DYNAMICS OF RATIONAL MAPS: A CURRENT ON THE BIFURCATION LOCUS

Laura DeMarco

Abstract. Let $f_\lambda : \mathbb{P}^1 \to \mathbb{P}^1$ be a family of rational maps of degree $d > 1$, parametrized holomorphically by λ in a complex manifold X. We show that there exists a canonical closed, positive (1,1)-current T on X supported exactly on the bifurcation locus $B(f) \subset X$. If X is a Stein manifold, then the stable regime $X - B(f)$ is also Stein. In particular, each stable component in the space Poly_d (or Rat_d) of all polynomials (or rational maps) of degree d is a domain of holomorphy.

1. Introduction

It is well-known that for a rational map $f : \mathbb{P}^1 \to \mathbb{P}^1$ of degree $d > 1$, there is a natural f-invariant measure μ_f supported on the Julia set of f [B],[Ly]. This measure can be described as the weak limit of purely atomic measures,

$$\mu_f = \lim_{n \to \infty} \frac{1}{d^n} \sum_{\{z : f^n(z) = a\}} \delta_z,$$

for any $a \in \mathbb{P}^1$ (with at most two exceptions).

There is also a potential-theoretic description of μ_f, defined in terms of a homogeneous polynomial lift $F : \mathbb{C}^2 \to \mathbb{C}^2$ of f. The potential function on \mathbb{C}^2 is given by

$$h(z) = \lim_{m \to \infty} \frac{1}{d^m} \log \| F^m(z) \|,$$

and the (1,1)-current $\partial \bar{\partial} h$ satisfies

$$\pi^* \mu_f = \frac{i}{\pi} \partial \bar{\partial} h$$

where π is the canonical projection $\mathbb{C}^2 - \{0\} \to \mathbb{P}^1$ [HP]. In particular, when f is a monic polynomial, this definition reduces to

$$\mu_f = \frac{i}{\pi} \partial \bar{\partial} G = \frac{1}{2\pi} \Delta G \, dx \wedge dy,$$

where $G : \mathbb{C} \to [0, \infty)$ is the Green’s function for the complement of the filled Julia set $K(f) = \{ z : f^n(z) \not\to \infty \text{ as } n \to \infty \}$.

Received March 2, 2000.
In this paper, we construct a (1,1)-current on the parameter space of a holomorphic family of rational maps, supported exactly on the bifurcation locus (just as μ_f is supported exactly on the Julia set).

Let X be a complex manifold. A holomorphic family of rational maps f over X is a holomorphic map $f : X \times \mathbb{P}^1 \to \mathbb{P}^1$. For each parameter $\lambda \in X$, we obtain a rational map $f_\lambda : \mathbb{P}^1 \to \mathbb{P}^1$ with Julia set $J(f_\lambda)$. The bifurcation locus $B(f)$ of the family f over X is the set of all $\lambda_0 \in X$ for which $\lambda \mapsto J(f_\lambda)$ is a discontinuous function (in the Hausdorff topology) in any neighborhood of λ_0 (\S2).

Theorem 1.1. Let $f : X \times \mathbb{P}^1 \to \mathbb{P}^1$ be a holomorphic family of rational maps on \mathbb{P}^1 of degree $d > 1$. Then there exists a canonical closed, positive (1,1)-current $T(f)$ on X such that the support of $T(f)$ is $B(f)$, the bifurcation locus of f.

By general properties of positive currents (Lemma 3.3), we have

Corollary 1.2. If X is a Stein manifold, then $X - B(f)$ is also Stein.

Let Rat_d and Poly_d denote the “universal families” of all rational maps and of all monic polynomials of degree exactly $d > 1$. We have $\text{Poly}_d \simeq \mathbb{C}^d$ and $\text{Rat}_d \simeq \mathbb{P}^{2d+1} - V$, where V is a resultant hypersurface. In particular, Rat_d and Poly_d are Stein manifolds.

Corollary 1.3. Every stable component in Rat_d and Poly_d is a domain of holomorphy (i.e. a Stein open subset).

Corollary 1.3 answers a question posed by McMullen in [M2], motivated by analogies between rational maps and Teichmüller space. Bers and Ehrenpreis showed that finite-dimensional Teichmüller spaces are domains of holomorphy [BE].

