STRINGY HODGE NUMBERS AND VIRASORO ALGEBRA

VICTOR V. BATYREV

ABSTRACT. In this paper we define for singular varieties X a rational number $c_{\rm st}^{1,n-1}(X)$ which is a stringy version of the product of Chern numbers c_1 and c_{n-1} We show that the number $c_{\rm st}^{1,n-1}(X)$ can be expressed via stringy Hodge numbers of singular X in the same way as c_1c_{n-1} expresses via usual Hodge numbers for smooth manifolds. Our result provides some evidences for the existence of quantum cohomology theory of singular varieties X based on representation of the Virasoro algebra whose central charge is the rational number $e_{\rm st}(X)$ which equals the stringy Euler number of X.

1. Introduction

Let X be an arbitrary smooth n-dimensional projective variety. It was discovered by Libgober and Wood that the product of the Chern classes $c_1(X)c_{n-1}(X)$ depends only on the Hodge numbers of X [11]. This result has been used by Eguchi, Jinzenji and Xiong in their approach to the quantum cohomology of X via a representation of the Virasoro algebra with the central charge $c_n(X)$ [8, 9].

We recall that the E-polynomial of X is defined as

$$E(X;u,v) := \sum_{p,q} (-1)^{p+q} h^{p,q}(X) u^p v^q,$$

where $h^{p,q}(X) = \dim H^q(X, \Omega_X^p)$ are Hodge numbers of X. Using the Hirzebruch-Riemann-Roch theorem, Libgober and Wood [11] have proved the following equality (see also results of Borisov [6] and Salamon [12]):

Theorem 1.1.

$$\frac{d^2}{du^2}E_{\rm st}(X;u,1)|_{u=1} = \frac{3n^2 - 5n}{12}c_n(X) + \frac{c_1(X)c_{n-1}(X)}{6}.$$

By Poincaré duality for X, one immediately obtains the following equivalent reformulation of the above equality:

Theorem 1.2. Let X be an arbitrary smooth n-dimensional projective variety. Then $c_1(X)c_{n-1}(X)$ can be expressed via the Hodge numbers of X using the following equality

$$\sum_{p,q} (-1)^{p+q} h^{p,q}(X) \left(p - \frac{n}{2}\right)^2 = \frac{n}{12} c_n(X) + \frac{1}{6} c_1(X) c_{n-1}(X),$$

Received December 19, 1999.

where

$$c_n(X) = \sum_{p,q} (-1)^{p+q} h^{p,q}(X)$$

is the Euler number of X.

In particular, one has:

Corollary 1.3. Let X be an arbitrary smooth n-dimensional projective variety with $c_1(X) = 0$. Then the Hodge numbers of X satisfy the following equation

$$\sum_{p,q} (-1)^{p+q} h^{p,q}(X) \left(p - \frac{n}{2} \right)^2 = \frac{n}{12} \sum_{p,q} (-1)^{p+q} h^{p,q}(X).$$

Remark 1.4. We note that if X is a K3-surface, then the relation 1.3 is equivalent to the equality $c_2(X) = 24$. For smooth Calabi-Yau 4-folds X the equality 1.3 has been observed by Sethi, Vafa, and Witten [13]. It is equivalent to the equality

$$c_4(X) = 6(8 - h^{1,1}(X) + h^{2,1}(X) - h^{3,1}(X)),$$

if
$$h^{1,0}(X) = h^{2,0}(X) = h^{3,0}(X) = 0$$
.

There are a lot of examples of Calabi-Yau varieties X having at worst Gorenstein canonical singularities which are hypersurfaces and complete intersections in Gorenstein toric Fano varieties [1, 3]. It has been shown in [5] that for all these singular Calabi-Yau varieties X one can define so called *stringy Hodge numbers* $h_{\rm st}^{p,q}(X)$ [2]. Moreover, the stringy Hodge numbers of Calabi-Yau complete intersections in Gorenstein toric varieties agree with the topological mirror duality test [4]. It is natural to expect that one has the same kind of identity for stringy Hodge numbers of singular Calabi-Yau varieties as for usual Hodge numbers of smooth Calabi-Yau manifolds, i.e.,

