HYPERELLIPTIC JACOBIANS WITHOUT COMPLEX MULTIPLICATION

Yuri G. Zarhin

1. Introduction

The aim of this note is to prove that in characteristic 0 the jacobian $J(C) = J(C_f)$ of a hyperelliptic curve

$$C = C_f : y^2 = f(x),$$

has only trivial endomorphisms over an algebraic closure of the ground field K if the Galois group Gal(f) of the polynomial $f \in K[x]$ is "very big".

More precisely, if f is a polynomial of degree $n \geq 5$ and $\operatorname{Gal}(f)$ is either the symmetric group \mathbf{S}_n or the alternating group \mathbf{A}_n then $\operatorname{End}(J(C)) = \mathbb{Z}$. Notice that it easily follows that the ring of K-endomorphisms of J(C) coincides with \mathbb{Z} and the real problem is how to prove that every endomorphism of J(C) is defined over K.

There are some results of this type in the literature. Previously Mori [8], [9] has constructed explicit examples (in all characteristics) of hyperelliptic jacobians without nontrivial endomorphisms. In particular, he provided examples over \mathbb{Q} with semistable C_f and big (doubly transitive) $\operatorname{Gal}(f)$ [9]. The semistability of C_f implies the semistability of $J(C_f)$ and, thanks to a theorem of Ribet [14], all endomorphisms of $J(C_f)$ are defined over \mathbb{Q} . (Applying to C_f/\mathbb{Q} the Shafarevich conjecture [17] (proven by Fontaine [3] and independently by Abrashkin [1], [2]) and using Lemma 4.4.3 and arguments on p. 42 of [16], one may prove that the Galois group $\operatorname{Gal}(f)$ of the polynomial f involved is \mathbf{S}_{2g+1} where $\operatorname{deg}(f) = 2g + 1$.)

André ([7], pp. 294-295) observed that results of Katz ([5], [6]) give rise to examples of hyperelliptic jacobians $J(C_f)$ over the field of rational function $\mathbb{C}(z)$ with $\mathrm{End}(J(C_f)) = \mathbb{Z}$. Namely, one may take f(x) = h(x) - z where $h(x) \in \mathbb{C}[x]$ is a Morse function. In particular, this explains Mori's example [8]

$$y^2 = x^{2g+1} - x + z,$$

over $\mathbb{C}(z)$.

Notice that if h is a Morse polynomial of degree n then the Galois group of h(x) - z over $\mathbb{C}(z)$ is the symmetric group \mathbf{S}_n ([16], Th. 4.4.5, p. 41).

Received September 17, 1999.

Masser [7] constructed a completely different class of hyperelliptic jacobians $J(C_f)$ over $\mathbb{C}(z)$ with $\operatorname{End}(J(C_f)) = \mathbb{Z}$. In his examples f splits into a product of linear factors over $\mathbb{C}(z)$ as follows.

$$f(x) = x(x - z^{\alpha(1)})(x - z^{\beta(1)}) \cdots (x - z^{\alpha(g)})(x - z^{\beta(g)}),$$

where

$$0 \le \alpha(1) < \beta(1) < \cdots < \alpha(q) < \beta(q),$$

and the differences $\alpha(1) - \beta(1), \dots, \alpha(g) - \beta(g)$ are distinct. Masser's proof is purely analytic in character.

This paper was written during my stay in Glasgow. I would like to thank the Department of Mathematics of University of Glasgow for its hospitality.

2. Main result

Throughout this paper we assume that K is a field of characteristic different from 2. We fix its algebraic closure K_a and write Gal(K) for the absolute Galois group $Aut(K_a/K)$.

Theorem 2.1. Let K be a field with $\operatorname{char}(K) \neq 2$, K_a its algebraic closure, $f(x) \in K[x]$ an irreducible separable polynomial of degree $n \geq 5$ such that the Galois group of f is either \mathbf{S}_n or \mathbf{A}_n . Let C_f be the hyperelliptic curve $y^2 = f(x)$. Let $J(C_f)$ be its jacobian, $\operatorname{End}(J(C_f))$ the ring of K_a -endomorphisms of $J(C_f)$. Then either $\operatorname{End}(J(C_f)) = \mathbb{Z}$ or $\operatorname{char}(K) > 0$ and $J(C_f)$ is a supersingular abelian variety.

