is nondegenerate. Indeed, for any dynamical r-matrix, we can replace \mathfrak{l} by the largest subspace of \mathfrak{h} for which r is invariant, and such a subspace is real. Let \mathfrak{h}_0 be the orthogonal complement of \mathfrak{l} in \mathfrak{h} and let $i : \mathfrak{l} \hookrightarrow \mathfrak{h}$ be the inclusion map. We will also write $(\ ,\)$ for the induced bracket on \mathfrak{l}^*. Let $\Omega_{\mathfrak{h}_0}$ denote the Casimir element of the restriction of $(\ ,\)$ to \mathfrak{h}_0.
ON CLASSIFICATION OF DYNAMICAL r-MATRICES

5.1. Statement of the theorem. Let $g = n_+ \oplus h \oplus n_-$ be a polarization of g.

Definition. A generalized Belavin-Drinfeld triple is a triple $(\Gamma_1, \Gamma_2, \tau)$ where $\Gamma_1, \Gamma_2 \subset \Pi$, and $\tau : \Gamma_1 \rightarrow \Gamma_2$ is a norm-preserving bijection.

In other terms, in a generalized Belavin-Drinfeld triple, we drop the nilpotency condition. We will say that a generalized Belavin-Drinfeld triple is l-graded if τ preserves the decomposition of g in l-weight spaces. If $(\Gamma_1, \Gamma_2, \tau)$ is a generalized Belavin-Drinfeld triple, we will denote by $\tilde{\Gamma}_1$ the largest subset of $\Gamma_1 \cap \Gamma_2$ which is stable under τ, and $\tilde{\Gamma}_2 = \Gamma_2 \setminus \Gamma_3$. It is clear that $(\tilde{\Gamma}_1, \tilde{\Gamma}_2, \tau)$ is a Belavin-Drinfeld triple. As before, for each choice of Chevalley generators $(e_\alpha, f_\alpha, h_\alpha)_{\alpha \in \Gamma_i}$, the map τ induces isomorphisms $g_{\tilde{\Gamma}_1} \rightarrow g_{\tilde{\Gamma}_2}$ and $\tau : g_{\Gamma_3} \rightarrow g_{\Gamma_3}$.

For $\lambda \in \mathfrak{l}^*$, consider the map:

$$ K(\lambda) : n_+(\Gamma_1) \rightarrow n_+(\Gamma_2) $$

$$ e_\alpha \mapsto \frac{1}{2} e_\alpha + e^{-(\alpha, \lambda)}_{\tau} \frac{\tau(e_\alpha)}{1 - e^{-(\alpha, \lambda)}_{\tau}}. $$

Notice that we have

$$ K(\lambda)(e_\alpha) = \frac{1}{2} e_\alpha + \sum_{n>0} e^{-n(\alpha, \lambda)}_{\tau} e_\alpha. $$

This sum is finite for $\alpha \notin \langle \Gamma_3 \rangle$.

Theorem 4. Let g be a simple Lie algebra with nondegenerate invariant bilinear form $(.,.)$, $l \subset g$ a commutative subalgebra containing a regular semisimple element on which $(.,.)$ is nondegenerate, h the Cartan subalgebra containing l and h_0 the orthogonal complement of l in h. Then

1. Any dynamical r-matrix is gauge-equivalent to a dynamical r-matrix \tilde{r} such that

$$ \tilde{r}(\lambda) - \tilde{r}(\lambda)^{21} \in (l^1)^{\otimes 2} = (\bigoplus_{\alpha \neq 0} g_\alpha \oplus h_0)^{\otimes 2}. $$

2. Let $(\Gamma_1, \Gamma_2, \tau)$ be an l-graded generalized Belavin-Drinfeld triple and let $(e_\alpha, f_\alpha, h_\alpha)_{\Gamma_i}$ be a choice of Chevalley generators. Let r_{h_0, h_0} be in $h_0 \otimes h_0$ satisfy the equation

$$ (\tau(\alpha) \otimes 1)r_{h_0, h_0} + (1 \otimes \alpha)r_{h_0, h_0} = \frac{1}{2}((\alpha + \tau(\alpha)) \otimes 1)\Omega_{h_0}. $$

Then

$$ r(\lambda) = \frac{1}{2} \Omega + r_{h_0, h_0} + \sum_{\alpha \in (\Gamma_1) \cap \Delta_+} K(\lambda)(e_\alpha) \wedge e_{-\alpha} + \sum_{\alpha \in \Delta_+, \alpha \notin \langle \Gamma_1 \rangle} \frac{1}{2} e_\alpha \wedge e_{-\alpha} $$

is a solution the CDYBE satisfying (15).