(1)
$$\sum_{p,q} (-1)^{p+q} h_{\mathrm{st}}^{p,q}(X) \left(p - \frac{n}{2} \right)^2 = \frac{n}{12} \sum_{p,q} (-1)^{p+q} h_{\mathrm{st}}^{p,q}(X) = \frac{n}{12} e_{\mathrm{st}}(X).$$

This paper is to show that the formula (1) holds true. Moreover, one can define a rational number $c_{\text{st}}^{1,n-1}(X)$, a stringy version $c_1(X)c_{n-1}(X)$, such that the stringy analogue of the equation in 1.2

(2)
$$\sum_{p,q} (-1)^{p+q} h_{\text{st}}^{p,q}(X) \left(p - \frac{n}{2}\right)^2 = \frac{n}{12} e_{\text{st}}(X) + \frac{1}{6} c_{\text{st}}^{1,n-1}(X),$$

holds true provided the stringy Hodge numbers of X exist.

2. Stringy Hodge numbers

Recall our general approach to the notion of stringy Hodge numbers $h_{\text{st}}^{p,q}(X)$ for projective algebraic varieties X with canonical singularites (see [2]). Our main definition in [2] can be reformulated as follows:

Definition 2.1. Let X be an arbitrary n-dimensional projective variety with at worst log-terminal singularities, $\rho: Y \to X$ a resolution of singularities whose exceptional locus D is a divisor with normally crossing components D_1, \ldots, D_r . We set $I := \{1, \ldots, r\}$ and $D_J := \bigcap_{j \in J} D_j$ for all $J \subseteq I$, where $D_J = Y$ if $J = \emptyset$. Define the **stringy** E-function of X to be

$$E_{\rm st}(X; u, v) := \sum_{\emptyset \subseteq J \subseteq I} E(D_J; u, v) \prod_{j \in J} \left(\frac{uv - 1}{(uv)^{a_j + 1} - 1} - 1 \right),$$

where the rational numbers a_1, \ldots, a_r are determined by the equality

$$K_Y = \rho^* K_X + \sum_{i=1}^r a_i D_i.$$

Then the **stringy Euler number** of X is defined as

$$e_{\rm st}(X) := \lim_{u,v\to 1} E_{\rm st}(X;u,v) = \sum_{\emptyset\subseteq J\subseteq I} c_{n-|J|}(D_J) \prod_{j\in J} \left(\frac{-a_j}{a_j+1}\right),$$

where $c_{n-|J|}(D_J)$ is the Euler number of D_J (we set $c_{n-|J|}(D_J) = 0$ if D_J is empty).

Remark 2.2. It is important that the above definitions do not depend on the choice of a desingularization $\rho: Y \to X$ [2].

Definition 2.3. Let X be an arbitrary n-dimensional projective variety with at worst Gorenstein canonical singularities. We say that **stringy Hodge numbers** of X exist, if $E_{\rm st}(X; u, v)$ is a polynomial, i.e.,

$$E_{\rm st}(X; u, v) = \sum_{p,q} a_{p,q}(X) u^p v^q.$$

Under the assumption that $E_{\rm st}(X; u, v)$ is a polynomial, we define the **stringy** Hodge numbers $h_{\rm st}^{p,q}(X)$ to be $(-1)^{p+q}a_{p,q}(X)$.

Remark 2.4. In the above definitions, the condition that X has at worst log-terminal singularities means that $a_i > -1$ for all $i \in I$; the condition that X has at worst Gorenstein canonical singularities is equivalent for a_i to be nonnegative integers for all $i \in I$ (see [10]).

The following statement has been proved in [2]:

Theorem 2.5. Let X be an arbitrary n-dimensional projective variety with at worst Gorenstein canonical singularities. Assume that stringy Hodge numbers of X exist. Then they have the following properties:

(i)
$$h_{\rm st}^{0,0}(X) = h_{\rm st}^{n,n}(X) = 1;$$

$$\begin{array}{ll} \text{(ii)} & h_{\mathrm{st}}^{p,q}(X) = h_{\mathrm{st}}^{n-p,n-q}(X) \ \ and \ h_{\mathrm{st}}^{p,q}(X) = h_{\mathrm{st}}^{q,p}(X) \ \ \forall p,q; \\ \text{(iii)} & h_{\mathrm{st}}^{p,q}(X) = 0 \ \ \forall p,q > n. \end{array}$$

(iii)
$$h_{\text{et}}^{p,q}(X) = 0 \ \forall p, q > n$$
.