Examples 2.2.

- 1. The polynomial $x^n x 1$ has Galois group \mathbf{S}_n over \mathbb{Q} ([16], p. 42). Hence the jacobian of the curve $y^2 = x^n x 1$ has no nontrivial endomorphisms over \mathbb{Q} and therefore over \mathbb{C} for all $n \geq 5$.
- 2. The Galois group of the "truncated exponential"

$$\exp_n(x) := 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \dots + \frac{x^n}{n!} \in \mathbb{Q}[x],$$

is either \mathbf{S}_n or \mathbf{A}_n [15]. Hence the jacobian of the curve $y^2 = \exp_n(x)$ has no nontrivial endomorphisms over $\bar{\mathbb{Q}}$ and therefore over \mathbb{C} for all $n \geq 5$.

Remark 2.3. Let $f(x) \in K[x]$ be an irreducible separable polynomial of even degree $n = 2m \ge 5$ such that the Galois group of f is either \mathbf{S}_n or \mathbf{A}_n . Then $n \ge 6$. Let $\alpha \in K_a$ be a root of f and $K_1 = K(\alpha)$ be the corresponding subfield of K_a . We have

$$f(x) = (x - \alpha)f_1(x),$$

with $f_1(x) \in K_1[x]$. Clearly, $f_1(x)$ is an irreducible separable polynomial over K_1 of odd degree $2m-1=n-1\geq 5$, whose Galois group is either \mathbf{S}_{n-1} or \mathbf{A}_{n-1} respectively. It is also clear that the polynomials

$$h(x) = f_1(x + \alpha), \quad h_1(x) = x^{n-1}h(1/x) \in K_1[x],$$

are irreducible separable of odd degree $2m-1=n-1\geq 5$ with the same Galois group equal \mathbf{S}_{n-1} or \mathbf{A}_{n-1} respectively.

The standard substitution

$$x_1 = 1/(x - \alpha), \quad y_1 = y/(x - \alpha)^m,$$

establishes a birational isomorphism between C_f and a hyperelliptic curve

$$C_{h_1}: y_1^2 = h_1(x_1).$$

It follows readily that in order to prove Theorem 2.1 it suffices to do the case of odd n.

We deduce Theorem 2.1 from the following auxiliary statement.

Theorem 2.4. Suppose n = 2g + 1 is an odd integer which is greater than or equal to 5. Suppose $f(x) \in K[x]$ is a separable polynomial of degree n, whose Galois group is either \mathbf{A}_n or \mathbf{S}_n . Suppose C is a hyperelliptic curve $y^2 = f(x)$ of genus g over K. Suppose J(C) is the jacobian of C and $J(C)_2$ is the group of its points of order 2, viewed as a 2g-dimensional \mathbf{F}_2 -vector space provided with the natural action of Gal(K).

Let R be a subalgebra of $\operatorname{End}_{\mathbf{F}_2}(J(C)_2)$ which contains the identity operator Id. Assume that for each $u \in R, \sigma \in \operatorname{Gal}(K)$ the subalgebra R contains

$$^{\sigma}u: x \mapsto \sigma u \sigma^{-1}(x), \quad x \in J(C)_2.$$

Either $R = \mathbf{F}_2 \cdot \text{Id}$ or $R = \text{End}_{\mathbf{F}_2}(J(C)_2)$.

We prove Theorem 2.4 in Section 4. In the next section we deduce Theorem 2.1 from Theorem 2.4.

3. Proof of main result

So, we assume that $f(x) \in K[x]$ satisfies the conditions of Theorem 2.1. In light of Remark 2.3, we may assume that n = 2g + 1 is odd. Therefore J(C) is a g-dimensional abelian variety defined over K.

