NEW EXAMPLES OF COMPACT 8-MANIFOLDS OF HOLONOMY SPIN(7)

CHRISTINE TAYLOR

A Spin(7)-structure Φ on a manifold M can be encoded in a 4-form given by

(1)
$$\Phi = y_{1} \wedge y_{2} \wedge y_{3} \wedge y_{4} + y_{5} \wedge y_{6} \wedge y_{7} \wedge y_{8} + y_{1} \wedge y_{3} \wedge y_{5} \wedge y_{7}$$

$$+ y_{2} \wedge y_{4} \wedge y_{6} \wedge y_{8} - y_{1} \wedge y_{2} \wedge y_{5} \wedge y_{6} - y_{3} \wedge y_{4} \wedge y_{7} \wedge y_{8}$$

$$- y_{1} \wedge y_{2} \wedge y_{7} \wedge y_{8} - y_{3} \wedge y_{4} \wedge y_{5} \wedge y_{6} - y_{1} \wedge y_{3} \wedge y_{6} \wedge y_{8}$$

$$- y_{2} \wedge y_{4} \wedge y_{5} \wedge y_{7} - y_{1} \wedge y_{4} \wedge y_{5} \wedge y_{8} - y_{2} \wedge y_{3} \wedge y_{6} \wedge y_{7}$$

$$- y_{1} \wedge y_{4} \wedge y_{6} \wedge y_{7} - y_{2} \wedge y_{3} \wedge y_{5} \wedge y_{8},$$

where $\{y_i\}_{i=1}^8$ is an orthonormal basis of the tangent space T_mM . The subgroup of $GL(8,\mathbb{R})$ preserving Φ is Spin(7). Much analogous to the Kähler form ω on Calabi-Yau manifolds which has holonomy SU(n), the form Φ is parallel if and only M has holonomy in Spin(7).

The Joyce construction of compact manifolds of holonomy Spin(7) [1] generalizes the Kummer construction of K3 surfaces. Starting from T^4 , let \mathbb{Z}_2 act on T^4 by negating each of the four coordinates. The resulting orbifold has 16 singular points. Each of these singular points can by resolved by gluing the so-called Eguchi-Hanson space U. Eguchi-Hanson space [1] is the blow-up of $\mathbb{C}^2/\{\pm 1\}$ biholomorphic to $T^*\mathbb{CP}^1$. Give \mathbb{C}^2 coordinates (z_1, z_2) , where $dz_1 = dx_1 + idx_2$, and $dz_2 = dx_3 + idx_4$, and let $u = |z_1|^2 + |z_2|^2$ and t > 0. If we define

$$f_t = \sqrt{u^2 + t^2} + t^2 \ln u - t^2 \ln \left(\sqrt{u^2 + t^2} + t^2 \right),$$

then $\omega_t = \frac{1}{2}i\partial\bar{\partial}f_t$ is the Kähler form of a Kähler metric on U. ω_t together with $\omega_2 = dx_1 \wedge dx_3 - dx_2 \wedge dx_4$ and $\omega_3 = dx_1 \wedge dx_4 + dx_2 \wedge dx_3$ form the triplet of smooth closed 2-forms on U determining the Hyperkähler structure on U and the Eguchi-Hanson metric with holonomy SU(2). Eguchi-Hanson metrics are asymptotic to the flat metric on $\mathbb{C}^2/\{\pm 1\}$ at infinity. The orbifold resolved is K^3

Moving from T^4 to T^8 , and changing the group of action from \mathbb{Z}_2 to G, a power of \mathbb{Z}_2 's, and resolving T^8 by gluing Eguchi-Hanson spaces to singular points, one can achieve manifolds of exceptional holonomy Spin(7).

Having obtained the resolution M of T^8/G using Eguchi-Hanson spaces, it remains to be shown using analysis that there exists Spin(7)-structure Φ on M with small torsion, further these structures can be deformed to one that is

Received August 30, 1999.

torsion-free. The condition for the metric g associated to Φ to have holonomy in Spin(7) is exactly that Φ should be torsion-free.