3. The number
$$c_{\rm st}^{1,n-1}(X)$$

Definition 3.1. Let X be an arbitrary n-dimensional projective variety X having at worst log-terminal singularities and $\rho: Y \to X$ is a desingularization with normally crossing irreducible components D_1, \ldots, D_r of the exceptional locus. We define the number

$$c_{\rm st}^{1,n-1}(X) := \sum_{\emptyset \subset I \subset I} \rho^* c_1(X) c_{n-|J|-1}(D_J) \prod_{i \in I} \left(\frac{-a_i}{a_i + 1} \right),$$

where $\rho^*c_1(X)c_{n-|J|-1}(D_J)$ is considered as the intersection number of the 1cycle $c_{n-|J|-1}(D_J) \in A_1(D_J)$ with the ρ -pullback of the class of the anticanonical \mathbb{Q} -divisor of X.

Remark 3.2. It is not clear a priori that the number $c_{st}^{1,n-1}(X)$ in the above the definition does not depend on the choice of a desingularization ρ . Later we shall show this independence.

The proof of the next obvious statement is left to the reader:

Proposition 3.3. For any smooth n-dimensional projective variety V, one has

$$\frac{d}{du}E(V;u,1)|_{u=1} = \frac{n}{2}c_n(V).$$

Proposition 3.4. For any n-dimensional projective variety X having at worst log-terminal singularities, one has

$$\frac{d}{du}E_{\rm st}(X;u,1)|_{u=1} = \frac{n}{2}e_{\rm st}(X).$$

Proof. By definition 2.1, we have

$$E_{\text{st}}(X; u, 1) = \sum_{\emptyset \subseteq J \subseteq I} E(D_J; u, 1) \prod_{j \in J} \left(\frac{u - 1}{u^{a_j + 1} - 1} - 1 \right).$$

Applying 3.3 to every smooth submanifold $D_I \subset Y$, we obtain

$$\frac{d}{du}E_{st}(X; u, 1)|_{u=1} = \sum_{\emptyset \subseteq J \subseteq I} \frac{(n - |J|)}{2} c_{n-|J|}(D_J) \prod_{j \in J} \left(\frac{-a_j}{a_j + 1}\right) + \\
+ \sum_{\emptyset \subseteq J \subseteq I} \frac{|J|}{2} c_{n-|J|}(D_J) \prod_{j \in J} \left(\frac{-a_j}{(a_j + 1)}\right) \\
= \frac{n}{2} \sum_{\emptyset \subseteq J \subseteq I} c_{n-|J|}(D_J) \prod_{j \in J} \left(\frac{-a_j}{a_j + 1}\right) = \frac{n}{2} e_{st}(X).$$

Proposition 3.5. Let V be a smooth projective algebraic variety of dimension n and $W \subset V$ a smooth irreducible divisor on V or empty divisor (the latter means that $\mathcal{O}_V(W) \cong \mathcal{O}_V$). Then

$$c_1(\mathcal{O}_V(W))c_{n-1}(V) = c_{n-1}(W) + c_1(\mathcal{O}_W(W))c_{n-2}(W),$$

where $c_{n-1}(W)$ is considered to be zero if $W = \emptyset$.

Proof. Consider the short exact sequence

$$0 \to T_W \to T_V|_W \to \mathcal{O}_W(W) \to 0$$
,

where T_W and T_V are tangent sheaves on W and V. It gives the following the relation between Chern polynomials

$$(1 + c_1(\mathcal{O}_W(W))t)(1 + c_1(W)t + c_2(W)t^2 + \dots + c_{n-1}(W)t^{n-1}) = 1 + c_1(T_V|_W)t + c_2(T_V|_W)t^2 + c_{n-1}(T_V|_W)t^{n-1}.$$

Comparing the coefficients by t^{n-1} and using $c_{n-1}(T_V|_W) = c_1(\mathcal{O}_V(W))c_{n-1}(V)$, we come to the required equality.