Since J(C) is defined over K, one may associate with every $u \in \operatorname{End}(J(C))$ and $\sigma \in \operatorname{Gal}(K)$ an endomorphism $\sigma u \in \operatorname{End}(J(C))$ such that

$$^{\sigma}u(x) = \sigma u(\sigma^{-1}x) \quad \forall x \in J(C)(K_a).$$

Let us put

$$R := \operatorname{End}(J(C)) \otimes \mathbb{Z}/2\mathbb{Z} \subset \operatorname{End}_{\mathbf{F}_2}(J(C)_2).$$

Clearly, R satisfies all the conditions of Theorem 2.4. This implies that either $R = \mathbf{F}_2 \cdot \mathrm{Id}$, or $R = \mathrm{End}_{\mathbf{F}_2}(J(C)_2)$. If $\mathrm{End}(J(C)) \otimes \mathbb{Z}/2\mathbb{Z} = R = \mathbf{F}_2 \cdot \mathrm{Id}$, then the free abelian group $\mathrm{End}(J(C))$ has rank 1 and therefore coincides with \mathbb{Z} . If $\mathrm{End}(J(C)) \otimes \mathbb{Z}/2\mathbb{Z} = R = \mathrm{End}_{\mathbf{F}_2}(J(C)_2)$, then the free abelian group $\mathrm{End}(J(C))$ has rank $(2\dim(J(C)))^2 = (2g)^2$, and therefore the semisimple \mathbb{Q} -algebra $\mathrm{End}^0(J(C)) = \mathrm{End}(J(C)) \otimes \mathbb{Q}$ has dimension $(2g)^2$.

Now Theorem 2.1 becomes an immediate corollary of the following assertion.

Lemma 3.1. Let X be an abelian variety of dimension g over an algebraically closed field F. Assume that the semisimple \mathbb{Q} -algebra $\operatorname{End}^0(X) = \operatorname{End}(X) \otimes \mathbb{Q}$ has dimension $(2g)^2$. Then $\operatorname{char}(F) > 0$ and X is supersingular.

Proof. Let us fix a prime $\ell \neq \operatorname{char}(F)$ and consider the ℓ -adic Tate module $T_{\ell}(X)$ of X. Let $V_{\ell}(X) = T_{\ell}(X) \otimes_{\mathbb{Z}_{\ell}} \mathbb{Q}_{\ell}$ be the corresponding \mathbb{Q}_{ℓ} -vector space of dimension 2g. There is a canonical embedding

$$\operatorname{End}^0(X) \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell} \hookrightarrow \operatorname{End}_{\mathbb{Q}_{\ell}}(V_{\ell}(X)),$$

and dimension arguments imply that this embedding is an isomorphism. In particular, $\operatorname{End}^0(X) \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell}$ is isomorphic to the matrix algebra of size 2g over \mathbb{Q}_{ℓ} . Since the center of the matrix algebra over \mathbb{Q}_{ℓ} has dimension 1 over \mathbb{Q}_{ℓ} , the center of $\operatorname{End}^0(X)$ has dimension 1 over \mathbb{Q} and therefore coincides with \mathbb{Q} . This implies that $\operatorname{End}^0(X)$ is a central simple \mathbb{Q} -algebra of dimension $(2g)^2$. Hence, there exists a *simple* abelian variety Y over F and a positive integer r such that X is isogenous to Y^r over F. This implies that

$$g = \dim(X) = r\dim(Y),$$

 $\operatorname{End}^0(Y)$ is a division algebra over \mathbb{Q} and $\operatorname{End}^0(X)$ is isomorphic to the matrix algebra of size r over $\operatorname{End}^0(Y)$. In particular,

$$\dim_{\mathbb{Q}}(\operatorname{End}^{0}(X)) = r^{2}\dim_{\mathbb{Q}}(\operatorname{End}^{0}(Y)).$$

Since the center of $\operatorname{End}^0(X)$ coincides with \mathbb{Q} , the center of $\operatorname{End}^0(Y)$ also coincides with \mathbb{Q} . It follows from Albert's classification ([11], Sect. 21) that either $\operatorname{End}^0(Y) = \mathbb{Q}$ or $\operatorname{End}^0(Y)$ is a quaternion algebra over \mathbb{Q} .

If $\operatorname{End}^0(Y)=\mathbb{Q}$ then $\operatorname{End}^0(X)$ has dimension $r^2\leq (r\dim(Y))^2=g^2<(2g)^2$. This implies that $\operatorname{End}^0(Y)$ is a quaternion \mathbb{Q} -algebra and therefore

$$\dim_{\mathbb{Q}}(\operatorname{End}^0(X)) = r^2 \dim_{\mathbb{Q}}(\operatorname{End}^0(Y)) = 4r^2 = (2r)^2.$$

On the other hand, $\dim_{\mathbb{Q}}(\operatorname{End}^0(X)) = (2g)^2$. This implies that 2r = 2g, i.e., $r = g = \dim(X)$ and Y is an elliptic curve. Since $\operatorname{End}^0(Y)$ is the quaternion algebra, Y is a supersingular elliptic curve and $\operatorname{char}(F) > 0$. Since X is isogenous to Y^r , it is a supersingular abelian variety.

