EQUIDIMENSIONALITY OF LAGRANGIAN FIBRATIONS ON HOLOMORPHIC SYMPLECTIC MANIFOLDS

DAISUKE MATSUHITA

ABSTRACT. We prove that every irreducible component of every fibre of Lagrangian fibrations on holomorphic symplectic manifolds is a Lagrangian subvariety. Especially, Lagrangian fibrations are equidimensional.

1. Introduction

We begin with the definition of Lagrangian subvarieties.

Definition 1. Let X be a complex manifold with a holomorphic symplectic form ω. A subvariety Y is said to be a Lagrangian subvariety if $\dim Y = \left(\frac{1}{2}\right) \dim X$ and there exists a resolution $\nu : \tilde{Y} \to Y$ such that $\nu^*\omega$ is identically zero on \tilde{Y}.

Note that this notion does not depend on the choice of ν. We prove the following theorem.

Theorem 1. Let X be a Kähler manifold and $f : X \to B$ a proper surjective morphism over a normal variety B. Assume that there exists a d-closed holomorphic symplectic form ω on X and a general fiber of f is a Lagrangian subvariety with respect to ω. Then every irreducible component of every fibre of f is a Lagrangian subvariety. Especially f is equidimensional.

Since every holomorphic form on a compact Kähler manifold is d-closed, we obtain the following result from combining Theorem 1 with [2, Theorem 2] and [3, Theorem 1].

Corollary 1. Let $f : X \to B$ be a surjective morphism from an irreducible symplectic manifold X to a normal projective variety B. Assume that $0 < \dim B < \dim X$. Then every irreducible component of every fibre of f is a Lagrangian subvariety.

Remark. If we drop the condition of properness, then f is not necessarily equidimensional. Let f be a morphism from \mathbb{C}^4 to \mathbb{C}^2 defined by

$$f(x, y, z, w) := (x, xy),$$

Received February 10, 2000.

1991 Mathematics Subject Classification. Primary 14E40, Secondary 14D05.

*Research Fellow of the Japan Society for the Promotion of Science.
and $\omega := dx \wedge dz + dy \wedge dw$. Then ω is a d-closed holomorphic symplectic form and a general fibre of f is a Lagrangian subvariety with respect to ω. Since $\dim f^{-1}(0) = 3$, f is not equidimensional.

From Theorem 1, we obtain some information of the singularities of B.

Corollary 2. For every point p of B, there exists a Stein neighborhood U of p and a finite morphism $\pi : \tilde{U} \to U$ from a smooth Stein manifold \tilde{U}.

Proof. For a point p of B, we choose a point $q \in f^{-1}(p)$ and a smooth Stein neighborhoods W of q. Since f is equidimensional, we obtain a finite morphism $\pi : \tilde{U} \to U$ from a smooth Stein manifold \tilde{U} by cutting W with hypersurfaces.

Remark. The author does not know whether there exists an example such that B is not smooth.

2. **Proof of Theorem 1**

We refer the following theorem due to Kollár [1, Theorem 2.2] and Mo. Saito [4, Theorem 2.3, Remark 2.9].

Theorem 2. Let $f : X \to B$ be a proper surjective morphism from a smooth Kähler manifold X to a normal variety B. Then $R^i f_* \omega_X$ is torsion free, where ω_X is the dualizing sheaf of X.

Proof. Let $\bar{\omega}$ be the complex conjugate of ω. Since ω is d-closed, $\bar{\omega}$ can be considered as an element of $H^2(X, \mathcal{O}_X)$. By Leray spectral sequence, there exists a morphism $$H^2(X, \mathcal{O}_X) \to H^0(B, R^2 f_* \mathcal{O}_X).$$ Then $\bar{\omega}$ is a torsion element in $H^0(B, R^2 f_* \mathcal{O}_X)$ since a general fibre of f is a Lagrangian subvariety. In addition, $\omega_X \cong \mathcal{O}_X$. Hence $\bar{\omega}$ is zero in $H^0(B, R^2 f_* \mathcal{O}_X)$ by Theorem 2. We derive a contradiction assuming that there exists an irreducible component of a fibre of f which is not a Lagrangian subvariety. The letter V denotes an non Lagrangian component. We take an embedding resolution $\pi : \tilde{X} \to X$ of V. Let \tilde{V} be the proper transform of V. We will show that $\pi^* \omega$ is not zero in $H^0(\tilde{V}, \Omega^2_{\tilde{V}})$. If $\dim V > (1/2) \dim X$, it is obvious by the definition. If $\dim V > (1/2) \dim X$, we take a smooth point $q \in V$ such that π is isomorphic in a neighborhood of q. Since $\dim V > (1/2) \dim X$ and ω is nondegenerate, the restriction of ω on the tangent space of V at q is nonzero. Because π is isomorphic in a neighborhood of q, $\pi^* \omega$ is not zero in $H^0(\tilde{V}, \Omega^2_{\tilde{V}})$. Take the complex conjugate, $\pi^* \bar{\omega}$ is not zero in $H^2(\tilde{V}, \mathcal{O}_{\tilde{V}})$. Therefore $\bar{\omega}$ is not zero in $H^2(V, \mathcal{O}_V)$. Let $p := f(V)$ and $X_p := f^{-1}(p)$. We consider the following morphism: $$R^2 f_* \mathcal{O}_X \otimes k(p) \to H^2(X_p, \mathcal{O}_{X_p}) \to H^2(V, \mathcal{O}_V).$$ Then $\bar{\omega}$ is zero in $R^2 f_* \mathcal{O}_X \otimes k(p)$ and nonzero in $H^2(V, \mathcal{O}_V)$. That is a contradiction.

\square
Acknowledgment

The author express his thanks to Professors A. Beauville, A. Fujiki, Y. Miyaoka, S. Mori and N. Nakayama for their advice and encouragement.

References

Research Institute for Mathematical Sciences, Kyoto University, Oiwake-Cho Kitashirakawa, Sakyo-Ku Kyoto 606-8052 Japan
E-mail address: tyler@kurims.kyoto-u.ac.jp