Corollary 3.6. Let Y be a smooth projective variety, D_1, \ldots, D_r smooth irreducible divisors with normal crossings, $I := \{1, \ldots, r\}$. Then for all $J \subseteq I$ and for all $j \in J$ one has

$$c_1(\mathcal{O}_{D_{J\setminus\{j\}}}(D_j))c_{n-|J|}(D_{J\setminus\{j\}})-c_{n-|J|}(D_J)=c_1(\mathcal{O}_{D_J}(D_j))c_{n-|J|-1}(D_J),$$

where D_J is the complete intersection $\bigcap_{j\in J} D_j$.

Proof. One sets in 3.5
$$V := D_{J \setminus \{j\}}$$
 and $W := D_J$.

Proposition 3.7. Let $\rho: Y \to X$ be a desingularization as in 3.1. Then

$$\sum_{\emptyset \subseteq J \subseteq I} c_1(D_J) c_{n-|J|-1}(D_J) \prod_{j \in J} \left(\frac{-a_j}{a_j + 1} \right) = c_{\text{st}}^{1,n-1}(X) + \sum_{\emptyset \subseteq J \subseteq I} \left(\sum_{j \in J} (a_j + 1) c_{n-|J|}(D_J) \right) \prod_{j \in J} \left(\frac{-a_j}{a_j + 1} \right).$$

Proof. Using the formula

$$c_1(Y) = \rho^* c_1(X) + \sum_{i \in I} -a_i c_1(\mathcal{O}_Y(D_i)),$$

and the adjunction formula for every complete intersection D_J $(J \subseteq I)$, we obtain

$$c_1(D_J) = \rho^* c_1(X)|_{D_J} + \sum_{j \in J} (-a_j - 1)c_1(\mathcal{O}_{D_J}(D_j)) + \sum_{j \in I \setminus J} (-a_j)c_1(\mathcal{O}_{D_J}(D_j)).$$

Therefore

(3)
$$\sum_{\emptyset \subseteq J \subseteq I} c_{1}(D_{J})c_{n-|J|-1}(D_{J}) \prod_{j \in J} \left(\frac{-a_{j}}{a_{j}+1}\right) = c_{\mathrm{st}}^{1,n-1}(X) +$$

$$\sum_{\emptyset \subseteq J \subseteq I} \left(\sum_{j \in J} (-a_{j}-1)c_{1}(\mathcal{O}_{D_{J}}(D_{j}))c_{n-|J|-1}(D_{J})\right) \prod_{j \in J} \left(\frac{-a_{j}}{a_{j}+1}\right) +$$

$$\sum_{\emptyset \subseteq J \subseteq I} \left(\sum_{j \in I \setminus J} (-a_{j})c_{1}(\mathcal{O}_{D_{J}}(D_{j}))c_{n-|J|-1}(D_{J})\right) \prod_{j \in J} \left(\frac{-a_{j}}{a_{j}+1}\right).$$

Using 3.6, we obtain

(4)
$$\sum_{j \in J} (-a_j - 1)c_1(\mathcal{O}_{D_J}(D_j))c_{n-|J|-1}(D_J) =$$

$$\sum_{j \in J} (-a_j - 1) \left(c_1(\mathcal{O}_{D_{J \setminus \{j\}}}(D_j))c_{n-|J|}(D_{J \setminus \{j\}}) - c_{n-|J|}(D_J) \right).$$

By substitution (4) to (3), we come to the required equality, because

$$\sum_{\emptyset \subseteq J \subseteq I} \left(\sum_{j \in J} (-a_j - 1) c_1(\mathcal{O}_{D_{J \setminus \{j\}}}(D_j)) c_{n-|J|}(D_{J \setminus \{j\}}) \right) \prod_{j \in J} \left(\frac{-a_j}{a_j + 1} \right) +$$

$$\sum_{\emptyset \subseteq J \subseteq I} \left(\sum_{j \in I \setminus J} (-a_j) c_1(\mathcal{O}_{D_J}(D_j)) c_{n-|J|-1}(D_J) \right) \prod_{j \in J} \left(\frac{-a_j}{a_j + 1} \right) = 0.$$