4. Points of order 2 on hyperelliptic jacobians

Let C be a hyperelliptic curve over K defined by an equation $y^2 = f(x)$ where $f(x) \in K[x]$ is a polynomial of odd degree n without multiple roots. The rational function $x \in K(C)$ defines a canonical double cover $\pi : C \to \mathbf{P}^1$. Let $B' \subset C(K_a)$ be the set of ramification points of π (Weierstraß points). Clearly, the restriction of π to B' is an injective map $\pi : B' \hookrightarrow \mathbf{P}^1(K_a)$, whose image is the disjoint union of ∞ and the set R_f of roots of f. By abuse of notation, we also denote by ∞ the ramification point lying above ∞ . Clearly, $\infty \in C(K)$. We denote by B the complement of ∞ in B'. Clearly,

$$B = \{(\alpha, 0) \mid f(\alpha) = 0\} \subset C(K_a),$$

and π defines a bijection between B and R_f which commutes with the action of Gal(K).

We write Q_B for the \mathbf{F}_2 -vector space of subsets of B of even cardinality with symmetric difference as a sum. There is a natural structure of Gal(K)-module on Q_B .

Here is an explicit description of the group $J(C)_2$ of points of order 2 on the jacobian J(C). Namely, let $T \subset B'$ be a subset of even cardinality. Then ([12], Ch. IIIa, Sect. 2, Lemma 2.4; [10], pp. 190–191; see also [9]) the divisor $e_T = \sum_{P \in T} (P) - \#(T)(\infty)$ on C has degree 0 and $2e_T$ is principal. If T_1, T_2 are two subsets of even cardinality in B' then the divisors e_{T_1} and e_{T_2} are linearly equivalent if and only if either $T_1 = T_2$ or $T_2 = B' \setminus T_1$. Also, if $T = T_1 \triangle T_2$ then the divisor e_T is linearly equivalent to $e_{T_1} + e_{T_2}$. Hereafter we use the symbol \triangle for the symmetric difference of two sets. Counting arguments imply easily that each point of $J(C)_2$ is the class of e_T for some T. We know that such a choice is not unique. However, if we demand that T does not contain ∞ then such a choice always exists and unique. This observation leads to a canonical group isomorphism

$$Q_B \cong J(C)_2, \quad T \mapsto \operatorname{cl}(e_T).$$

Here cl stands for the linear equivalence class of a divisor. Clearly, this isomorphism commutes with natural actions of Gal(K). In other words, the Gal(K)-modules Q_B and $J(C)_2$ are canonically isomorphic.

One may describe explicitly the Galois action on Q_B . In order to do that let us consider the splitting field $L \subset K_a$ of f and let $G = \operatorname{Gal}(L/K)$ be its Galois group. Clearly, G may be viewed as a group of permutations of R_f and therefore (via π) as a subgroup in the group $\operatorname{Perm}(B)$ of permutations of B. This induces obvious embeddings

$$G \subset \operatorname{Perm}(B) \subset \operatorname{Aut}(Q_B),$$

and $\operatorname{Gal}(K)$ acts on Q_B via the composition of the canonical surjection $\operatorname{Gal}(K) \to \operatorname{Gal}(L/K) = G$ and the embedding

$$G \subset \operatorname{Perm}(B) \subset \operatorname{Aut}(Q_B)$$
.

Now one may easily check that Theorem 2.4 follows readily from the following purely group-theoretic statement.

Theorem 4.1. Let B be a finite set of odd cardinality $n \geq 5$, Q_B the \mathbf{F}_2 -vector space of its subsets of even cardinality with symmetric difference as a sum. Let $S = \operatorname{Perm}(B)$ be the group of permutation of B viewed as a subgroup of $\operatorname{Aut}(Q_B)$. Let G be a subgroup of S which is isomorphic either to \mathbf{S}_n or to \mathbf{A}_n .