Sketch proof of Theorem 1.1. Consider a holomorphic family of homogeneous polynomial maps $\{F_\lambda\}$ on \mathbb{C}^2, locally lifting the holomorphic family f over X. Let $\{h_\lambda\}$ be the corresponding potential functions on \mathbb{C}^2 defined by equation (1). The function $h_\lambda(z)$ is plurisubharmonic in both $\lambda \in X$ and $z \in \mathbb{C}^2$, and it is pluriharmonic in z away from $\pi^{-1}(J(f_\lambda))$. Suppose for simplicity that we have holomorphic functions $c_j : X \to \mathbb{P}^1$, $j = 1, \ldots, 2d - 2$, parametrizing the critical points of f_λ in \mathbb{P}^1. We choose lifts \tilde{c}_j from a neighborhood in X to \mathbb{C}^2 so that $c_j = \pi \circ \tilde{c}_j$ and define the plurisubharmonic function

$$H(\lambda) = \sum_j h_\lambda(\tilde{c}_j(\lambda)).$$

The desired (1,1)-current on X is defined by

$$T(f) = i \frac{\partial \bar{\partial} H}{2\pi},$$

independent of the choices of $\{F_\lambda\}$ and \tilde{c}_j. It is supported on $B(f)$ since H fails to be pluriharmonic exactly when a critical point $c_j(\lambda)$ passes through the Julia set $J(f_\lambda)$.
I would like to thank C. McMullen, J.E. Fornaess, and X. Buff for helpful comments and ideas.

2. Stability

Let \(f : X \times \mathbb{P}^1 \to \mathbb{P}^1 \) be a holomorphic family of rational maps of degree \(d > 1 \). The Julia sets of such a family are said to move holomorphically at a point \(\lambda_0 \in X \) if there is a family of injections \(\phi_\lambda : J_{\lambda_0} \to \mathbb{P}^1 \), holomorphic in \(\lambda \) near \(\lambda_0 \) with \(\phi_{\lambda_0} = \text{id} \), such that \(\phi_\lambda(J_{\lambda_0}) = J_\lambda \) and \(\phi_\lambda \circ f_{\lambda_0}(z) = f_\lambda \circ \phi_\lambda(z) \). In other words, \(\phi_\lambda \) provides a conjugacy between \(f_{\lambda_0} \) and \(f_\lambda \) on their Julia sets.

The family of rational maps \(f \) over \(X \) is stable at \(\lambda_0 \in X \) if any of the following equivalent conditions are satisfied [M1, Theorem 4.2]:

1. The number of attracting cycles of \(f_\lambda \) is locally constant at \(\lambda_0 \).
2. The maximum period of an attracting cycle of \(f_\lambda \) is locally bounded at \(\lambda_0 \).
3. The Julia set moves holomorphically at \(\lambda_0 \).
4. For all \(\lambda \) sufficiently close to \(\lambda_0 \), every periodic point of \(f_\lambda \) is attracting, repelling, or persistently indifferent.
5. The Julia set \(J_\lambda \) depends continuously on \(\lambda \) (in the Hausdorff topology) in a neighborhood of \(\lambda_0 \).

Suppose also that each of the \(2d - 2 \) critical points of \(f_\lambda \) are parametrized by holomorphic functions \(c_j : X \to \mathbb{P}^1 \). Then the following conditions are equivalent to those above:

6. For each \(j \), the family of functions \(\{ \lambda \mapsto f_\lambda^n(c_j(\lambda)) \}_{n \geq 0} \) is normal in some neighborhood of \(\lambda_0 \).
7. For all nearby \(\lambda \), \(c_j(\lambda) \in J_\lambda \) if and only if \(c_j(\lambda_0) \in J_{\lambda_0} \).

We let \(S(f) \subset X \) denote the set of stable parameters and define the bifurcation locus \(B(f) \) to be the complement \(X - S(f) \). Mañé, Sad, and Sullivan showed that \(S(f) \) is open and dense in \(X \) [MSS, Theorem A].

Example. In the family \(f_c(z) = z^2 + c \), the bifurcation locus is \(B(f) = \partial M \), where \(M = \{ c \in \mathbb{C} : f_c^n(0) \not\to \infty \text{ as } n \to \infty \} \) is the Mandelbrot set [M1, Theorem 4.6].

Lemma 2.1. If \(B(f) \) is contained in a complex hypersurface \(D \subset X \), then \(B(f) \) is empty.

Proof. Suppose there exists \(\lambda_0 \in B(f) \). By characterization (4) of stability, any neighborhood \(U \) of \(\lambda_0 \) must contain a point \(\lambda_1 \) at which the multiplier \(m(\lambda) \) of a periodic cycle for \(f_\lambda \) is passing through the unit circle. In other words, the holomorphic function \(m(\lambda) \) defined in a neighborhood \(N \) of \(\lambda_1 \) is non-constant with \(|m(\lambda_1)| = 1 \). The set \(\{ \lambda \in N : |m(\lambda)| = 1 \} \) lies in the bifurcation locus and cannot be completely contained in a hypersurface. \(\square \)
3. Stein manifolds and positive currents

Let X be a paracompact complex manifold and $\mathcal{O}(X)$ its ring of holomorphic functions. Then X is a **Stein manifold** if the following three conditions are satisfied:

- for any $x \in X$ there exists a neighborhood U of x and $f_1, \ldots, f_n \in \mathcal{O}(X)$ defining local coordinates on U;
- for any $x \neq y \in X$, there exists an $f \in \mathcal{O}(X)$ such that $f(x) \neq f(y)$; and
- for any compact set K in X, the holomorphic hull

$$\hat{K} = \{ x \in X : |f(x)| \leq \sup_K |f| \text{ for all } f \in \mathcal{O}(X) \}$$

is also compact in X.

