INTERSECTIONAL PAIRS OF n-KNOTS,
LOCAL MOVES OF n-KNOTS, AND
THEIR ASSOCIATED INVARIANTS OF n-KNOTS

Eiji Ogasa

1. Introduction

Our first purpose is to discuss the following problem. Let S^{n+2}_1 and S^{n+2}_2 be $(n + 2)$-spheres embedded in the $(n + 4)$-sphere S^{n+4} $(n \geq 1)$ which intersect transversely. If we assume $M = S^{n+2}_1 \cap S^{n+2}_2$ is PL homeomorphic to the single standard n-sphere we obtain a pair of n-knots, M in S^{n+2}_1 and M in S^{n+2}_2. We consider which pairs of n-knots we obtain as above. That is, let (K_1, K_2) be a pair of n-knots. Then we consider whether the pair of n-knots (K_1, K_2) is obtained as above. We give a complete answer to this problem (Theorem 3.1).

In order to get the complete answer, we introduce a local move of n-knots $(n \geq 1)$. Furthermore, we show a relation between the local move and some invariants of n-knots (Theorem 4.1 and Corollary 4.2).

Our second purpose is to discuss the relation between the local move and the invariants of n-knots. In the case of 1-links, there is a great deal known about relations between local moves and knot invariants. (See [V, Wi, Ka2].) Our discussion is a high dimensional version of this theory.

2. Definitions

An (oriented) (ordered) m-component n-(dimensional) link is a smooth, oriented submanifold $L = \{K_1, ..., K_m\}$ of S^{n+2}, which is the ordered disjoint union of m connected oriented submanifolds, each PL homeomorphic to the standard n-sphere. If $m = 1$, then L is called a knot. (This definition is used often. See [CO, L1, L3].)

Let L_1 and L_2 be n-links. L_1 is said to be equivalent to L_2 if there exists an orientation preserving diffeomorphism h of S^{n+2} such that $h|L_1$ is an orientation preserving diffeomorphism from L_1 to L_2. We work in the smooth category.

Definition. (K_1, K_2) is called a pair of n-knots if K_1 and K_2 are n-knots. (K_1, K_2, X_1, X_2) is called a 4-tuple of n-knots and $(n + 2)$-knots or a 4-tuple of $(n, n + 2)$-knots if (K_1, K_2) is a pair of n-knots and X_1 and X_2 are $(n + 2)$-knots diffeomorphic to the standard $(n + 2)$-sphere. $(n \geq 1)$.

Received May 26, 1998.

This research was partially supported by Research Fellowships of the Promotion of Science for Young Scientists.

577
Definition. A 4-tuple of \((n, n+2)\)-knots \((K_1, K_2, X_1, X_2)\) is said to be realizable if there exists a smooth transverse immersion \(f : S^{n+2}_1 \coprod S^{n+2}_2 \rightarrow S^{n+4}\) satisfying the following conditions: \((n \geq 1)\)

1. The intersection \(\Sigma = f(S^{n+2}_1) \cap f(S^{n+2}_2)\) is PL homeomorphic to the standard \(n\)-sphere.
2. \(f^{-1}(\Sigma)\) in \(S^{n+2}_i\) defines an \(n\)-knot \(K_i\) \((i = 1, 2)\).
3. \(f|_{S^{n+2}_i}\) is an embedding. \(f(S^{n+2}_i)\) in \(S^{n+4}\) is equivalent to \(X_i\) \((i=1,2)\).

A pair of \(n\)-knots \((K_1, K_2)\) is said to be realizable or is called an intersectional pair of \(n\)-knots if there is a realizable 4-tuple of \((n, n+2)\)-knots \((K_1, K_2, X_1, X_2)\).

3. Intersectional pair of \(n\)-knots

Our main theorem is:

Theorem 3.1. A pair of \(n\)-knots \((K_1, K_2)\) \((n \geq 1)\) is realizable if and only if \((K_1, K_2)\) satisfies the condition that

\[
\begin{align*}
(K_1, K_2) & \text{ is arbitrary if } n \text{ is even,} \\
\text{Arf}(K_1) = \text{Arf}(K_2) & \text{ if } n = 4m + 1, \ (m \geq 0). \\
\sigma(K_1) = \sigma(K_2) & \text{ if } n = 4m + 3,
\end{align*}
\]

There is a mod 4 periodicity in dimension. It is similar to the periodicity in knot cobordism theory ([L1]) and surgery theory (see [Br, Wa, CS, We]). We have the following result on the realization of 4-tuples of \((n, n+2)\)-knots.

Theorem 3.2. A 4-tuple of \((n, n+2)\)-knots \((K_1, K_2, X_1, X_2)\) is realizable if \(K_1\) and \(K_2\) are slice \((n \geq 1)\). In particular, if \(n\) is even, an arbitrary 4-tuple of \((n, n+2)\)-knots \((K_1, K_2, X_1, X_2)\) is realizable.