Let R be a subalgebra of $\operatorname{End}_{\mathbf{F}_2}(Q_B)$ which contains the identity operator Id. Assume that

$$uRu^{-1} \subset R \quad \forall u \in G \subset S \subset \operatorname{Aut}(Q_B).$$

Either
$$R = \mathbf{F}_2 \cdot \text{Id}$$
 or $R = \text{End}_{\mathbf{F}_2}(Q_B)$.

We prove Theorem 4.1 in the next Section.

5. Representation theory

We keep all the notations and assumptions of Theorem 4.1. Clearly, $S \cong \mathbf{S}_n$. We write A for the only subgroup in S of index 2. Clearly, A is normal and isomorphic to the alternating group \mathbf{A}_n . It is well-known that the group A is simple of order n!/2. Cardinality arguments imply easily that either G = S or G = A.

We have

$$A \subset S \subset \operatorname{Aut}(Q_B), \quad \dim_{\mathbf{F}_2}(Q_B) = n - 1.$$

This provides Q_B with a natural structure of S-module defined as follows. Each element s of S sends a subset $T \in Q_B$ into $s(T) = \{s(b) \mid b \in T\}$.

Let us consider the *n*-dimensional \mathbf{F}_2 -vector space \mathbf{F}_2^B of all maps $\varphi: B \to \mathbf{F}_2$. The space \mathbf{F}_2^B is provided with a natural action of S defined as follows. Each $s \in S$ sends a map $\varphi: B \to \mathbf{F}_2$ into $s\varphi: b \mapsto \varphi(s^{-1}(b))$.

It is well-known that one may view \mathbf{F}_2^B as the \mathbf{F}_2 -vector space of all subsets of B with symmetric difference as a sum. Namely, a subset T corresponds to its characteristic function $\chi_T: B \to \{0,1\} = \mathbf{F}_2$ and a function $\varphi: B \to \mathbf{F}_2$ corresponds to its support supp $(\varphi) = \{x \in B \mid \varphi(x) = 1\}$. Under this identification each $s \in S$ sends T into $s(T) = \{s(b) \mid b \in T\}$.

Clearly, Q_B is a hyperplane in \mathbf{F}_2^B and the inclusion map $Q_B \subset \mathbf{F}_2^B$ is a homomorphism of the S-modules. In particular, Q_B is an S-stable hyperplane in \mathbf{F}_2^B .

Since n = #(B) is odd, the set B does not belong to Q_B . Clearly, $B \in \mathbf{F}_2^B$ is S-invariant. Let L be the one-dimensional subspace of \mathbf{F}_2^B generated by B. Clearly, S acts trivially on L and there is an S-invariant splitting

$$\mathbf{F}_2^B = Q_B \oplus L,$$

which is also H-invariant for each subgroup $H \subset S$. It is also clear that $\operatorname{End}_H(L) = \operatorname{End}_{\mathbf{F}_2}(L) = \mathbf{F}_2$. This implies that $\dim_{\mathbf{F}_2}(\operatorname{End}_H(L)) = 1$. Obviously, $\dim_{\mathbf{F}_2}(\operatorname{End}_H(Q_B)) \geq 1$.

Lemma 5.1. Suppose $H \subset S = \text{Perm}(B)$ is a doubly transitive permutation group. Then $\text{End}_H(Q_B) = \mathbf{F}_2$. In particular, if the H-module Q_B is semisimple then it is absolutely simple.

Proof. In order to prove that $\operatorname{End}_H(Q_B) = \mathbf{F}_2$, it suffices to check that $\dim_{\mathbf{F}_2}(\operatorname{End}_H(Q_B)) \leq 1$.

The *H*-invariant splitting $\mathbf{F}_2^B = Q_B \oplus L$ implies that

$$\dim_{\mathbf{F}_2}(\operatorname{End}_H(\mathbf{F}_2^B)) \ge \dim_{\mathbf{F}_2}(\operatorname{End}_H(Q_B)) + \dim_{\mathbf{F}_2}(\operatorname{End}_H(L))$$
$$= \dim_{\mathbf{F}_2}(\operatorname{End}_H(Q_B)) + 1.$$

Since H acts doubly transitively on B, we have $\dim_{\mathbf{F}_2}(\operatorname{End}_H(\mathbf{F}_2^B)) = 2$ ([13], Lemma 7.1 on p. 52). This implies that $1 \ge \dim_{\mathbf{F}_2}(\operatorname{End}_H(Q_B))$ and therefore $\operatorname{End}_H(Q_B) = \mathbf{F}_2$.

