LATTICES WITHOUT SHORT CHARACTERISTIC VECTORS

MARK GAULTER

ABSTRACT. All the lattices here under discussion here are understood to be integral unimodular \(\mathbb{Z} \)-lattices in \(\mathbb{R}^n \). A characteristic vector of a lattice \(L \) is a vector \(w \in L \) such that \(v \cdot w \equiv |v|^2 \pmod{2} \) for every \(v \in L \). Elkies has considered the minimal (squared) norm of the characteristic vectors in a unimodular lattice. He showed that any unimodular \(\mathbb{Z} \)-lattice in \(\mathbb{R}^n \) has characteristic vectors of norm \(\leq n \); he also proved that of all such lattices, only the standard lattice \(\mathbb{Z}^n \) has no characteristic vectors of norm \(< n \) (Math Research Letters 2, 321-326). He then asked “For any \(k > 0 \), is there \(N_k \) such that every integral unimodular lattice all of whose characteristic vectors have norm \(\geq n - 8k \) is of the form \(L_0 \perp \mathbb{Z}^r \) for some lattice \(L_0 \) of rank at most \(N_k \)?” (Math Research Letters 2, 643-651). He solved this question in the case \(k = 1 \), showing that \(N_1 = 23 \) suffices; here I determine values for \(N_2 \) and \(N_3 \).

1. Introduction

A \(\mathbb{Z} \)-lattice is a free module of finite rank over \(\mathbb{Z} \). Given a \(\mathbb{Z} \)-lattice \(L \), let \(B : L \times L \to \mathbb{Z} \) be a symmetric bilinear form and \(q : L \to \mathbb{Z} \) given by \(q(x) = B(x,x) \) the corresponding quadratic form. Throughout this paper we will assume that \(q \) is positive definite. This enables us to embed \(L \) in \(\mathbb{R}^n \), with \(B(\cdot,\cdot) \) the standard inner product and \(q(\cdot) \) the corresponding (squared) norm. A characteristic vector of \(L \) is an element \(w \) such that \(B(v,w) \equiv q(v) \pmod{2} \) for every \(v \in L \). Characteristic vectors are known to exist in any unimodular \(\mathbb{Z} \)-lattice \(L \), and in this case they constitute a coset of \(2L \) in \(L \). If \(L \) has rank \(n \), all the characteristic elements have norm congruent to \(n \) (mod 8) (see [B]; or see Chapter V of [S]).

Noam Elkies has considered the minimal norm of the characteristic vectors in a unimodular lattice. In [E1], Elkies shows that any positive definite unimodular \(\mathbb{Z} \)-lattice of rank \(n \) has characteristic vectors of norm \(\leq n \); he also proves that of all such lattices, only the standard lattice \(\mathbb{Z}^n \) has no characteristic vectors of norm strictly less than \(n \). Then in [E2], he begins a programme of showing that a positive definite unimodular lattice whose minimal characteristic vectors have norm close to \(n \) are in some sense close to \(\mathbb{Z}^n \). More precisely, he shows that every such lattice whose characteristic vectors all have norm \(\geq n - 8 \) is of the form \(L_0 \perp \mathbb{Z}^r \) for some \(L_0 \) of rank \(\leq 23 \). He then asks: “For any \(k > 0 \), is there \(N_k \) such that every integral [positive definite] unimodular lattice all of whose characteristic vectors have norm \(\geq n - 8k \) is of the form \(L_0 \perp \mathbb{Z}^r \) for
some lattice L_0 of rank at most N_k?” Elkies goes on to comment: “Even the case $k = 2$ appears difficult.”

In this paper, we first obtain upper bounds on the number of characteristic vectors of minimal norm s and on the number of characteristic vectors of norm $s + 8$; then we apply a theorem of Hecke to settle the cases $k = 2$ and $k = 3$ of Elkies’ problem.