An open domain Ω in X is **locally Stein** if every boundary point $p \in \partial \Omega$ has a neighborhood U such that $U \cap \Omega$ is Stein.

Properties of Stein manifolds. The Stein manifolds are exactly those which can be embedded as closed complex submanifolds of \mathbb{C}^N. If Ω is an open domain in \mathbb{C}^n then Ω is Stein if and only if Ω is pseudoconvex if and only if Ω is a domain of holomorphy. An open domain in a Stein manifold is Stein if and only if it is locally Stein. Also, an open domain in complex projective space \mathbb{P}^n is Stein if and only if it is locally Stein and not all of \mathbb{P}^n. See, for example, [H] and the survey article by Siu [S].

Examples. (1) \mathbb{C}^N is Stein. (2) The space of all monic polynomials of degree d, $\text{Poly}_d \simeq \mathbb{C}^d$, is Stein. (3) $\mathbb{P}^n - V$ for a hypersurface V is Stein. If V is the zero locus of degree d homogeneous polynomial F and $\{g_j\}$ a basis for the vector space of homogeneous polynomials of degree d, then the map $(g_1/F, \ldots, g_N/F)$ embeds $\mathbb{P}^n - V$ as a closed complex submanifold of \mathbb{C}^N. (4) The space Rat_d of all rational maps $f(z) = P(z)/Q(z)$ on \mathbb{P}^1 of degree exactly d is Stein. Indeed, parameterizing f by the coefficients of P and Q defines an isomorphism $\text{Rat}_d \simeq \mathbb{P}^{2d+1} - V$, where V is the resultant hypersurface given by the condition $\gcd(P, Q) \neq 1$.

A (p, q)-**current** T on a complex manifold of dimension n is an element of the dual space to smooth $(n - p, n - q)$-forms with compact support. See [HP], [Le], and [GH] for details. The wedge product of a (p, q)-current T with any smooth $(n - p, n - q)$-form α defines a distribution by $(T \wedge \alpha)(f) = T(f\alpha)$ for $f \in C^\infty_c(X)$. Recall that a distribution δ is positive if $\delta(f) \geq 0$ for functions $f \geq 0$. A (p, p)-current is **positive** if for any system of $n - p$ smooth $(1, 0)$-forms with compact support, $\{\alpha_1, \ldots, \alpha_{n-p}\}$, the product

$$T \wedge (i\alpha_1 \wedge \bar{\alpha}_1) \wedge \cdots \wedge (i\alpha_{n-p} \wedge \bar{\alpha}_{n-p})$$

is a positive distribution.

An upper-semicontinuous function h on a complex manifold X is **plurisubharmonic** if $h|D$ is subharmonic for any complex analytic disk D^1 in X. The current $T = i\partial\bar{\partial}h$ is positive for any plurisubharmonic h, and $T \equiv 0$ if and only
if \(h \) is pluriharmonic. The “\(\partial \bar{\partial} \)-Poincaré Lemma” says that any closed, positive (1,1)-current \(T \) on a complex manifold is locally of the form \(i\partial \bar{\partial} h \) for some plurisubharmonic function \(h \) [GH].

The next three Lemmas show that the “region of pluriharmonicity” of a plurisubharmonic function is locally Stein. See [C, Theorem 6.2], [U, Lemma 2.4], [FS, Lemma 5.3], and [R, Theorem II.2.3] for similar statements.

Lemma 3.1. Suppose \(h \) is plurisubharmonic on the open unit polydisk \(D^2 \) in \(\mathbb{C}^2 \) and \(h \) is pluriharmonic on the “Hartogs domain”

\[
\Omega_\delta = \{ (z, w) : |z| < 1, |w| < \delta \} \cup \{ (z, w) : 1 - \delta < |z| < 1, |w| < 1 \}.
\]

Then \(h \) is pluriharmonic on \(D^2 \).