Now assume that the H-module Q_B is semisimple. Since $\mathbf{F}_2 = \operatorname{End}_H(Q_B)$ is a field, Q_B is simple. Applying Th. 9.2 on p. 145 of [4], we conclude that the H-module Q_B is absolutely simple.

Lemma 5.2. The A-module Q_B is absolutely simple.

Proof. Since $n \geq 5$, the group $A = \mathbf{A}_n$ is doubly transitive. Thanks to Lemma 5.1, it suffices to check that Q_B is simple. Let U be a non-zero A-stable subspace in Q_B . Let $T \in U$ be a non-empty subset of B with smallest possible cardinality. Since n is odd, $T \neq B$. If T consists of 2 elements then we are done, because A acts doubly transitively on B and each subset in B of even cardinality could be presented as a symmetric difference (disjoint union) of 2-element sets. So, assume that T consists of at least 4 elements. Pick elements $t \in T$ and $b \in B \setminus T$. Then there is an even permutation $s \in A$ such that $s(T) = T \setminus \{t\} \cup \{b\}$. Clearly, the symmetric difference $T \triangle s(T) \in U$ consists of two elements which contradicts the choice of T. This proves the simplicity of Q_B .

Since G always contains A, Theorem 4.1 is an immediate corollary of the following statement.

Theorem 5.3. Let R be a subalgebra of $\operatorname{End}_{\mathbf{F}_2}(Q_B)$ which contains the identity operator Id . Assume that

$$uRu^{-1} \subset R \quad \forall u \in A \subset \operatorname{Aut}(Q_B).$$

Either $R = \mathbf{F}_2 \cdot \text{Id}$ or $R = \text{End}_{\mathbf{F}_2}(Q_B)$.

Recall (Lemma 5.2) that the A-module Q_B is absolutely simple. Also, A is not isomorphic to a subgroup of \mathbf{S}_{n-1} , because $\#(A) = \frac{n!}{2} > (n-1)! = \#(\mathbf{S}_{n-1})$. Now Theorem 5.3 becomes an immediate corollary of the following statement.

Theorem 5.4. Let $H \subset \operatorname{Aut}(Q_B)$ be a non-abelian simple group. Suppose that the H-module Q_B is absolutely simple and H is not isomorphic to a subgroup of \mathbf{S}_{n-1} . Assume, in addition, that either $\#(H) > 2^{n-1}$ or n = 2p+1 where p is a prime.

Let R be a subalgebra of $\operatorname{End}_{\mathbf{F}_2}(Q_B)$ which contains the identity operator Id. Assume that

$$uRu^{-1} \subset R \quad \forall u \in H \subset \operatorname{Aut}(Q_B).$$

Either $R = \mathbf{F}_2 \cdot \text{Id}$ or $R = \text{End}_{\mathbf{F}_2}(Q_B)$.

Proof of Theorem 5.4. Clearly, Q_B is a faithful R-module and

$$uRu^{-1} = R \quad \forall u \in H \subset \operatorname{Aut}(Q_B).$$

Step 1. Q_B is a semisimple R-module. Indeed, let $U \subset Q_B$ be a simple R-submodule. Then $U' = \sum_{s \in H} sU$ is a non-zero H-stable subspace in Q_B and therefore must coincide with Q_B . On the other hand, each sU is also a R-submodule in Q_B , because $s^{-1}Rs = R$. In addition, if $W \subset sU$ is an R-submodule then $s^{-1}W$ is an R-submodule in U, because

$$Rs^{-1}W = s^{-1}sRs^{-1}W = s^{-1}RW = s^{-1}W.$$

Since U is simple, $s^{-1}W = \{0\}$ or U. This implies that sU is also simple. Hence $Q_B = U'$ is a sum of simple R-modules and therefore is a semisimple R-module.