2. Notation

We will largely follow the notation of [O’M]. Also, for a given lattice L, we define:

\[\chi_L := \{ v \in L : B(x,v) \equiv q(x) \pmod{2}, \forall x \in L \} \]
\[\chi_t(L) := \{ v \in \chi_L : q(v) = t \} \]
\[s(L) := \min_{v \in \chi_L} \{ q(v) \}. \]

Thus χ_s denotes the set of shortest characteristic vectors of the lattice L under discussion. Finally, for any set A, define $|A|$ to be the cardinality of A.

3. A bound on the number of shortest characteristic vectors

Throughout this section, L denotes a positive definite unimodular \mathbb{Z}-lattice of rank n. We will find bounds on $|\chi_s|$ and $|\chi_{s+8}|$. The characteristic elements of L constitute a coset of $2L$ in L, so if $v_1, v_2 \in \chi_L$ then $v_1 + v_2 \in 2L$. If v_1, v_2 have the same norm, we can say more:

Lemma 3.1. Let v_1, v_2 be characteristic elements of L with $q(v_1) = q(v_2) = t$. Then
\[q \left(\frac{v_1 + v_2}{2} \right) \leq t \]
with equality if and only if $v_1 = v_2$.

Proof. This is because a ball in Euclidean space is strictly convex. \qed

Lemma 3.2. Fix $w \in \chi_s$. Define the map $\phi_w : \chi_s \to L/2L$ by
\[\phi_w(v) := \frac{v - w}{2} + 2L. \]
Then ϕ_w is injective.

Proof. Suppose $\phi_w(v_1) = \phi_w(v_2)$. Then $\frac{v_1 - v_2}{2} \in 2L$, from which we see
\[\frac{v_1 + v_2}{2} = v_2 + \frac{v_1 - v_2}{2} \in \chi_L. \]
Therefore
\[q \left(\frac{v_1 + v_2}{2} \right) \geq s. \]
But $v_1, v_2 \in \chi_s$, so by Lemma 3.1 we have $q(\frac{v_1 + v_2}{2}) \leq s$. Thus we have equality, and by applying Lemma 3.1 again we see $v_1 = v_2$, as required. \qed
Lemma 3.2 gives us an injective function from χ_s into a group of order 2^n. This proves the following:

Corollary 3.3. The number of shortest characteristic vectors of a positive definite unimodular \mathbb{Z}-lattice of dimension n is at most 2^n.

This result is the best possible, as the following example shows. Let \(\{e_1, e_2, \ldots, e_n\}\) be an orthonormal basis for \mathbb{Z}^n. Then the characteristic vectors are those of the form $\sum_{j=1}^n \lambda_j e_j$ with all the λ_j odd. In particular, the shortest characteristic vectors are the vectors of the form $\sum_{j=1}^n \lambda_j e_j$ with each $\lambda_j \in \{\pm 1\}$; there are 2^n such vectors.

Now we shall find an upper bound on the number of characteristic vectors of norm $s + 8$. This bound must be at least n^2, for the lattice \mathbb{Z}^n has n^2 such vectors. (These are the vectors $\sum_{j=1}^n \lambda_j e_j$ with one $\lambda_j = \pm 3$ and all other $\lambda_j \in \{\pm 1\}$.)

Lemma 3.4. Suppose $w \in \chi_{s+8}$. Define

\[
\mathcal{C}_w := \{v \in \chi_{s+8} : w - v \in 4L\}.
\]

If $n \neq 15$ then $|\mathcal{C}_w| \leq n$; if $n = 15$ then $|\mathcal{C}_w| \leq 16$.

Proof. It is enough to show that $|\mathcal{C}_w| \leq n + 1$, and then to show that equality can hold only when $n = 15$.

(a) **Proof of the inequality** $|\mathcal{C}_w| \leq n + 1$.

Write

\[
\begin{align*}
 w &= x_1 + 2l_1 \\
 w &= x_2 + 2l_2 \\
 \vdots \\
 w &= x_{m+1} + 2l_{m+1}
\end{align*}
\]

in as many different ways as possible with $x_i \in \chi$ and $B(x_i, l_i) = 0$ for each i.

The list is finite because q is positive definite.