If $\operatorname{Hol}(g) \subset \operatorname{Spin}(7)$, one can determine $\operatorname{Hol}(g)$ by the \hat{A} -genus of M, given that M is simply-connected. $\operatorname{Hol}(g)$ is $\operatorname{Spin}(7)$ iff $\hat{A} = 1$; $\operatorname{SU}(4)$ iff $\hat{A} = 2$; $\operatorname{Sp}(2)$ iff $\hat{A} = 3$; and $\operatorname{SU}(2) \times \operatorname{SU}(2)$ iff $\hat{A} = 4$.

In [1], Joyce constructed altogether 95 topologically distinct compact manifolds of Spin(7) holonomy; they were obtained by resolving T^8/G where $G = \mathbb{Z}_2^4$ or \mathbb{Z}_2^5 and the action on T^8 preserves the Spin(7)-structure, namely the associated form Φ . In his examples, $b^3 = 16, 8$, and 4. Here we expand the collection of Spin(7) compact manifolds by considering $G = \mathbb{Z}_2^6$, and produce new examples of Spin(7) manifolds with $b^3 = 0$.

Let (x_1, \ldots, x_8) be coordinates on $T^8 = \mathbb{R}^8/\mathbb{Z}^8$, where $x_i \in \mathbb{R}/\mathbb{Z}$. Let $\alpha, \beta, \gamma, \delta, \epsilon$ be the involutions on T^8 defined by

$$(2) \alpha ((x_{1}, \dots, x_{8})) = (-x_{1}, -x_{2}, -x_{3}, -x_{4}, x_{5}, x_{6}, x_{7}, x_{8}),$$

$$\beta ((x_{1}, \dots, x_{8})) = (x_{1}, x_{2}, x_{3}, x_{4}, -x_{5}, -x_{6}, -x_{7}, -x_{8}),$$

$$\gamma ((x_{1}, \dots, x_{8})) = (c_{1} - x_{1}, c_{2} - x_{2}, x_{3}, x_{4}, c_{5} - x_{5}, c_{6} - x_{6}, x_{7}, x_{8}),$$

$$\delta ((x_{1}, \dots, x_{8})) = (d_{1} - x_{1}, x_{2}, d_{3} - x_{3}, x_{4}, d_{5} - x_{5}, x_{6}, d_{7} - x_{7}, x_{8}),$$

$$\epsilon ((x_{1}, \dots, x_{8})) = (c_{1} + x_{1}, c_{2} + x_{2}, e_{3} + x_{3}, e_{4} + x_{4}, c_{5} + x_{5}, c_{6} + x_{6},$$

$$e_{7} + x_{7}, e_{8} + x_{8}),$$

where c_i , d_i and e_i take values in $\{0, \frac{1}{2}\}$. These five elements all preserve the 4-form Φ which defines the Spin(7)-structure, and they all commute with each other. The 95 examples found by Joyce come from the groups $G = \langle \alpha, \beta, \gamma, \delta \rangle$ and $G = \langle \alpha, \beta, \gamma, \delta, \epsilon \rangle$, where $e_3 = e_7 = 0$, and $e_4 = e_8 = \frac{1}{2}$. The examples all have the property that $\sigma = b_+^4 - b_-^4 = 64$ and $\chi = 144$, where $b_+^4 = 103 - b^2 + b^3$ and $b^3 = 4,8$ or 16. The singularities involved are of the five types specified by [1] as follows.

- (i) $T^4 \times (\mathbb{R}^4/\{\pm 1\})$, its resolution is $T^4 \times U$, which adjusts the Betti numbers of T^8/G by increasing b^2 by 1, b^3 by 4, b_+^4 and b_-^4 by 3.
- (ii) $(T^4/\{\pm 1\}) \times (\mathbb{R}^4/\{\pm 1\})$, its resolution is $(T^4/\{\pm 1\} \times U)$, which adjusts the Betti numbers of T^8/G by increasing b^2 by 1, b_+^4 and b_-^4 by 3.
- (iii) $(\mathbb{R}^4/\{\pm 1\} \times (\mathbb{R}^4/\{\pm 1\})$, its resolution is $U \times U$, which adjusts the Betti numbers of T^8/G by increasing b_-^4 by 1.
- (iv) $T^4 \times (\mathbb{R}^4/\{\pm 1\})/\sigma$, where σ is an isometric involution defined by