Step 2. The *R*-module Q_B is *isotypic*. Indeed, let us split the semisimple *R*-module Q_B into the direct sum

$$Q_B = V_1 \oplus \cdots \oplus V_r$$
,

of its isotypic components. Dimension arguments imply that $r \leq \dim(Q_B) = n-1$. It follows easily from the arguments of the previous step that for each isotypic component V_i its image sV_i is an isotypic R-submodule for each $s \in H$ and therefore is contained in some V_j . Similarly, $s^{-1}V_j$ is an isotypic submodule obviously containing V_i . Since V_i is the isotypic component, $s^{-1}V_j = V_i$ and therefore $sV_i = V_j$. This means that s permutes the V_i ; since Q_B is H-simple, H permutes them transitively. This gives rise to the homomorphism $H \to \mathbf{S}_r$ which must be either injective or trivial, since H is simple. If the homomorphism is injective then H is isomorphic to a subgroup of \mathbf{S}_r and therefore to a subgroup of \mathbf{S}_{n-1} , because $r \leq n-1$. This gives us a contradiction and therefore the homomorphism $H \to \mathbf{S}_r$ is trivial.

This means that $sV_i = V_i$ for all $s \in H$ and $Q_B = V_i$ is isotypic.

Step 3. Since Q_B is isotypic, there exist a simple R-module W and a positive integer d such that $Q_B \cong W^d$. We have

$$d \cdot \dim(W) = \dim(Q_B) = n - 1.$$

Clearly, $\operatorname{End}_R(Q_B)$ is isomorphic to the matrix algebra $\operatorname{Mat}_d(\operatorname{End}_R(W))$ of size d over $\operatorname{End}_R(W)$.

Let us put

$$k = \operatorname{End}_R(W)$$
.

Since W is simple, k is a finite division algebra of characteristic 2. Therefore k is a finite field of characteristic 2. We have $\operatorname{End}_R(Q_B) \cong \operatorname{Mat}_d(k)$. Clearly, $\operatorname{End}_R(Q_B) \subset \operatorname{End}_{\mathbf{F}_2}(Q_B)$ is stable under the adjoint action of H. This induces a homomorphism

$$\alpha: H \to \operatorname{Aut}(\operatorname{End}_R(Q_B)) = \operatorname{Aut}(\operatorname{Mat}_d(k)).$$

Since k is the center of $\operatorname{Mat}_d(k)$, it is stable under the action of H, i.e., we get a homomorphism $H \to \operatorname{Aut}(k)$, which must be trivial, since H is a simple group and $\operatorname{Aut}(k) = \operatorname{Gal}(k/\mathbf{F}_2)$ is abelian. This implies that the center k of $\operatorname{End}_R(Q_B)$ commutes with H. Since $\operatorname{End}_H(Q_B) = \mathbf{F}_2$, we have $k = \mathbf{F}_2$. This implies that $\operatorname{End}_R(Q_B) \cong \operatorname{Mat}_d(\mathbf{F}_2)$ and

$$\alpha: H \to \operatorname{Aut}(\operatorname{Mat}_d(\mathbf{F}_2)) = \operatorname{GL}(d, \mathbf{F}_2) / \mathbf{F}_2^* = \operatorname{GL}(d, \mathbf{F}_2),$$

is trivial if and only if $\operatorname{End}_R(Q_B) \subset \operatorname{End}_H(Q_B) = \mathbf{F}_2 \cdot \operatorname{Id}$. Since $\operatorname{End}_R(Q_B) \cong \operatorname{Mat}_d(\mathbf{F}_2)$, α is trivial if and only if d=1, i.e., Q_B is an absolutely simple R-module. It follows from the Jacobson density theorem that $R \cong \operatorname{Mat}_m(\mathbf{F}_2)$ with dm=n-1. This implies that α is trivial if and only if $R \cong \operatorname{Mat}_{n-1}(\mathbf{F}_2)$, i.e., $R = \operatorname{End}_{\mathbf{F}_2}(Q_B)$.

The adjoint action of H on R gives rise to a homomorphism

$$\beta: H \to \operatorname{Aut}(\operatorname{Mat}_m(\mathbf{F}_2)) = \operatorname{GL}(m, \mathbf{F}_2).$$

Clearly, β is trivial if and only if R commutes with H, i.e., $R = \mathbf{F}_2 \cdot \mathrm{Id}$.

Step 4. It follows from the previous step that we are done if either α or β is trivial. Clearly, we are done if either m=1 or d=1. So, further we assume that m>1, d>1. Notice also that $\mathrm{GL}(2,\mathbf{F}_2)\cong\mathbf{S}_3$ is solvable and therefore every homomorphism from the simple group H to $\mathrm{GL}(2,\mathbf{F}_2)$ is trivial. This implies that we are done if either m=2 or d=2. But when n=2p+1 with prime p we have 2p=n-1=md and one of the factors m and d must be equal to 2. This proves Theorem 5.4 in the case of n=2p+1.