Theorem 3.8. Let X be an arbitrary n-dimensional projective variety with at worst log-terminal singularities. Then

$$\frac{d^2}{du^2}E_{\rm st}(X;u,1)|_{u=1} = \frac{3n^2 - 5n}{12}e_{\rm st}(X) + \frac{1}{6}c_{\rm st}^{1,n}(X).$$

Proof. Using the equalities

$$\frac{d}{du} \left(\frac{u-1}{u^{a+1}-1} - 1 \right)_{u=1} = \frac{-a}{2(a+1)}, \quad \frac{d^2}{du^2} \left(\frac{u-1}{u^{a+1}-1} - 1 \right)_{u=1} = \frac{a(a+2)}{6(a+1)},$$

together with the identities in 1.1 and 3.3 for every submanifold $D_J \subset Y$, we obtain

$$\frac{d^2}{du^2} E_{\text{st}}(X; u, 1)|_{u=1} = \sum_{\emptyset \subseteq J \subseteq I} \frac{c_1(D_J)c_{n-|J|-1}(D_J)}{6} \prod_{j \in J} \left(\frac{-a_j}{a_j + 1}\right) + \\ c_{n-|J|}(D_J) \frac{3(n - |J|)^2 - 5(n - |J|)}{12} \prod_{j \in J} \left(\frac{-a_j}{a_j + 1}\right) + \\ \sum_{\emptyset \subseteq J \subseteq I} \frac{(n - |J|)|J|c_{n-|J|}(D_J)}{2} \prod_{j \in J} \left(\frac{-a_j}{a_j + 1}\right) + \\ \sum_{\emptyset \subseteq J \subseteq I} \frac{c_{n-|J|}(D_J)(|J| - 1)|J|}{4} \prod_{j \in J} \left(\frac{-a_j}{a_j + 1}\right) + \\ \sum_{\emptyset \subseteq J \subseteq I} \frac{c_{n-|J|}(D_J)(-\sum_{j \in J}(a_j + 2))}{6} \prod_{j \in J} \left(\frac{-a_j}{a_j + 1}\right).$$

By 3.7, the first term of the above equals

$$\frac{1}{6}c_{\text{st}}^{1,n-1}(X) + \frac{1}{6} \sum_{\emptyset \subseteq J \subseteq I} \left(\sum_{j \in J} (a_j + 1)c_{n-|J|}(D_J) \right) \prod_{j \in J} \left(\frac{-a_j}{a_j + 1} \right).$$

Now the required statement follows from the equality

$$\frac{\sum_{j \in J} (a_j + 1)}{6} + \frac{3(n - |J|)^2 - 5(n - |J|)}{12} + \frac{(n - |J|)|J|}{2} + \frac{(|J| - 1)|J|}{4} + \frac{-\sum_{j \in J} (a_j + 2)}{6} = \frac{3n^2 - 5n}{12}.$$

Corollary 3.9. The number $c_{\rm st}^{1,n}(X)$ does not depend on the choice of the desingularization $\rho: Y \to X$.

Proof. By 3.4 and 3.8, $c_{\rm st}^{1,n}(X)$ can be computed in terms of derivatives of the stringy *E*-function of *X*. But the stringy *E*-function does not depend on the choice of a desingularization [2].

Corollary 3.10. Let X be a projective variety with at worst Gorenstein canonical singularities. Assume that the stringy Hodge numbers of X exist. Then

$$\sum_{p,q} (-1)^{p+q} h_{\text{st}}^{p,q}(X) \left(p - \frac{n}{2} \right)^2 = \frac{n}{12} e_{\text{st}}(X) + \frac{1}{6} c_{\text{st}}^{1,n-1}(X).$$

Proof. The equality follows immediately from 3.8 using the properties of the stringy Hodge numbers 2.5.

Corollary 3.11. Assume that the canonical class of X is numerically trivial. Then $c_{\rm st}^{1,n-1}(X)=0$. In particular, for Calabi-Yau varieties with at worst Gorenstein canonical singularities we have

$$\frac{d^2}{du^2}E_{\rm st}(X;u,1)|_{u=1} = \frac{3n^2 - 5n}{12}e_{\rm st}(X),$$

and therefore stringy Hodge numbers of X satisfy the identity (1) provided that stringy numbers exist.