3. Any solution of the CDYBE satisfying (15) is of the above type for a suitable polarization of g.
The proof of this theorem will occupy the rest of this section. Our methods are greatly inspired by the paper [BD]. Notice that 1. follows from Theorem 3, but we will describe the gauge transformations explicitly in this case.

Notations. Let \(\Delta \subset \mathfrak{h}^* \) be the root system of \(\mathfrak{g} \) with respect to \(\mathfrak{h} \) and set \(\Delta_1 = i^*(\Delta) \subset \mathfrak{l}^* \). We will denote by \(\mathfrak{g}_\alpha \) the weight subspace associated to \(\tilde{\alpha} = i^*(\alpha) \in \Delta_1 \), and we set \(\mathfrak{g}\pi = \mathfrak{h}_0 \). It is clear that

\[
\mathfrak{g}\pi = \bigoplus_{\beta \in \Delta, \; i^*(\beta) = \pi} \mathfrak{g}\beta
\]

In particular, \((\ , \) \) is a pairing \(\mathfrak{g}\pi \times \mathfrak{g}_{-\pi} \rightarrow \mathbb{C} \).

A vector space \(V \subset \mathfrak{g} \) will be called \(\mathfrak{h} \)-graded (resp. \(l \)-graded) if it is an \(\mathfrak{h} \)-submodule (resp. \(\mathfrak{l} \)-submodule) of \(\mathfrak{g} \). Finally, let \(\Omega' \in (\mathfrak{l}^*)^2 \) denote the Casimir (inverse element) of the restriction of \((\ , \) \) to \(\mathfrak{l}^2 = \mathfrak{h}_0 \bigoplus \mathfrak{g}_{\pi} \).

Now let \(r : \mathfrak{l}^{\ast} \supset D \rightarrow (\mathfrak{g} \otimes \mathfrak{g})^l \) be a formal power series satisfying (14) (with \(\epsilon = 1 \)). By (6), we can write

\[
r(\lambda) = \frac{1}{2} \Omega + r_{l,l}(\lambda) + r_{l,0}(\lambda) + r_{0,l}(\lambda) + (\varphi(\lambda) \otimes 1)\Omega',
\]

where \(r_{l,l}(\lambda) \in l \otimes l \), \(r_{l,0}(\lambda) \in l \otimes \mathfrak{h}_0 \), \(r_{0,l}(\lambda) \in \mathfrak{h}_0 \otimes l \) and where \(\varphi(\lambda) \in \text{End}(\mathfrak{h}_0 \bigoplus \mathfrak{g}_{\pi}) \) is a sum of maps \(\varphi_{\pi}(\lambda) \in \text{End}(\mathfrak{g}_{\pi}) \). By the unitarity condition, \(r_{l,l}(\lambda) \in \Lambda^2 l \), \(r_{l,0}(\lambda) = -r_{0,l}(\lambda) \) and \(\varphi_{-\pi}(\lambda) = -\varphi^*(\lambda) \).

With these notations, the CDYBE splits into 4 components: the \(l \otimes l \otimes l \)-part, the \(l \otimes l \otimes \mathfrak{h}_0 \)-part, the \(l \otimes \mathfrak{g}_\alpha \otimes \mathfrak{g}_{-\alpha} \)-part and the \(\mathfrak{g}_\alpha \otimes \mathfrak{g}_\beta \otimes \mathfrak{g}_\gamma \)-part where \(\tilde{\alpha} + \tilde{\beta} + \tilde{\gamma} = 0 \).

- The \(l \otimes l \otimes l \)-part: let us set \(r_{l,l} = \sum_{i,j} C_{i,j}(\lambda)x_i \otimes x_j \). This part of the CDYBE can then be written:

\[
\frac{\partial C_{i,k}}{\partial x_i} + \frac{\partial C_{k,i}}{\partial x_j} + \frac{\partial C_{i,j}}{\partial x_k} = 0 \quad \forall i, j, k
\]

and says that \(\sum_{i,j} C_{i,j}dx_i \wedge dx_j \) is a closed 2-form.

- The \(l \otimes l \otimes \mathfrak{h}_0 \)-part: let us set \(r_{l,0} = \sum_{i,j} D_{i,j}(\lambda)x_i \otimes y_j \) for some basis \((y_j) \) of \(\mathfrak{h}_0 \). This part of the CDYBE is

\[
\frac{\partial D_{i,j}}{\partial x_k} = \frac{\partial D_{k,j}}{\partial x_i} \quad \forall i, k, j
\]

and says that for any \(j \), \(\sum_i D_{i,j}(\lambda)dx_i \) is a closed 1-form.