Since md = n - 1, either $m \leq \sqrt{n - 1}$ or $d \leq \sqrt{n - 1}$. This implies that either $\#(\operatorname{GL}(m, \mathbf{F}_2)) < 2^{n-1}$ or $\#(\operatorname{GL}(d, \mathbf{F}_2)) < 2^{n-1}$ respectively. Taking into account the simplicity of H, we conclude that if $\#(H) > 2^{n-1}$ then either every homomorphism from H to $\operatorname{GL}(m, \mathbf{F}_2)$ is trivial or every homomorphism from H to $\operatorname{GL}(d, \mathbf{F}_2)$ is trivial. This proves Theorem 5.4 in the case when $\#(H) > 2^{n-1}$.

References

- [1] V.A. Abrashkin, Group schemes of period p over the ring of Witt vectors, Dokl. Akad. Nauk SSSR 283 (1985), 1289–1294; Soviet Math. Dokl. 32 (1985), 310–315.
- [2] ______, Honda systems of group schemes of period p, Izv. Akad. Nauk SSSR Ser. Mat. 51 (1987), 451–484; Math. USSR Izv. 30 (1988), 419–453.
- [3] J.-M. Fontaine, Il n'y a pas de variété abélienne sur Z, Invent. Math. 81 (1985), 515-538.
- [4] I.M. Isaacs, Character theory of finite groups, Pure and Applied Mathematics, No. 69, Academic Press, New York-San Francisco-London, 1976.
- [5] N. Katz, Monodromy of families of curves: applications of some results of Davenport-Lewis, Séminaire de Théorie des Nombres, Paris 1979-80 (ed. M.-J. Bertin), pp. 171-195, Progr. Math., 12, Birkhäuser, Boston-Basel-Stuttgart, 1981.
- [6] ______, Affine cohomological transforms, perversity, and monodromy, J. Amer. Math. Soc. 6 (1993), 149–222.
- [7] D. Masser, Specialization of some hyperelliptic jacobians, Number Theory in Progress (eds. K. Györy, H. Iwaniec, J. Urbanowicz), vol. I, pp. 293–307, de Gruyter, Berlin-New York, 1999.
- [8] S. Mori, The endomorphism rings of some abelian varieties. Japan. J. Math, 2 (1976), 109–130.
- [9] ______, The endomorphism rings of some abelian varieties. II, Japan. J. Math, 3 (1977), 105–109.
- [10] D. Mumford, Theta characteristics of an algebraic curve, Ann. Sci. École Norm. Sup. (4) 4 (1971), 181–192.
- [11] ______, Abelian varieties, Second edition, Oxford University Press, London, 1974.
- [12] ______, Tata Lectures on Theta. II, Progress in Mathematics, 43, Birkhäuser, Boston-Basel-Stuttgart, 1984.
- [13] D. Passman, Permutation groups, W.A. Benjamin, Inc., New York-Amsterdam, 1968.
- [14] K. Ribet, Endomorphisms of semi-stable abelian varieties over number fields. Ann. of Math. (2) 101 (1977), 555–562.
- [15] I. Schur, Gleichungen ohne Affect, Sitz. Preuss. Akad. Wiss. 1930, Physik-Math. Klasse 443–449 (= Ges. Abh. III, 191–197).
- [16] J.-P. Serre, Topics in Galois Theory, Jones and Bartlett Publishers, Boston-London, 1992.

[17] I.R. Shafarevich, Algebraic number fields, Proc. Internat. Congr. Math. (Stockholm, 1962), Inst. Mittag-Leffler, Djursholm, 1963, pp. 163–176, Amer. Math. Soc. Transl. (2) 31 (1963), 25–39.

Department of Mathematics, Pennsylvania State University, University Park, PA $16802\,$

Institute for Mathematical Problems in Biology, Russian Academy of Sciences, Pushchino, Moscow Region, 142292, RUSSIA

Department of Mathematics, University of Glasgow, 15 University Gardens, Glasgow G12 8QW, Scotland, UK

 $E\text{-}mail\ address{:}\ \mathtt{zarhin@math.psu.edu}$