Example 3.12. Let Δ be an n-dimensional reflexive polyhedron and Δ^* its polar polyhedron [1]. We denote by \mathbb{P}_{Δ} the Gorenstein toric Fano variety associated with Δ . If Θ a convex lattice polyhedron of dimension k then we denote by $v(\Theta)$ the integer $k! \operatorname{vol}_k(\Theta)$ where $\operatorname{vol}_k(\Theta)$ is the k-dimensional volume of Θ with respect to the lattice. It is known that $e_{\operatorname{st}}(\mathbb{P}_{\Delta}) = v(\Delta^*)$ (see Cor. 7.7 [5]). One can ask about the meaning of the new invariant $c_{\operatorname{st}}^{1,n}$ in terms of Δ . Assume that \mathbb{P}_{Δ} has a smooth crepant toric desingularization $\rho: \widehat{\mathbb{P}_{\Delta}} \to \mathbb{P}_{\Delta}$ which is defined by a triangulation \mathcal{T} of the boundary $\partial \Delta^*$ by regular simplices. By 3.1 we obtain that

$$c_{\mathrm{st}}^{1,n}(\mathbb{P}_{\Delta}) = c_1(\widehat{\mathbb{P}_{\Delta}})c_{n-1}(\widehat{\mathbb{P}_{\Delta}}).$$

Now we use that fact that in the nonsigular case the Chern class $c_{n-1}(\widehat{\mathbb{P}_{\Delta}})$ is the sum of all 1-dimensional strata in $\widehat{\mathbb{P}_{\Delta}}$ [7]. These 1-dimensional strata correspond to (d-2)-dimensional simplices in the triangulation \mathcal{T} of $\partial \Delta^*$. Let τ be such a (d-2)-dimensional simplex which is a common boundary of two (d-1)-dimensional ones σ_1 and σ_2 . Denote by Z_{τ} the 1-cycle on $\widehat{\mathbb{P}_{\Delta}}$ corresponding to τ . It follows from the description of c_1 in terms of a canonical piecewise linear function having value 1 on $\partial \Delta^*$ that the intersection number of Z_{τ} with $c_1(\widehat{\mathbb{P}_{\Delta}})$ is zero unless σ_1 and σ_2 belong to different faces γ_1^* and γ_2^* of codimension 1 of Δ^* . The faces γ_1^* and γ_2^* are dual to two vertices $\gamma_1, \gamma_2 \in \Delta$ and the intersection number $c_1(\widehat{\mathbb{P}_{\Delta}})Z_{\tau}$ equals just the integral length $v([\gamma_1, \gamma_2])$ of the segment $[\gamma_1, \gamma_2]$. Let $[\gamma_1, \gamma_2]^* \subset \Delta^*$ be the dual to $[\gamma_1, \gamma_2]$ (d-2)-dimensional face. Then $[\gamma_1, \gamma_2]^*$ contains exactly $v([\gamma_1, \gamma_2]^*)$ simplices from the triangulation \mathcal{T} , because for all such simplices one has $v(\tau) = 1$. The above arguments show that the number

$$c_{\mathrm{st}}^{1,n}(\mathbb{P}_{\Delta}) = c_1(\widehat{\mathbb{P}_{\Delta}}) \sum_{\tau \in \mathcal{T}} Z_{\tau}$$

equals

$$\sum_{[\gamma,\gamma']\subset\Delta}v([\gamma,\gamma'])\cdot v([\gamma,\gamma']^*).$$

So we have

$$c_{\mathrm{st}}^{1,n-1}(\mathbb{P}_{\Delta}) = \sum_{\theta \subset \Delta, \dim \theta = 1} v(\theta) \cdot v(\theta^*).$$

4. Virasoro algebra

Recall that the Virasoro algebra with the central charge c consists of operators L_n ($m \in \mathbb{Z}$) satisfying the relations

$$[L_n, L_m] = (n-m)L_{n+m} + c\frac{n^3 - n}{12}\delta_{n+m,0} \quad n, m \in \mathbb{Z}.$$