Claim: $|\mathcal{C}_w| = m + 1$. Given $v \in \mathcal{C}_w$, let $x = \frac{w+v}{2}$ and $l = \frac{w-v}{4}$ (So $w = x + 2l$ and $v = x - 2l$.) Then

\[
x = w + \frac{v-w}{2} \in w + 2L = \chi.
\]

But the equality $q(v) = q(w)$ then yields $q(x - 2l) = q(x + 2l)$, from which $B(x, l) = 0$. This gives an injective map from \mathcal{C}_w to rows of the list (1). Thus $|\mathcal{C}_w| \leq m + 1$.

On the other hand, if $w = x_i + 2l_i$, then we assert that $x_i - 2l_i \in \mathcal{C}_w$; this vector is characteristic and in the same coset of $L/4L$ as w, and $q(w) = q(x_i - 2l_i)$. If $x_i - 2l_i = x_j - 2l_j$ then $w - 4l_i = w - 4l_j$ and so each expression for w yields a different element of \mathcal{C}_w. Thus $|\mathcal{C}_w| = m + 1$ as claimed.
Having established this claim, to prove part (a) we need only show that \(m \leq n \). One of our expressions for \(w \) in (1) will be \(w + 0 \). So without loss of generality, suppose \(l_{m+1} = 0 \). The proof will proceed by showing \(l_1, \ldots, l_m \) are linearly independent.

For \(1 \leq i \leq m \) we have \(q(x_i) + 4q(l_i) = s + 8 \). Since \(x_i \) is characteristic, it follows that \(q(l_i) = 2 \) and \(q(x_i) = s \). Suppose \(1 \leq i < j \leq m \). Because \(x_i - 2l_j \in \chi \) we know \(q(x_i - 2l_j) \geq s \). Hence, because \(q(x_i) = s \), we have

\[
B(x_i, l_j) \leq q(l_j) = 2.
\]

We also know \(l_i \neq l_j \), since the expressions in (1) are different. So \(q(l_i - l_j) > 0 \) and therefore \(B(l_i, l_j) \leq 1 \). But

\[
B(x_i, l_j) + 2B(l_i, l_j) = B(w, l_j) = B(x_j + 2l_j, l_j) = 4.
\]

Thus \(B(x_i, l_j) = 2 \) and \(B(l_i, l_j) = 1 \) whenever \(1 \leq i < j \leq m \).

We are now ready to prove that \(l_1, l_2, \ldots, l_m \) are linearly independent. For suppose

\[
\sum_{i=1}^{m} \mu_i l_i = 0
\]

with \(\mu_1 \cdots \mu_m \in \mathbb{Q} \). Then for each \(k \leq m \) we have \(B(\sum_{i=1}^{m} \mu_i l_i, l_k) = 0 \), and hence

\[
A_m \begin{pmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_m \end{pmatrix} = 0
\]

where \(A_m \) is the \(m \times m \) matrix

\[
\begin{pmatrix}
2 & 1 & \ldots & 1 \\
1 & 2 & \ddots & \vdots \\
\vdots & \ddots & \ddots & 1 \\
1 & \ldots & 1 & 2
\end{pmatrix}.
\]

But \(\det A_m = m + 1 \), and hence \(A_m \) is invertible over \(\mathbb{Q} \). Therefore \(\mu_1 = \mu_2 = \cdots = \mu_m = 0 \), which proves the claim.

Therefore \(m \leq \dim \mathbb{Q}L = n \) and so \(|C_w| \leq n + 1 \) as required.

(b) Suppose \(|C_w| = n + 1 \); we will show that \(n = 15 \).