Since \(r \) is defined on a polydisc, the above forms are exact. Let \(f : D \rightarrow \mathfrak{h}_0 \) be such that \(df(\lambda) = \sum_i D_{i,j}(\lambda)dx_i \otimes y_j \) and let \(\xi \) be a 1-form on \(D \) such that \(d\xi = \sum_{i,j} C_{i,j}dx_i \wedge dx_j \). Then \(\xi \) defines a function \(\xi : D \rightarrow \mathfrak{l} \). The gauge transformation which should be applied to \(r \) to make it satisfy (15) is easily seen to be the following: \(r(\lambda) \mapsto r(\lambda)^g = \frac{1}{2} \Omega + (e^{-ad f(\lambda)}\varphi(\lambda)e^{ad f(\lambda)} \otimes 1)\Omega' \) where \(g(\lambda) = e^{f(\lambda)}e^{-\xi(\lambda)} \).
Thus, we can assume that \(r_{I,1} = r_{I,0} = 0 \), in which case the remaining components of the CDYBE can be written in the following way:

- The \(l \otimes g_{\alpha} \otimes g_{-\alpha} \)-part:

\[
(20) \quad d\varphi_{\alpha} + (\varphi_{\alpha}^2 - \frac{1}{4})dh_{\alpha} = 0.
\]

In particular, \(r_{b_0, b_0} \in \Lambda^2 h_0 \) is constant.

- The \(g_{\alpha} \otimes g_{\beta} \otimes g_{\gamma} \)-part where \(\alpha + \beta + \gamma = 0 \):

\[
(21) \quad \Lambda(\varphi_{\alpha} \otimes \varphi_{\beta} \otimes 1 + \varphi_{\alpha} \otimes 1 \otimes \varphi_{\gamma} + 1 \otimes \varphi_{\beta} \otimes \varphi_{\gamma} + \frac{1}{4}Id) = 0
\]

where \(\Lambda : g_{\alpha} \otimes g_{\beta} \otimes g_{\gamma} \to \mathbb{C}, x \otimes y \otimes z \mapsto ([x, y], z) \).

This set of equations is sufficient by skew-symmetry of the CDYBE.

5.2. The Cayley transform

Let us set \(A_{\pm} = \text{Im}(\varphi(\lambda) \pm \frac{1}{2}) \), \(I_{\pm} = \text{Ker}(\varphi(\lambda) \mp \frac{1}{2}) \). Notice that, by (20), \(A_{\pm} \) and \(I_{\pm} \) are indeed independent of \(\lambda \). Furthermore, \(A_{\pm}, I_{\pm} \) are l-graded by the weight-zero condition, \(I_{\pm} \subset A_{\pm} \) and \(A_{\pm} = I_{\pm}^l \) by the unitarity condition. Notice also that \(A_{+} + A_{-} \oplus l = g \). Now consider

\[
\psi(\lambda) = \frac{\varphi - \frac{1}{2}}{\varphi + \frac{1}{2}} : A_{+}/I_{+} \to A_{-}/I_{-}.
\]

Extend \(\psi(\lambda) \) to \(\tilde{\psi}(\lambda) : l \oplus A_{+}/I_{+} \to l \oplus A_{-}/I_{-} \) by setting \(\tilde{\psi}|_l = Id \). It is clear that \(\psi \) is a well-defined linear isomorphism. The following proposition is crucial:

Proposition 2. The maps \(\varphi_{\alpha} \) satisfy (20, 21) if and only if the following hold:

1. \(A_{\pm} \oplus l \) is a subalgebra of \(g \) and \(I_{\pm} \oplus l \) is an ideal of \(A_{\pm} \oplus l \).
2. There exists a (constant) map \(\psi_0 : l \oplus A_{+}/I_{+} \to l \oplus A_{-}/I_{-} \) such that \(\psi(\lambda)|_{g_{\alpha}} = e^{-\langle \alpha, \lambda \rangle}\psi_0|_{g_{\alpha}} \).
3. The map \(\psi_0 \) is a Lie algebra map:

\[
(22) \quad [\psi_0(x), \psi_0(y)] = \psi_0[x, y].
\]

Proof. Assume that \(\varphi \) satisfies (20, 21) and let \(a \in g_{\alpha}, b \in g_{\beta}, c \in g_{\gamma} \) with \(\alpha + \beta + \gamma = 0 \). From (21), we have

\[
([\varphi_{\alpha} + \frac{1}{2}]a, [\varphi_{\beta} + \frac{1}{2}]b, c) + ([a, [\varphi_{\beta} + \frac{1}{2}]b], [\varphi_{\gamma} - \frac{1}{2}]c) + ([\varphi_{\alpha} - \frac{1}{2}]a, b, [\varphi_{\gamma} - \frac{1}{2}]c) = 0.
\]