Remarks. 1. Kervaire proved that all even dimensional knots are slice ([Ke]). 2. In [O1] the author discussed the case of two 3-spheres in a 5-sphere. In [O2] the author discussed the case of the intersection of three 4-spheres.

Problem. Which 4-tuples of \((2n+1, 2n+3)\)-knots are realizable \((n \geq 1)\)?

4. High-dimensional pass-moves

In order to prove Theorem 3.1, we introduce a new local move for high dimensional knots, the high dimensional pass-move. Pass-moves for 1-knots are discussed in p.146 of [Ka]. We define high dimensional pass-moves for \((2k+1)\)-knots \(S^{2k+3}_i, \ (k \geq 1)\).

Definition. Take a trivially embedded \((2k+3)\)-ball \(B = B^{2k+2} \times [-1,1]\) in \(S^{2k+3}\). We define \(J_+, J_- \subset B\) as follows. (See Figure 4.1.) In \(\partial B^{2k+2} \times \{0\}\), take trivially embedded \(S^k_1, S^k_2\) such that \(\text{lk}(S^k_1, S^k_2) = 1\). Let \(N(S^k_i)\) be a tubular neighborhood of \(S^k_i\) in \(\partial B^{2k+2} \times \{0\}\). Let \(h^{k+1}\) be a \((2k+2)\)-dimensional \((k+1)\)-handle which is attached to \(\partial B^{2k+2} \times \{0\}\) along \(N(S^k_i)\) with the trivial framing and which is embedded trivially in \(B^{2k+2} \times \{0\}\). Let \(h^{k+1}_+\) (resp. \(h^{k+1}_-\)) be a \((2k+2)\)-dimensional \((k+1)\)-handle which is embedded in \(B = B^{2k+2} \times [0,1]\) (resp.
Let $B = B^{2k+2} \times [-1,0]$ and which is attached to $\partial B^{2k+2} \times \{0\}$ along $N(S^k_2)$ with the trivial framing. Let $h^{k+1}_+ \cap h^{k+1}_- = N(S^k_2)$. Let $h^{k+1}_+ \cap h^{k+1}_- = h^{k+1}_+ \cap h^{k+1}_- = \phi$.

Let J_+ be the submanifold $(\partial h^{k+1}_+) - N(S^k_1) \amalg (\partial h^{k+1}_-) - N(S^k_2)$ in B. Let J_- be the submanifold $(\partial h^{k+1}_+) - N(S^k_1) \amalg (\partial h^{k+1}_-) - N(S^k_2)$ in B.

In Figure 4.1, we draw $B = B^{2k+2} \times [-1,1]$ by using the projection to $B^{2k+2} \times \{0\}$.

![Figure 4.1](image)

Let $K_+, K_- \subset S^{2k+3}$. We say that K_+ is obtained from K_- by one high dimensional pass-move if there is a trivially embedded $(2k+3)$-ball $B \subset S^{2k+3}$ such that $K_+ \cap B$ is J_+ and $K_- \cap B$ is J_-. Let $K, K' \subset S^{2k+3}$. We say that K is pass-move equivalent to K' if there are $(2k+1)$-knots $K_1 = K, K_2, \ldots, K_{\mu-1}, K_\mu = K'$ ($\mu \in \mathbb{N}$) such that K_i is pass-move equivalent to K_{i+1}.

We prove the following:

Theorem 4.1. For $(2k+1)$-knots K_1 and K_2, the following two conditions are equivalent: ($k \geq 1$)

1. There exists a $(2k+1)$-knot K_3 which is pass-move equivalent to K_1 and cobordant to K_2.

2. K_1 and K_2 satisfy the condition $\left\{ \begin{array}{ll} \text{Arf}(K_1) = \text{Arf}(K_2) & \text{when } k \text{ is even,} \\ \sigma(K_1) = \sigma(K_2) & \text{when } k \text{ is odd.} \end{array} \right.$

The $k = 0$ case of Theorem 4.1 follows from [Ka].
Corollary 4.2. Let K_1 and K_2 be $(2k+1)$-knots ($k \geq 1$). Suppose that K_1 is pass-move equivalent to K_2. Then K_1 and K_2 satisfy the condition that

$$\begin{cases}
\text{Arf}(K_1) = \text{Arf}(K_2) & \text{when } k \text{ is even}, \\
\sigma(K_1) = \sigma(K_2) & \text{when } k \text{ is odd}.
\end{cases}$$

Note. In [O3] the author proved a relation between another local move of 2-knots and other invariants of 2-knots.

5. Proof of Theorem 3.1

We prove the following lemmas by explicit construction.

Lemma 5.1. Let K be an n-knot. Then the pair of n-knots (K, K) is realizable ($n \geq 1$).

Lemma 5.2. Let K_1 and K_2 be $(2k+1)$-knots. Suppose that K_1 is pass-move equivalent to K_2. Then the pair of $(2k+1)$-knots (K_1, K_2) is realizable ($k \geq 0$).