As in the proof of part (a), write \(w = x_i + 2l_i \) for each \(1 \leq i \leq n \), with the \(x_i \) distinct elements of \(\chi_s \), and \(B(x_i, l_i) = 0 \) for each \(i \). Then the set \(\{l_1, l_2, \cdots, l_n\} \) is a basis for \(\mathbb{Q}L \), and \(q(l_i) = 2 \) for each \(i \).
Write \(x_1 = \sum_{i=1}^{n} \nu_i l_i \) with \(\nu_i \in \mathbb{Q} \). Recall that \(B(x_1, l_1) = 0 \) and \(B(x_1, l_i) = 2 \) for \(2 \leq i \leq n \). Thus
\[
A_n \begin{pmatrix} \nu_1 \\ \nu_2 \\ \vdots \\ \nu_n \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \\ \vdots \\ 2 \end{pmatrix}.
\]
Solving this for \(\nu_1, \ldots, \nu_n \) yields \(\nu_1 = -2(\frac{n-1}{n+1}) \) and \(\nu_2 = \cdots = \nu_n = \frac{4}{n+1} \) and hence
\[
x_1 = \frac{2}{n+1} \left[- (n-1) l_1 + 2(l_2 + \cdots + l_n) \right]
\]
from which we find
\[
q(x_1) = 8 \left(\frac{n-1}{n+1} \right) \in \mathbb{Z}.
\]
Since \((n-1, n+1) \leq 2 \), it follows that \((n+1) | 16 \). So \(n \in \{1, 3, 7, 15\} \). But \(x_1 \) was characteristic, so \(q(x_1) \equiv n \) (mod 8). This happens only for \(n = 15 \). \(\square \)

Corollary 3.5. Let \(L \) be a positive definite unimodular \(\mathbb{Z} \)-lattice of rank \(n \). If \(n \neq 15 \) then \(L \) has at most \(n2^n \) characteristic elements of length \(s+8 \). If \(L \) has rank 15 then there are at most \(2^{19} \) such elements.

Proof. Regardless of the rank of \(L \), the elements of \(\chi \) form a coset of \(L/2L \). Therefore \(\chi \) consists of precisely \(2^n \) cosets of \(L/4L \). Pick an element \(w_k \) of norm \(s+8 \) from each coset of \(L/4L \) that contains such an element. Then
\[
\chi_{s+8} = \bigcup_k C_{w_k}.
\]
If \(n \neq 15 \), Lemma 3.4 tells us there are no more than \(n \) elements in each \(C_{w_k} \).
Thus there can be no more than \(n2^n \) elements of \(\chi_{s+8} \).
If \(n = 15 \), Lemma 3.4 tells us there are no more than 16 elements of \(\chi_{s+8} \) in each \(C_{w_k} \). Thus there can be no more than \(16 \cdot 2^{15} = 2^{19} \) elements of \(\chi_{s+8} \). \(\square \)

Remark. In fact if \(n = 15 \), calculations involving theta series show that there are at most \(15 \times 2^{15} \) characteristic elements of length \(s+8 \).

4. **The main result**

In the first part this section, we largely follow the notation of [E2]. Let \(H \) be the complex upper half plane: the set of complex numbers with strictly positive imaginary part. Define the theta series of the lattice \(L \) to be
\[
\theta_L(t) := \sum_{v \in L} e^{\pi i q(v) t}
\]
for any \(t \in H \). Then
\[
\theta_L(t) = \sum_{k=0}^{\infty} N_k e^{\pi i k t},
\]
where \(N_k \) is the number of times \(L \) represents \(k \). Now let \(w \) be any characteristic vector of \(L \) and define
\[
\theta'_L(t) := \sum_{v \in L + \frac{w}{2}} e^{\pi i q(v) t} = \sum_{k=0}^{\infty} N'_k e^{\pi i k t / 4},
\]
where \(N'_k \) is the number of characteristic vectors of norm \(k \). In [E1], Elkies relates these series by the identity
\[
\theta_L \left(- \frac{1}{t} + 1 \right) = \left(\frac{t}{i} \right)^{n/2} \theta'_L(t).
\]
The \(n/2 \) power refers to the \(n \)th power of the principal square root.