Since \(\varphi_{\gamma} = -\varphi_{-\gamma}^* \), and \((,) \) is a nondegenerate pairing \(g_{\gamma} \otimes g_{-\gamma} \to \mathbb{C} \), this implies that \(A_{+} \oplus l \) is a Lie subalgebra of \(g \). Note that the term in \(l \) is necessary here.
since \([\mathfrak g_{\alpha}, \mathfrak g_{-\alpha}] \not\subset \mathfrak g_{\Gamma} = \mathfrak h_0\), but is not consequential as \(A_+\) is \(t\)-graded. The second claim of (i) follows from the relation

\[
\left(\left(\varphi_{\alpha} - \frac{1}{2}\right)a, (\varphi_{\beta} - \frac{1}{2})b\right) + \left(\left(\varphi_{\alpha} + \frac{1}{2}\right)b\right), (\varphi_{\gamma} + \frac{1}{2})c) + \left(\left(\varphi_{\alpha} - \frac{1}{2}\right)a, (\varphi_{\gamma} + \frac{1}{2})c\right) = 0.
\]

The proof is the same for \(A_-\) and \(I_-\). The equivalence of (ii) and (20) follows from the equality

\[
d\psi|_{\mathfrak g_{\alpha}} = \frac{d\varphi_{\alpha}(\varphi_{\alpha} + \frac{1}{2}) - (\varphi_{\alpha} - \frac{1}{2})d\varphi_{\alpha}}{(\varphi_{\alpha} + \frac{1}{2})^2}
= -\frac{(\varphi_{\alpha}^2 - \frac{1}{4})}{(\varphi_{\alpha} + \frac{1}{2})^2}dh_{\alpha}
= -\langle\alpha, \lambda\rangle \psi|_{\mathfrak g_{\alpha}}.
\]

where we used (20). Finally it follows from (21) that

\[
(\varphi_{\alpha+\beta} - \frac{1}{2})\left(\left(\varphi_{\alpha} + \frac{1}{2}\right)a, (\varphi_{\beta} + \frac{1}{2})b\right) = (\varphi_{\alpha+\beta} + \frac{1}{2})\left(\left(\varphi_{\alpha} - \frac{1}{2}\right)a, (\varphi_{\beta} - \frac{1}{2})b\right).
\]

This implies (iii).

Conversely, if (i-iii) are satisfied then for any \(x \in \mathfrak g_{\alpha}, y \in \mathfrak g_{\beta} (\bar{\alpha} + \bar{\beta} \neq 0)\) there exist \(z \in \mathfrak g_{\alpha+\beta}\) such that

\[
\left((\varphi_{\alpha} - \frac{1}{2})x, (\varphi_{\beta} - \frac{1}{2})y\right) = (\varphi_{\alpha+\beta} - \frac{1}{2})z.
\]

Since \(\psi\) is a Lie algebra map, \([((\varphi_{\alpha} + \frac{1}{2})x, (\varphi_{\beta} + \frac{1}{2})y] - (\varphi_{\alpha+\beta} + \frac{1}{2})z \in \ker (\varphi_{\alpha+\beta} - \frac{1}{2})\). Subtracting, we obtain \([((\varphi_{\alpha} + \frac{1}{2})x, y] + [x, (\varphi_{\beta} + \frac{1}{2})y] - [x, y] - z = \ker (\varphi_{\alpha+\beta} - \frac{1}{2})\).

Applying \((\varphi - \frac{1}{2})\) and dropping the indices, we have

\[
(\varphi - \frac{1}{2})\left(\left((\varphi + \frac{1}{2})x, y\right) + [x, (\varphi + \frac{1}{2})y] - [x, y]\right) = [(\varphi - \frac{1}{2})x, (\varphi - \frac{1}{2})y].
\]

Thus,

\[
\left((\varphi + \frac{1}{2})x, (\varphi + \frac{1}{2})y\right) - (\varphi + \frac{1}{2})\left(\left((\varphi - \frac{1}{2})x, y\right) + [x, (\varphi - \frac{1}{2})y]\right) = 0.
\]

which is equivalent to (21).

We will call the triple \((A_+, A_-, \psi_0)\) the Cayley transform of \(\varphi\). We are now reduced to the classification of all triples satisfying (i-iii) and which arise as a Cayley transform (Cayley triples).

5.3. Classification of Cayley triples

Let \((A_+, A_-, \psi_0)\) be a Cayley triple. If \(\mathfrak g = \mathfrak n_+ \oplus \mathfrak h \oplus \mathfrak n_-\) is a polarization of \(\mathfrak g\) and \(\Gamma \subset \Pi(\mathfrak n_+)\) we will denote by \(\mathfrak q_{\Gamma}^+\) (resp. \(\mathfrak q_{\Gamma}^-\)) the subalgebra generated by \(\mathfrak n_+\) and \(\mathfrak g_{-\alpha}, \alpha \in \Gamma\) (resp. generated by \(\mathfrak n_-\) and \(\mathfrak g_{\alpha}, \alpha \in \Gamma\)). We denote by \(\mathfrak p_{\Gamma}^\pm = \mathfrak h + \mathfrak q_{\Gamma}^\pm\) the parabolic subalgebras associated to \(\Gamma\).
Proposition 3. There exists a polarization \(g = n_+^1 \oplus h \oplus n_-^1 \), two subsets \(\Gamma_+, \Gamma_- \subset \Pi(n_+^1) \) and two vector spaces \(V_+, V_- \subset h \) with \(V_+^1 \subset V_\pm \) such that
\[
I \oplus A_+ = q_{\Gamma_+}^+ \oplus V_+, \quad I \oplus A_- = q_{\Gamma_-}^- \oplus V_-.
\]