Lemma 5.3. Let K_1, K_2 and K_3 be n-knots ($n \geq 1$). Suppose that the pair of n-knots (K_1, K_2) is realizable and that K_2 is cobordant to K_3. Then the pair of n-knots (K_1, K_3) is realizable.

Theorem 3.1 is deduced from Theorem 4.1 and Lemmas 5.1, 5.2, 5.3.

6. Proof of Theorem 3.2

It suffices to prove that a 4-tuple of $(n, n+2)$-knots (K_1, K_2, T, T') is realizable, where K_1 is a slice n-knot, K_2 is the trivial n-knot, T is the trivial $(n+2)$-knot. Any 1-twist spun knot is unknotted ([Z]). Theorem 3.2 follows from this fact.

7. The proof of Theorem 4.1

Every p-knot ($p > 1$) is cobordant to a simple knot. (See [L1] for a proof and the definition of simple knots.) By using this fact, we prove that the $k \geq 1$ case of Theorem 4.1 can be deduced from Theorem 7.1.

Proposition 7.1. For simple $(2k+1)$-knots K_1 and K_2, the following two conditions are equivalent: ($k \geq 1$)

1. K_1 is pass-move equivalent to K_2.
2. K_1 and K_2 satisfy the condition
$$\begin{cases}
\text{Arf}(K_1) = \text{Arf}(K_2) & \text{when } k \text{ is even}, \\
\sigma(K_1) = \sigma(K_2) & \text{when } k \text{ is odd}.
\end{cases}$$

Proof of Proposition 7.1. $(2) \Rightarrow (1)$. K_1 bounds a Seifert hypersurface V_1 with a handle decomposition (one 0-handle) $\cup (k+1)$-handles). Take a Seifert matrix associated with V_1. By using high dimensional pass moves, we can change the Seifert matrix without changing the diffeomorphism type of V_1. Thus we obtain a $(2k+1)$-knot K'_2 whose Seifert matrix is same as the Seifert matrix of K_2 if (2) holds. By the classification theorem of simple knots by [L2], K'_2 is equivalent to K_2.
(1)⇒(2). Suppose that $(2k+1)$-knots $K_* \subset S^{2k+3}_*$ bounds a Seifert hypersurface V_*. Note V_* are $(2k+2)$-manifolds. There is a compact oriented parallelizable $(2k+4)$-manifold P whose boundary is $S^{4k+3}_1 \amalg S^{4k+3}_2$ containing compact oriented $(2k+3)$-manifold Q whose boundary is $V_1 \cup (S^{2k+1} \times [1, 2]) \cup V_2$. (Here, ∂V_* is K_* and $S^{2k+1} \times \{\ast\}$ is K_*.)

We use characteristic classes and intersection products to prove (1)⇒(2).

8. Intersectional pair of submanifolds

In §1 suppose M is not PL homeomorphic to the standard sphere. Then we obtain a pair of submanifolds, M in S^{n+2}_i ($i = 1, 2$). Let N be a closed oriented manifold. (K_1, K_2) is called a pair of submanifolds (diffeomorphic to N) if K_i is a submanifold of S^{n+2} diffeomorphic to N.

Let (K_1, K_2) be a pair of submanifolds diffeomorphic to M. We say (K_1, K_2) is an intersectional pair if the submanifold K_i is equivalent to the submanifold $M = S^{n+2}_1 \cap S^{n+2}_2$ in S^{n+2}_i as in §1 ($i = 1, 2$). It is natural to ask the following problem.

Problem 8.1. Which pairs of submanifolds are intersectional pairs?

The author can prove the following results. When n is even, not all pair of submanifolds as above are realizable. When $n = 4m + 3$, we can define the signature as in the knot case and the signature is an obstruction. Therefore not all pairs are realizable. When $n = 3$, (K_1, K_2) is realizable if and only if $\sigma(K_1) = \sigma(K_2)$. When $n \neq 3$, $\sigma(K_1) = \sigma(K_2)$ does not imply (K_1, K_2) is realizable in general. When $n = 4m + 1$, there is a closed oriented manifold M such that if K_1 and K_2 are PL homeomorphic to M, then (K_1, K_2) is realizable. In other words, there is no invariant corresponding to the Arf invariant as in the knot case. Of course, not all pairs are realizable.

Acknowledgements

The author would like to thank Prof. Levine for his interest in this paper, his invitation for the author, and for his help in correcting the author’s English. The author would also like to thank the referee and the editors for their reading of the manuscript with patience.

References

[O3] ______, Ribbon moves of 2-links: The μ-invariants of 2-links and $\text{Tor} H_1(\mathbb{Z})$ of Seifert hypersurfaces, Preprint.

Department of Mathematical Sciences, University of Tokyo, Komaba, Tokyo 153, Japan

Department of Mathematics, Brandeis University, Waltham, MA02254, USA

E-mail address: ogasa@ms.u-tokyo.ac.jp, ogasa@max.math.brandeis.edu