$$\sigma((x_1,\cdots,x_8))=(\frac{1}{2}+x_1,x_2,-x_3,-x_4,x_5,x_6,-x_7,-x_8),$$

 σ acts freely on the T^4 part. There are two topologically distinct resolutions of $(T^4 \times U)/\sigma$ due to the action of σ on the U. The holomorphic resolution, where $\sigma(z_1,z_2)=(z_1,-z_2)$, increases b^2 by 1, b^3 by 2, b_+^4 and b_-^4 by 1; the antiholomorphic resolution, where $\sigma(z_1,z_2)=(\bar{z}_1,\bar{z}_2)$, increases b^3,b_+^4 , and b_-^4 all by 2.

(v) $(T^4/\{\pm 1\}) \times (\mathbb{R}^4/\{\pm 1\})/\sigma$, where σ is as defined above. Again, we have two topologically distinct resolutions. The holomorphic one increases b^2, b_+^4 , and b_-^4 all by 1; the antiholomorphic one increases b_+^4 and b_-^4 by 2.

Here, we will construct examples of Spin(7) manifolds with $b^3 = 0$.

Let S_g denote the fixed point set of T^8 under $g \in G$. Looking at Joyce's examples closely, we see that in the examples arising from $G = \langle \alpha, \beta, \gamma, \delta \rangle$, $b^3 = 16$, and $S_{\alpha\beta} = S_{\alpha} \cap S_{\beta}$ is a set of 256 singular points which yield 64 singularities of type (iii), S_{γ} and S_{δ} yield singularities of type (i) or (iv) which increase b^3 . In the examples arising from $G = \langle \alpha, \beta, \gamma, \delta, \epsilon \rangle$, $b^3 = 4$ or 8; $S_{\alpha\beta} = S_{\alpha} \cap S_{\beta}$ and $S_{\alpha\beta\epsilon} = S_{\gamma} \cap S_{\alpha\beta\gamma\epsilon}$ each yield 32 singularities of type (iii), S_{δ} yield singularities of type (i) or (iv) which increase b^3 . Furthermore, in order for the singular points to come from S_{α} , S_{β} , S_{γ} , S_{δ} , $S_{\alpha\beta}$, $S_{\alpha\beta\epsilon}$, and $S_{\alpha\beta\gamma\epsilon}$ only, and for them to be one of the specified 5 types and one has to require that

(3)
$$(c_1, c_2) \neq (0, 0), \quad (c_5, c_6) \neq (0, 0), \quad (d_1, d_3) \neq (0, 0),$$

 $(d_5, d_7) \neq (0, 0), \quad (c_1, c_5) \neq (d_1, d_5), \quad (d_3, d_7) \neq (0, 0).$

When we add another generator η to form group $G = \mathbb{Z}_2^6 = \langle \alpha, \beta, \gamma, \delta, \epsilon, \eta \rangle$, so that we have 4 singular sets $S_{\alpha\beta}$, $S_{\alpha\beta\epsilon}$, $S_{\alpha\beta\eta}$, and $S_{\alpha\beta\epsilon\eta}$, each yielding 16 singularities of type (iii). Also, none of the singular sets arising from G produces singularities of type (i) or (iv), so b^3 stays 0.

To define η , we need to see how the singular sets $S_{\alpha\beta\eta}$ and $S_{\alpha\beta\epsilon\eta}$ can arise from singular sets which contain type (ii) and (v) singularities. There are three distinct possibilities (— other possibilities are similar to one of the three).