Proof. Notice that \((I \oplus A_+)^\perp = I_+ \subset I \oplus A_+ \). It is known, (c.f [Bou, chap.VIII, §10, Thm. 1] or [BD]), that this implies that \(I \oplus A_+ = q_{\Gamma_+}^+ \oplus V_+ \) for some polarization \(g = n_+^1 \oplus h' \oplus n_-^1 \). Similarly, \(I \oplus A_- = q_{\Gamma_-}^- \oplus V_- \) for some polarization \(g = n_+^1 \oplus h'' \oplus n_-^1 \). Moreover, \(I \) acts semisimply on \(A_\pm \) so \(I \subset h' \), \(I \subset h'' \). But \(I \) contains a regular element, thus \(I = h' = h'' \). Proposition 3 is now an easy consequence of the following lemma:

Lemma 5. Let \(g \) be a simple Lie algebra and \(h \) a Cartan subalgebra. Let \(a_1 \) and \(a_2 \) be two parabolic subalgebras containing \(h \) such that \(a_1 + a_2 = g \). Then there exists a polarization \(g = n_+ \oplus h \oplus n_- \) and \(\Gamma_+, \Gamma_- \subset \Pi \) such that \(a_1 = p_{\Gamma_+}^1 \) and \(a_2 = p_{\Gamma_-}^1 \).

Proof. Let \(n_+ \oplus h \oplus n_- \) be a polarization of \(g \) such that \(b_+ \subset a_1 \) and for which \(\dim (n_+ \cap a_2) \) is minimal. We claim that \(b_- \subset a_2 \). Suppose on the contrary that there exists a simple root \(\alpha \in \Pi \) such that \(g_{-\alpha} \not\subset a_2 \). Then \(g_{-\alpha} \subset a_1 \) since \(a_1 + a_2 = g \) and \(g_{-\alpha} \subset a_2 \) since \(a_2 \) is parabolic. But then \(s_\alpha n_+ \oplus h \oplus s_\alpha n_- \) is a polarization of \(g \) for which \(s_\alpha b_+ \subset a_1 \) and \(\dim (s_\alpha n_+ \cap a_2) < \dim (n_+ \cap a_2) \). Contradiction. \(\square \)

In particular, \(A_\pm \), \(I_\pm \) are all \(h \)-graded and
\[
I_+ = (q_{\Gamma_+}^+ \oplus V_+)^\perp = \bigoplus_{\alpha \in \Delta_+ \setminus (\Gamma_+)} g_\alpha \oplus (V_+^\perp \cap \mathfrak{h}_0),
I_- = (q_{\Gamma_-}^- \oplus V_-)^\perp = \bigoplus_{\alpha \in \Delta_- \setminus (\Gamma_-)} g_\alpha \oplus (V_-^\perp \cap \mathfrak{h}_0).
\]

Thus \(A_+/I_+ = g_{\Gamma_+} \oplus V_1 \) and \(A_-/I_- = g_{\Gamma_-} \oplus V_2 \) for some suitable \(V_1, V_2 \subset \mathfrak{h}_0 \).

Let \(L_{\pm \frac{1}{2}}(\lambda) \) be the generalized eigenspace of \(\varphi(\lambda) \) associated to \(\pm \frac{1}{2} \). Since \(\varphi \) is a solution of an ordinary differential equation with stationary points at \(\pm \frac{1}{2}, \frac{1}{2}, -\frac{1}{2} \), \(L_{\pm \frac{1}{2}}(\lambda) \) is independent of \(\lambda \) and we will simply denote it by \(L_{\pm \frac{1}{2}} \). Similarly, let \(L' \) be the sum of all other generalized eigenspaces so that \(g = I \oplus L_\frac{1}{2} \oplus L' \oplus L_{-\frac{1}{2}} \).

Proposition 4. There exists a polarization \(g = \bar{\Pi}_+ \oplus h \oplus \bar{\Pi}_- \) and a subset \(\Gamma_3 \subset \Pi(\bar{\Pi}_+) \) such that \(L_{\pm \frac{1}{2}} \subset \bar{\mathfrak{b}}_\pm \), \(L' \subset g_{\Gamma_3} + h \) and \(\varphi(\bar{\Pi}_+) \subset \bar{\Pi}_+ \).