Hecke has proved that if \(L \) is a unimodular \(\mathbb{Z} \)-lattice, then \(\theta_L \) is a modular form of weight \(\frac{n}{2} \) and can be expressed as a weighted-homogeneous polynomial \(P_L(\theta_Z, \theta_{E_8}) \) in the modular forms \(\theta_Z \) and \(\theta_{E_8} \) of weight \(\frac{1}{2} \) and 4 respectively (see Theorem 7, Chapter 7 of [CS] and the remark that follows it). Here, \(\theta_Z \) and \(\theta_{E_8} \) are the theta series of the lattices \(\mathbb{Z} \) and \(E_8 \). Specifically
\[
\theta_Z = 1 + 2(e^{\pi it} + e^{4\pi it} + e^{9\pi it} + \ldots)
\]
and
\[
\theta_{E_8} = 1 + 240 \sum_{k=0}^{\infty} \frac{k^3 e^{2\pi itk}}{1 - e^{2\pi itk}} = 1 + 240e^{2\pi it} + 2160e^{4\pi it} + \ldots.
\]
We can express
\[
P_L(X, Y) = \sum_{k=0}^{l} \lambda_k X^{n-8k} Y^k
\]
with \(\lambda_i \in \mathbb{R} \), \(l \leq \lfloor \frac{n}{8} \rfloor \) and \(\lambda_l \neq 0 \) and so we may write
\[
(3) \quad \theta_L(t) = \sum_{k=0}^{l} \lambda_k \theta_{Z}^{n-8k}(t) \theta_{E_8}^{k}(t)
\]
with \(\lambda_i \in \mathbb{R} \), \(l \leq \lfloor \frac{n}{8} \rfloor \) and \(\lambda_l \neq 0 \). Combining this with equation (2), we have
\[
\theta'_L(t) = \left(\frac{i}{\ell} \right)^{n/2} \theta_L \left(- \frac{1}{t} + 1 \right)
\]
\[
= \sum_{k=0}^{l} \lambda_k \left[\left(\frac{i}{\ell} \right)^{(n-8k)/2} \theta_{Z}^{n-8k} \left(- \frac{1}{t} + 1 \right) \right] \left[\left(\frac{i}{\ell} \right)^4 \theta_{E_8}^{k} \left(- \frac{1}{t} + 1 \right) \right]
\]
\[
= \sum_{k=0}^{l} \lambda_k \theta_{Z}^{n-8k}(t) \theta_{E_8}^{k}(t)
\]
\[
= P_L(\theta'_Z, \theta'_E).
\]
But E_8 is an even lattice, hence 0 is one of its characteristic vectors. Thus $\theta_{E_8} = \theta'_{E_8}$. So we have

\[\theta'_{L} = P_L(\theta'_Z, \theta_{E_8}). \tag{4} \]

Because the characteristic vectors of \mathbb{Z} (viewed as a lattice of rank one) are the odd integers, we have

\[\theta'_Z = 2(e^{\pi it/4} + e^{3\pi it/4} + \cdots). \]

Expanding the polynomial in equation (4) now gives

\[\theta'_{L}(t) = \lambda_l 2^{n-8l}e^{(n-8l)\pi it/4} + (2^n \lambda_{l-1} + (n + 232l)\lambda_l)2^{n-8l}e^{(n-8l+8)\pi it/4} + \cdots, \]

where λ_l and λ_{l-1} are as in equation (3). Since θ'_{L} encodes the number of characteristic vectors of each norm, we can deduce that if θ_{L} is expressed as in equation (3) then

\[\begin{cases}
 s = n - 8l \\
 |\chi_s| = \lambda_l 2^{n-8l} \\
 |\chi_{s+8}| = (2^n \lambda_{l-1} + (n + 232l)\lambda_l)2^{n-8l}.
\end{cases} \tag{5} \]

Theorem 4.1. Let L be a positive definite unimodular \mathbb{Z}-lattice. Then its theta series $\theta_{L}(t)$ is a modular form of weight $\frac{n}{2}$ and can be expressed as a weighted-homogeneous polynomial $P_L(\theta_Z, \theta_{E_8})$ in the modular forms θ_Z and θ_{E_8} of weight $\frac{1}{2}$ and 4 respectively. Here θ_Z and θ_{E_8} are the theta series of the lattices \mathbb{Z} and E_8. Further, if we write

\[P_L(X,Y) = \sum_{k=0}^l \lambda_k X^{n-8k}Y^k \tag{6} \]

then $\lambda_l \leq 2^{8l}$.