- (i) $S_{\alpha\beta\eta} = S_{\beta} \cap S_{\alpha\eta}$ and $S_{\alpha\beta\epsilon\eta} = S_{\delta} \cap S_{\alpha\beta\delta\epsilon\eta}$.
- (ii) $S_{\alpha\beta\eta} = S_{\delta} \cap S_{\alpha\beta\delta\eta}$ and $S_{\alpha\beta\epsilon\eta} = S_{\beta} \cap S_{\alpha\epsilon\eta}$.
- (iii) $S_{\alpha\beta\eta} = S_{\gamma} \cap S_{\alpha\beta\gamma\eta}$ and $S_{\alpha\beta\epsilon\eta} = S_{\delta} \cap S_{\alpha\beta\delta\epsilon\eta}$.

Let

(4)
$$\eta((x_1,\ldots,x_8)) = (f_1+x_1,f_2+x_2,f_3+x_3,f_4+x_4,f_5+x_5,f_6+x_6,f_7+x_7,f_8+x_8),$$

where $f_i \in \{0, \frac{1}{2}\}.$

In the first case, $S_{\alpha\beta\eta} = S_{\beta} \cap S_{\alpha\eta}$ implies that

$$f_5 = f_6 = f_7 = f_8 = 0,$$

and $S_{\alpha\beta\epsilon\eta} = S_{\delta} \cap S_{\alpha\beta\delta\epsilon\eta}$ implies that

$$c_1 + d_1 = f_1, e_3 + d_3 = f_3, c_5 + d_5 = f_5 = 0, d_7 + e_7 = f_7 = 0.$$

The fact that the only singularities are S_{α} , S_{β} , S_{γ} , S_{δ} , $S_{\alpha\eta}$, $S_{\alpha\beta\gamma\epsilon}$, $S_{\alpha\beta\delta\epsilon\eta}$, $S_{\alpha\beta\epsilon}$, $S_{\alpha\beta\epsilon}$, $S_{\alpha\beta\eta}$, and $S_{\alpha\beta\epsilon\eta}$ imply that

$$f_1 = f_2 = f_3 = f_4 = \frac{1}{2}$$

and the other constants must take the following values:

where $a, b, c, d \in \{0, \frac{1}{2}\}$ and $(a, b) \neq (0, 0)$ and $(a, c) \neq (0, 0)$.

In the second case, we can deduce from the nature of singularities that

$$d_1 = f_1$$
, $d_3 = f_3$, $d_5 = f_5 = c_5$, $d_7 = f_7 = e_7$, $f_6 = c_6$, $f_8 = e_8$,
 $c_1 + d_1 = f_4 + e_4 = e_3 + d_3 = c_2 + f_2 = \frac{1}{2}$

and the other constants must take the following values:

where $(a, b) \neq (0, 0), (a, c) \neq (0, 0), \text{ and } (b, d) \neq (0, 0).$

In the last case, we deduce that

$$c_1 = f_2, \quad c_2 = f_2, \quad c_5 = f_5, \quad c_6 = f_6, \quad d_1 = d_5 = 0, \quad d_3 = d_7 = \frac{1}{2},$$

 $d_3 + e_3 = f_3, \quad d_7 + e_7 = f_7, \quad f_4 + e_4 = \frac{1}{2}, \quad f_8 + e_8 = \frac{1}{2},$

and the other constants must take the following values:

where $(a, b) \neq (0, 0), (c, d) \neq (0, 0), (a, c) \neq (0, 0)$ and $(b, d) \neq (0, 0)$.

Example 1. Let $\alpha, \beta, \gamma, \delta, \epsilon$, and η be defined as above, and let

$$(c_1, c_2, c_5, c_6) = (\frac{1}{2}, 0, 0, \frac{1}{2}), \quad (d_1, d_3, d_5, d_7) = (0, \frac{1}{2}, 0, \frac{1}{2}),$$

$$(e_3, e_4, e_7, e_8) = (0, \frac{1}{2}, \frac{1}{2}, 0), \quad (f_1, f_2, f_3, f_4) = (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}),$$

$$(f_5, f_6, f_7, f_8) = (0, 0, 0, 0).$$

We have

- (i) 2 singularities of type (ii): S_{α} and $S_{\alpha\eta}$ each contributing 1.
- (ii) 64 singularities of type (iii): $S_{\alpha\beta}$, $S_{\alpha\beta\epsilon}$, $S_{\alpha\beta\eta}$, $S_{\alpha\beta\epsilon\eta}$ each contributing 16.
- (iii) 12 singularities of type $(v):S_{\gamma}, S_{\delta}, S_{\alpha\beta\delta\epsilon\eta}$, and $S_{\alpha\beta\gamma\epsilon}$ each contributing 2, and S_{β} contributing 4.