Proof. We will construct a polarization satisfying the above conditions in several steps.

Lemma 6. We have:

(i) \(I \oplus L_{\pm \frac{1}{2}} \) is an \(h \)-graded solvable subalgebra,
(ii) \(I \oplus L' \) is an \(h \)-graded subalgebra,
(iii) we have \([L_{\pm \frac{1}{2}}, L'] \subset I \oplus L_{\pm \frac{1}{2}} \).
Proof. This follows from the proofs of Lemma 12.3 and Theorem 12.6 in [BD].

Notice that $L_{\pm} \not\subset b_{\pm}^1$ in general. We first construct a polarization $g = n_+^2 \oplus h \oplus n_-^2$ such that $L_{\pm} \subset b_{\pm}^2$. We have $I_{\pm} \subset L_{\pm}$. Notice that $L_{\pm} \cap n_1^1 \subset \g_{r_+} \cap \g_{r_-} = \g_{r_+} \cap \g_{r_-}$ since $n_1^1 \subset (\g_{r_+} \cap I_+)$ and L_{\pm} is solvable. Similarly, $L_{\pm} \cap n_1^1 \subset \g_{r_+} \cap \g_{r_-}$. Moreover, by Lemma 6, $i \oplus (L_{\pm} \cap \g_{r_+} \cap \g_{r_-})$ and $i \oplus (L_{\pm} \cap \g_{r_+} \cap \g_{r_-})$ are disjoint, solvable, h-graded subalgebras. By lemma 5 it follows that there exists an element s of the group $W_{\g_{r_+} \cap \g_{r_-}}$ such that $i \oplus (L_{\pm} \cap \g_{r_+} \cap \g_{r_-}) \subset s b_{\pm}^1$. Notice that s permutes elements of $\Delta^+ \setminus (\Gamma_+ \cap \Gamma_-)$, leaving it globally unchanged. Thus, $i \oplus L_{\pm} \subset s b_{\pm}^1$. Set $n_2^1 = s n_1^1$.

Now we construct a polarization of g satisfying the other conditions of proposition 4. Recall that $i \oplus L \subset \g_{r_+} \cap \g_{r_-} \cap (V_1 \cap V_2)$. Thus $(L' \cap n_2^1) \oplus (L_{\pm} \cap n_2^1 (\Gamma_+ \cap \Gamma_-)) = n_2^1 (\Gamma_+ \cap \Gamma_-)$.

Since $[L', L_{\pm}] \subset i \oplus L_{\pm}$ by Lemma 6.(iii), $L_{\pm} \cap n_2^1 (\Gamma_+ \cap \Gamma_-)$ is an ideal of $n_2^1 (\Gamma_+ \cap \Gamma_-)$. But $L' \cap n_2^1$ is a subalgebra. It is easy to see that this implies that $L' \cap n_2^1$ is generated by a set of simple root subspaces of $n_2^1 (\Gamma_+ \cap \Gamma_-)$, i.e $L' \cap n_2^1 = n_2^1 (\Gamma_+ \cap \Gamma_-)$.

Moreover, the restriction of (\cdot, \cdot) to L' is nondegenerate, hence $L' \cap n_2^1 = n_2^1 (\Gamma_+ \cap \Gamma_-)$. Thus $i \oplus \g_{r_+} \subset i \oplus L' \subset i \oplus \g_{r_-} \cap (V_1 \cap V_2)$.

Since $\varphi(\lambda) + \frac{1}{2} i$ is invertible in L', $\psi(\lambda)$ is a well-defined operator $L' \to L'$, satisfying (22), and $\psi(\lambda)(\eta_0 \cap L') \subset \eta_0 \cap L'$. Now, i contains a regular element. Thus there exists a polarization of g compatible with the l-weight decomposition. This induces a polarization of \g_{r_+}, compatible with the l-weight decomposition of \g_{r_-}. Hence, there exists $s' \in W_{\Gamma_1} \subset W$ such that $\psi|_{\g_{r_+}}$ is compatible with the polarization $s' n_2^1 \oplus h \oplus n_-^2$. Since s' leaves $s \setminus (\Gamma_1 \cap \Gamma_2)$ globally unchanged, the polarization $g = \pi_+ \oplus h \oplus \pi_-$ with $\pi_+ = s' n_2^1$ and $\Gamma_3 = s' \setminus \Gamma$ satisfies the requirements of proposition 4.

To sum up, we have shown that there exists a polarization $g = \pi_+ \oplus h \oplus \pi_-$, compatible with φ, subsets $\Gamma_1 = s' s \Gamma_+$, $\Gamma_2 = s' s \Gamma_-$ and $\Gamma_3 \subset \Pi(\pi_+)$ such that $(A_+ / I_+) \cap n_+ = \pi_+(\Gamma_1)$, $A_- \cap n_+ = \pi_+(\Gamma_2)$ and $L' \cap n_+ = \pi_+(\Gamma_3)$.