For arbitrary compact Kähler manifold X, Eguchi et. al have proposed in [8, 9] a new approach to its quantum cohomology and to its Gromov-Witten invariants for all genera g using so called the Virasoro condition:

$$L_n Z = 0, \forall n \geq -1,$$

where

$$Z = \exp F = \exp \left(\sum_{g \ge 0} \lambda^{2g-2} F_g \right)$$

is the partition function of the topological σ -model with the target space X and F_g the free energy function corresponding to the genus g. In this approach, the central charge c acts as the multiplication by $c_n(X)$. Moreover, all Virasoro operators L_n can be explicitly written in terms of elements of a basis of the cohomology of X, their gravitational descendants and the action of $c_1(X)$ on the cohomology by the multiplication. In particular the commutator relation

$$[L_1, L_{-1}] = 2L_0$$

implies precisely the identity of Libgober and Wood in the form

$$\sum_{p,q} (-1)^{p+q} h^{p,q}(X) \left(\frac{n+1}{2} - p \right) \left(p - \frac{n-1}{2} \right) = \frac{1}{6} \left(\frac{3-n}{2} c_n(X) - c_1(X) c_{n-1}(X) \right).$$

Now let X be a projective algebraic variety with at worst log-terminal singularities. We conjecture that there exists an analogous approach to the quantum cohomology as well as to the Gromov-Witten invariants of X for all genera using the Virasoro algebra in such a way that for any resolution of singularities $\rho: Y \to X$ the corresponding Virasoro operators can be explicitly computed via the numbers a_i appearing in the formula

$$K_X = \rho^* K_X + \sum_{i=1}^r a_i D_i,$$

and bases in cohomology of all complete intersections D_J together with the multiplicative actions of $c_1(D_J)$ in them. We consider our main result 3.8 as an evidence in favor of this conjecture.

References

- [1] V.V. Batyrev, Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, J. Algebraic Geom., 3 (1994), 493–535.
- [2] ______, Stringy Hodge numbers of varieties with Gorenstein canonical singularities, Integrable systems and algebraic geometry (Kobe/Kyoto, 1997), World Sci. Publishing, River Edge, NJ, 1998, pp. 1–31.
- [3] V.V. Batyrev and L.A. Borisov, Dual cones and mirror symmetry for generalized Calabi-Yau manifolds, Mirror Symmetry II, AMS/IP Stud. Adv. Math., 1, Amer. Math. Soc., Providence, RI, 1997 pp. 65–80.
- [4] _____, Mirror Duality and String-Theoretic Hodge Numbers, Invent. Math., 126 (1996), 183-203.
- [5] V.V. Batyrev and D. Dais, Strong McKay correspondence, string-theoretic Hodge numbers and mirror symmetry, Topology, **35** (1996), 901–929.
- [6] L.A. Borisov, On the Betti numbers and Chern classes of varieties with trivial odd cohomology groups, preprint 1997, alg-geom/9703023
- [7] V.I. Danilov, Geometry of toric varieties, Uspekhi Mat. Nauk 33 (1978), 97–154
- [8] T. Eguchi, K. Hori, and Ch.-Sh. Xiong, Quantum cohomology and Virasoro algebra, Phys. Lett. B 402 (1997), 71–80.
- [9] T. Eguchi, M. Jinzenji, and Ch.-Sh. Xiong, Quantum cohomology and free field representation, Nucl. Phys. B 510 (1998), 608-622.
- [10] Y. Kawamata, K. Matsuda, and K. Matsuki, Introduction to the minimal model problem, Algebraic geometry, Sendai, 1985, Adv. Stud. Pure Math., 10, North-Holland, Amsterdam-New York, 1987, pp. 283–360.
- [11] A.S. Libgober and J.W. Wood, Uniqueness of the complex structure on Kahler manifolds of certain homotopy types, J. Diff. Geom. 32 (1990), 139–154.
- [12] S.M. Salamon, On the cohomology of Kahler and hyper-Kahler manifolds, Topology 35 (1996), 137–155.
- [13] S. Sethi, C. Vafa, and E. Witten, Constraints on low-dimensional string compactifications, Nucl. Phys. B 480 (1996), 213–224.

Mathematisches Institut, Universität Tübingen, Auf der Morgenstelle $10,\,72076$ Tübingen, GERMANY

 $E\text{-}mail\ address: \verb|batyrev@bastau.mathematik.uni-tuebingen.de|$