Computing the Betti numbers of the resolution of T^8/G , we get

$$b^0 = 1$$
, $b^1 = 0$, $b^2 = 2 + k$, $b^3 = 0$, $b_+^4 = 101 - k$, $b_-^4 = 37 - k$, where $0 \le k \le 12$.

In the 13 examples we find here, $\sigma = 64, \chi = 144$. Further,

$$\hat{A} = \frac{1}{24}(-1 + b^1 - b^2 + b_+^4 - 2b_-^4) = 1,$$

so the resolved manifold has holonomy exactly Spin(7).

Example 2. Let

$$(c_1, c_2, c_5, c_6) = (\frac{1}{2}, 0, \frac{1}{2}, 0), \quad (d_1, d_3, d_5, d_7) = (0, \frac{1}{2}, \frac{1}{2}, 0),$$

$$(e_3, e_4, e_7, e_8) = (0, \frac{1}{2}, 0, \frac{1}{2}), \quad (f_1, f_2, f_3, f_4) = (0, \frac{1}{2}, \frac{1}{2}, 0),$$

$$(f_5, f_6, f_7, f_8) = (\frac{1}{2}, 0, 0, \frac{1}{2}).$$

We have

- (i) 1 singularity of type (ii) coming from S_{α} .
- (ii) 64 singularities of type (iii): $S_{\alpha\beta}$, $S_{\alpha\beta\epsilon}$, $S_{\alpha\beta\eta}$, $S_{\alpha\beta\epsilon\eta}$ each contributing 16
- (iii) 14 singularities of type $(v):S_{\gamma}, S_{\delta}, S_{\alpha\beta\delta\eta}, S_{\alpha\epsilon\eta}$, and $S_{\alpha\beta\gamma\epsilon}$ each contributing 2, and S_{β} contributing 4.

We compute that

$$b^0=1, \quad b^1=0, \quad b^2=1+j, \quad b^3=0, \quad b_+^4=102-j, \quad b_-^4=38-j,$$
 where $0 < j < 14.$

Again $\sigma = 64, \chi = 144$, and $\hat{A} = 1$ in these 15 new examples.

As $\chi(M) = \frac{1}{8}(4p_2 - p_1^2)$, $\sigma(M) = \frac{1}{45}(7p_2 - p_1^2)$. In the case of holonomy Spin(7), $\hat{A}(M) = 1 = \frac{1}{45 \cdot 2^7}(7p_1^2 - 4p_2) = \frac{1}{24}(-1 + b^3 + (2b^2 + b^4) - 3(b^2 + b^4))$. According to [2], the data that can be deduced physically are b^3 and $2b^2 + b^4$ up to exchange, thus also $b^2 + b_-^4$.

Here is a table of all the important topological data associated to all the compact manifolds of holonomy Spin(7) found in [1] and the examples above.

$2b^2 + b^4$	174	158	150	142
b^3	16	8	4	0
$b^2 + b^4$	55	47	43	39
χ	144	144	144	144
σ	64	64	64	64

If one expands the possibilities of singularities beyond the five types specified by [1], one may obtain more examples of holonomy Spin(7) manifolds.

References

- [1] D.D. Joyce, Compact Riemannian 8-manifolds with holonomy Spin(7), Invent. Math. 123 (1996), 507–552.
- [2] S.L. Shatashvili and C. Vafa, Superstrings and Manifolds of Exceptional Holonomy, Selecta Math. (N.S.) 1 (1995), 347–381.

HARVARD UNIVERSITY, DEPARTMENT OF MATHEMATICS, CAMBRIDGE, MA 02138 E-mail address: ctaylor@math.harvard.edu