The map ψ_0 now restricts to a Lie algebra isomorphism $\pi_+(\Gamma_1) \to \pi_+(\Gamma_2)$. This isomorphism maps weight spaces to weight spaces as ψ_0 preserves η_0 and φ is l-invariant. Define $\tau : \Gamma_1 \to \Gamma_2$ by $\psi_0(\g_{r_+}) = \g_{r_+(\alpha)}$. It is a norm-preserving bijection. Thus $(\Gamma_1, \Gamma_2, \Gamma_3)$ is a generalized Belavin-Drinfeld triple. It is clear that Γ_3 is the largest subset of $\Gamma_1 \cap \Gamma_2$ stable under τ, and that $\psi_0 : \pi_+(\Gamma_3) \to \pi_+(\Gamma_3)$ is a Lie algebra isomorphism. Finally, it is easy to see that the map φ is obtained from this data by formulas

$$\varphi(\lambda)(e_\alpha) = \frac{1}{2} e_\alpha \quad (\alpha \notin (\Gamma_1))$$

$$\varphi(\lambda)(e_\alpha) = \frac{1}{2} e_\alpha + \frac{\psi_0}{1 - e(\alpha, \lambda) \psi_0}(e_\alpha) \quad (\alpha \in (\Gamma_1))$$

Conversely, it is clear how to construct from a generalized Belavin-Drinfeld triple $(\Gamma_1, \Gamma_2, \tau)$ the subalgebras $n_+(\Gamma_1), n_+(\Gamma_2), n_+(\Gamma_3)$ and, for each choice of
Chevalley generators, a Lie algebra isomorphism \(\psi_0 : n_+ (\Gamma_1) \to n_+ (\Gamma_2) \), and the map \(\varphi (\lambda) \). Condition (16) on the \(h_0 \otimes h_0 \)-part comes from (21)-see [BD].

6. Examples

6.1. Constant r-matrices. Our results imply the following:

Corollary 1. A dynamical r-matrix associated to a generalized Belavin-Drinfeld triple \((\Gamma_1, \Gamma_2, \tau)\) is gauge equivalent to a constant r-matrix if and only if \(\Gamma_3 = \emptyset \).

6.2. \(h \)-invariant dynamical r-matrices. When \(l = h \), our classification coincides with that given in [EV]: the only \(h \)-graded generalized Belavin-Drinfeld triple is of the form \((\Gamma, \Gamma, \tau = Id)\). The dynamical r-matrices obtained are then (up to gauge transformations and choice of Chevalley generators):

\[
\begin{align*}
 r (\lambda) &= \frac{\Omega}{2} + \frac{1}{2} \sum_{\alpha \in \Delta_+, \alpha \notin (\Gamma) \cap \Delta_+} e_\alpha \wedge e_{-\alpha} + \frac{1}{2} \sum_{\alpha \in (\Gamma) \cap \Delta_+} \coth{\left(\frac{1}{2} (\alpha, \lambda) e_\alpha \wedge e_{-\alpha} \right)}.
\end{align*}
\]

6.3. Example for \(sl_3 \) and \(sl_n \). The first nontrivial example is for \(g = sl_3 \): fix a polarization \(\mathfrak{g} = \mathfrak{h} \oplus \bigoplus_{\gamma \in \Delta} \mathfrak{g}_{\gamma} \), where \(\Delta^+ = \{ \alpha, \beta, \alpha + \beta \} \) and set \(l = \mathbb{C} h_0 \).

Consider the generalized Belavin-Drinfeld triple with \(\Gamma_1 = \Gamma_2 = \{ \alpha, \beta \} \) and \(\tau : \alpha \mapsto \beta, \beta \mapsto \alpha. \) In this case, we can choose the map \(\psi_0 \) to be the following

\[
\begin{align*}
 e_\alpha &\mapsto e_\beta, & h_\alpha &\mapsto h_\beta, & e_{-\alpha} &\mapsto e_{-\beta} \\
 e_\beta &\mapsto e_\alpha, & h_\beta &\mapsto h_\alpha, & e_{-\beta} &\mapsto e_{-\alpha} \\
 e_{\alpha + \beta} &\mapsto -e_{\alpha + \beta}, & e_{-\alpha - \beta} &\mapsto -e_{-\alpha - \beta}.
\end{align*}
\]