Proof. In light of Hecke’s theorem, the only new information here is the bound on λ_l. Express $P_L(X,Y)$ as in equation (6). Then there are $\lambda_l 2^{n-8l}$ shortest characteristic vectors. But Corollary 3.3 states that there are at most 2^n such vectors. Thus $\lambda_l \leq 2^{8l}$.

Lemma 4.2. Let L be an n-dimensional positive definite unimodular \mathbb{Z}-lattice that does not represent 1. Suppose further that the shortest characteristic vectors of L have norm $n - 16$. Then

\[|\chi_s| = 2^{n-24}(2n^2 - 46n + N_2) \]

(Recall that N_2 is the number of times L represents 2.)
Proof. The shortest characteristic vectors of \(L \) have norm \(n - 16 \); thus
\[
\theta_L(t) = \lambda_0 \theta^n_Z(t) + \lambda_1 \theta^{n-8}_Z(t) \theta_{E_8}(t) + \lambda_2 \theta^{n-16}_Z(t) \theta_{E_8}^2(t) \\
= \lambda_0 \theta^n_Z(t) + \lambda_1 \theta^{n-8} Z_{E_8}(t) + \lambda_2 \theta^{n-16} Z_{E_8} E_8(t).
\]

We know how many times each of the numbers 0, 1 and 2 are represented by
the lattices \(Z^n, Z^{n-8} \perp E_8 \) and \(Z^{n-16} \perp E_8 \perp E_8 \).
So we have that
\[
\theta_L(t) = 1 + 0 e^{\pi i t} + N_2 e^{2\pi i t} + \ldots \\
= \lambda_0 \left(1 + 2 \left(\frac{n}{1} \right) e^{\pi i t} + 2 \left(\frac{n}{2} \right) e^{2\pi i t} + \ldots \right) \\
+ \lambda_1 \left(1 + 2 \left(\frac{n-8}{1} \right) e^{\pi i t} + \left(2 \left(\frac{n-8}{2} \right) + 240 \right) e^{2\pi i t} + \ldots \right) \\
+ \lambda_2 \left(1 + 2 \left(\frac{n-16}{1} \right) e^{\pi i t} + \left(2 \left(\frac{n-16}{2} \right) + 480 \right) e^{2\pi i t} + \ldots \right).
\]

This yields the simultaneous equations
\[
\lambda_0 + \lambda_1 + \lambda_2 = 1 \\
2n\lambda_0 + 2(n-8)\lambda_1 + 2(n-16)\lambda_2 = 0 \\
2n(n-1)\lambda_0 + (2(n-8)(n-9) + 240)\lambda_1 + (2(n-16)(n-17) + 480)\lambda_2 = N_2.
\]

Upon solving these equations, we find
\[
\lambda_2 = \frac{2n^2 - 46n + N_2}{256}.
\]

The observations (5) now tell us
\[
|\chi_s| = 2^{n-24}(2n^2 - 46n + N_2)
\]
as claimed.

Theorem 4.3. Let \(L \) be a positive definite unimodular \(Z \)-lattice of rank \(n \). Suppose further that the shortest characteristic vectors of \(L \) have norm \(n - 16 \). Then \(L = L_0 \perp Z^r \) for some sublattice \(L_0 \) of rank \(\leq 2907 \).

Proof. We may assume \(L \) does not represent 1 and prove that \(n \leq 2907 \). By Corollary 3.3, we know there are at most \(2^n \) shortest characteristic vectors. But Lemma 4.2 tells us \(L \) has exactly \(2^{n-24}(2n^2 - 46n + N_2) \) shortest characteristic vectors. So
\[
2^{n-24}(2n^2 - 46n + N_2) \leq 2^n.
\]

Hence
\[
2n^2 - 46n + N_2 \leq 2^{24}.
\]