The corresponding dynamical r-matrix is given by:

\[
\begin{align*}
 r (\lambda) &= \frac{\Omega}{2} + r_{h_0, h_0} + \frac{1}{2} \coth(\alpha, \lambda) e_\alpha \wedge e_{-\alpha} + \frac{1}{2} \coth(\beta, \lambda) e_\beta \wedge e_{-\beta} + \frac{1}{2} \coth(\alpha, \lambda) e_\alpha \wedge e_{-\alpha} \\
 &\quad + \frac{1}{2} \coth(\alpha, \lambda) e_\alpha \wedge e_{-\alpha} + \frac{1}{2} \coth(\beta, \lambda) e_\beta \wedge e_{-\beta} \\
 &\quad + \frac{1}{2} \coth(\alpha, \lambda) e_\alpha \wedge e_{-\alpha} + \frac{1}{2} \coth(\beta, \lambda) e_\beta \wedge e_{-\beta} + \frac{1}{2} \coth(\alpha, \lambda) e_\alpha \wedge e_{-\alpha} \\
 &\quad + \frac{1}{2} \coth(\beta, \lambda) e_\beta \wedge e_{-\beta}.
\end{align*}
\]

This dynamical r-matrix is gauge-equivalent to the dynamical r-matrix

\[
\begin{align*}
 \tilde{r} (\lambda) &= \frac{\Omega}{2} + r_{h_0, h_0} + r_{l_0, h_0} - r_{l_0, h_0} + \frac{1}{2} \coth(\alpha, \lambda) e_\alpha \wedge e_{-\alpha} + \frac{1}{2} \coth(\beta, \lambda) e_\beta \wedge e_{-\beta} + \frac{1}{2} \coth(\alpha, \lambda) e_\alpha \wedge e_{-\alpha} + \frac{1}{2} \coth(\beta, \lambda) e_\beta \wedge e_{-\beta} + \frac{1}{2} \coth(\alpha, \lambda) e_\alpha \wedge e_{-\alpha} + \frac{1}{2} \coth(\beta, \lambda) e_\beta \wedge e_{-\beta}.
\end{align*}
\]

when

\[
(\alpha \otimes 1 + 1 \otimes \tau (\alpha)) (r_{h_0, h_0} + r_{l_0, h_0} - r_{l_0, h_0}) = \frac{1}{2} (\alpha + \tau (\alpha)) \Omega_h.
\]
In particular, \(\tilde{r}(\lambda) \) interpolates the constant \(r \)-matrix obtained from the Belavin-Drinfeld triple \((\Gamma_1 = \alpha, \Gamma_2 = \beta, \tau : \alpha \mapsto \beta) \) at \((\alpha, \lambda) \to \infty \) and the \(r \)-matrix obtained from \((\Gamma_1 = \beta, \Gamma_2 = \alpha, \tau : \beta \mapsto \alpha) \) at \((\alpha, \lambda) \to -\infty \).

Remark. The generalization of this example to \(\mathfrak{g} = \mathfrak{sl}_{2n+1} \) is the following. Fix a polarization and let \(I = C h_{\rho} \). Denote by \(\Delta \) the root system and by \(\Pi = (\alpha_1, \ldots, \alpha_{2n}) \) the set of positive simple roots. Let \(i : \alpha_k \mapsto \alpha_{2n+1-k} \) be the involution of the Dynkin diagram. The dynamical \(r \)-matrix obtained from the generalized Belavin-Drinfeld triple \((\Gamma_1 = \Gamma_2 = \Pi, \tau = i) \) interpolates the constant \(r \)-matrices obtained from the Belavin-Drinfeld triples \((\Gamma_1 = (\alpha_1, \ldots, \alpha_n), \Gamma_2 = (\alpha_{n+1}, \ldots, \alpha_{2n}), \tau = i) \) and \((\Gamma_1 = (\alpha_{n+1}, \ldots, \alpha_{2n}), \Gamma_2 = (\alpha_1, \ldots, \alpha_n), \tau = i^{-1}) \).

6.4. Permutation dynamical \(r \)-matrices. Consider \(\mathfrak{g} = \mathfrak{sl}_{2n} \), and let \(\Pi = (\alpha_1, \ldots, \alpha_{2n-1}) \) denote a system of simple roots. For any \(\sigma \in S_n \), we can construct a generalized Belavin-Drinfeld triple by setting \(\Gamma_1 = \Gamma_2 = (\alpha_1, \alpha_3, \ldots, \alpha_{2n-1}) \) and \(\tau : \alpha_{2k-1} \mapsto \alpha_{2\sigma(k)-1} \).

Acknowledgements

I heartily thank Pavel Etingof for his encouragements, constant help and for his communicative enthousiasm for mathematics. I also thank A. Varchenko and P. Etingof for sharing their work with me before publication, and Hung Yean Loke and Vadik Vologodsky for interesting discussions.

References

Harvard University and ENS Paris, 45 rue d’Ulm, 75 005 PARIS
E-mail address: schiffma@clipper.ens.fr