But \(N_2 \geq 0 \), hence \(2n^2 - 46n \leq 2^{24} \) and so the integer \(n \) cannot exceed 2907.
Lemma 4.4. Let L be an n-dimensional positive definite unimodular \mathbb{Z}-lattice that does not represent 1, and assume that the shortest characteristic vectors of L have norm $n - 24$. Then

$$|\chi_{n-16}| = (2n^2 - 46n + N_2)2^{n-24} + (n - 72)|\chi_{n-24}|.$$

Proof. Since the shortest characteristic vectors of L have norm $n - 24$, we may write

$$\theta_L(t) = \lambda_0 \theta_Z^n(t) + \lambda_1 \theta_Z^{n-8}(t)\theta_E(t) + \lambda_2 \theta_Z^{n-16}(t)\theta_E(t) + \lambda_3 \theta_Z^{n-24}(t)\theta_E^2(t) + \lambda_4 \theta_Z^{n-32}(t)\theta_E^3(t).$$

Forming three simultaneous equations exactly as in the proof of Lemma 3.1, we discover

$$\lambda_2 = \frac{3N_3 + 160N_2 - 5568n - 6N_2n + 308n^2 - 4n^3}{2^{12}},$$

$$\lambda_3 = \frac{-3N_3 - 144N_2 + 4832n + 6N_2n - 276n^2 + 4n^3}{3 \times 2^{12}}.$$

Therefore

$$\lambda_2 = -3\lambda_3 + \frac{2n^2 - 46n + N_2}{2^{28}}$$

and from the observations (5), we can express the number of characteristic vectors of length $n - 16$ in terms of the number of shortest characteristic vectors:

$$|\chi_{n-16}| = (2^8 \lambda_2 + (n + 696)\lambda_3)2^{n-24}$$

$$= (2n^2 - 46n + N_2)2^{n-24} + (n - 72)(\lambda_3 2^{n-24})$$

$$= (2n^2 - 46n + N_2)2^{n-24} + (n - 72)|\chi_{n-24}|$$

as claimed. \square

Theorem 4.5. Let L be a positive definite unimodular \mathbb{Z}-lattice of rank n. Suppose further that the shortest characteristic vectors of L have norm $n - 24$. Then $L = L_0 \perp \mathbb{Z}^r$ for some sublattice L_0 of rank ≤ 8388630.

Proof. We may assume L does not represent 1 and prove that the rank of L is at most 8388630.

The hypotheses imply $n \neq 15$. So Corollary 3.5 (b) tells us there can be no more than $n2^n$ second shortest characteristic vectors. So by Lemma 4.4 ,

$$(2n^2 - 46n + N_2)2^{n-24} + (n - 72)|\chi_{n-24}| \leq n2^n.$$

We may assume that $n \geq 72$ and we know that the number of shortest characteristic vectors is positive. So

$$(2n^2 - 46n + N_2)2^{n-24} < n2^n.$$

Rearranging,

$$2n^2 - (46 + 2^{24})n + N_2 < 0.$$

(8)
Next notice that $N_2 \geq 0$. So inequality (8) implies n can be no larger than $8\,388\,630$. \hfill \qed

5. Remarks

I do not claim to have found the best possible bounds for N_2 or N_3. However, if N_k exists, we can see $N_k \geq 23k$ as follows. Consider the lattice

$$L_k := \bigoplus_{i=1}^{k} O_{23}$$

whose components are all copies of the 23-dimensional shorter Leech lattice O_{23} (see, for example, [CS], 179). In [E2], Elkies notes that O_{23} has shortest characteristic vectors of norm 15. From this it follows that L_k is a $23k$-dimensional lattice with shortest characteristic vectors of norm $23k - 8k$.

It appears that my method of bounding the number of short characteristic vectors does not yield N_k for $k \geq 4$. So Elkies’ question remains open for $k \geq 4$.

Finally, by Construction A of ([CS], 137), we notice that if $k \leq 3$, there is an n_k such that every binary self-dual code whose shadow has minimal norm $\geq \frac{n - 8k}{2}$ is of the form $C_0 \oplus z^r$ for some code C_0 of length at most n_k.

Acknowledgement

I would like to thank my Ph.D. adviser, Larry Gerstein, for his continuing guidance and support.

References