Proof. Let \(H \) be a holomorphic function on \(\Omega_\delta \) such that \(h = \text{Re} \, H \). Any holomorphic function on \(\Omega_\delta \) extends to \(D^2 \), and extending \(H \) we have \(h \leq \text{Re} \, H \) on \(D^2 \) since \(h \) is plurisubharmonic. The set

\[
A = \{ z \in D^2 : h = \text{Re} \, H \}
\]

is closed by upper-semi-continuity of \(h \). If \(A \) has a boundary point \(w \in D^2 \), then for any ball \(B(w) \) about \(w \), we have

\[
h(w) = \text{Re} \, H(w) = \frac{1}{|B(w)|} \int_{B(w)} \text{Re} \, H \\
> \frac{1}{|B(w)|} \int_{B(w)} h
\]

since \(\text{Re} \, H > h \) on a set of positive measure in \(B(w) \). This inequality, however, contradicts the sub-mean-value property of the subharmonic function \(h \).

Therefore \(A = D^2 \) and \(h \) is pluriharmonic on the polydisk. \(\square \)

Lemma 3.2. Let \(X \) be a complex manifold. If an open subset \(\Omega \subset X \) is not locally Stein, there is a \(\delta > 0 \) and an embedding

\[
e : D^2 \to X
\]

so that \(e(\Omega_\delta) \subset \Omega \) but \(e(D^2) \not\subset \Omega \).

Proof. Suppose \(\Omega \) is not locally Stein at \(x \in \partial \Omega \). By choosing local coordinates in a Stein neighborhood \(U \) of \(x \) in \(X \), we may assume that \(U \) is a pseudoconvex domain in \(\mathbb{C}^n \). Then \(\Omega_0 = U \cap \Omega \) is not pseudoconvex and the function \(\phi(z) = -\log d_0(z) \) is not plurisubharmonic near \(x \in \partial \Omega_0 \). Here, \(d_0 \) is the Euclidean distance function to the boundary of \(\Omega_0 \).

If \(\phi \) is not plurisubharmonic at the point \(z_0 \in U \cap \Omega \), then there is a one-dimensional disk \(\alpha : D^1 \to \Omega \) centered at \(z_0 \) such that \(\int_{\partial D^1} \phi < \phi(z_0) \) (identifying the disk with its image \(\alpha(D^1) \)). Let \(\psi \) be a harmonic function on \(D^1 \) so that \(\psi = \phi \) on \(\partial D^1 \). Then \(\psi(z_0) < \phi(z_0) \). Let \(\Psi \) be a holomorphic function on \(D^1 \) with \(\psi = \text{Re} \, \Psi \).

Now, let \(p \in \partial \Omega \) be such that \(d_0(z_0) = |z_0 - p| \). Let \(e : D^2 \to U \) be given by

\[
e(z_1, z_2) = \alpha(z_1) + z_2(1 - \varepsilon)e^{-\Psi(z_1)}(p - z_0).
\]
That is, the two-dimensional polydisk is embedded so that at each point \(z_1 \in D^1 \) there is a disk of radius \(|(1 - \varepsilon) \exp(-\Psi(z_1))| \) in the direction of \(p - z_0 \). If \(\varepsilon \) is small enough we have a Hartogs-type subset of the polydisk contained in \(\Omega \) but the polydisk is not contained in \(\Omega \) since \(d_0(z_0, \partial \Omega) = \exp(-\phi(z_0)) < \exp(-\psi(z_0)) \).

Lemma 3.3. Let \(T \) be a closed, positive \((1,1)\)-current on a complex manifold \(X \). Then \(\Omega = X - \text{supp}(T) \) is locally Stein.

Proof. Let \(p \) be a boundary point of \(\Omega \). Choose a Stein neighborhood \(U \) of \(p \) in \(X \) so that \(T = i\partial \bar{\partial}h \) for some plurisubharmonic function \(h \) on \(U \). By definition of \(\Omega \), \(h \) is pluriharmonic on \(U \cap \Omega \).

If \(\Omega \) is not locally Stein at \(p \), then by Lemma 3.2, we can embed a two-dimensional polydisk into \(U \) so that a Hartogs-type domain \(\Omega_\delta \) lies in \(\Omega \), but the polydisk is not contained in \(\Omega \). By Lemma 3.1, \(h \) must be pluriharmonic on the whole polydisk, contradicting the definition of \(\Omega \).

Corollary 3.4. If \(X \) is Stein, then so is \(X - \text{supp}T \).

Example. If \(X \) is a Stein manifold and \(V \) a hypersurface, then \(V = \text{supp}T \) for a positive \((1,1)\)-current \(T \) given locally by \(T = \frac{1}{\pi} \partial \bar{\partial} \log |f| \), where \(V \) is the zero set of \(f \). Lemma 3.3 shows that \(X - V \) is locally Stein, and thus Stein. Similarly, \(P^n - V \) is Stein for any hypersurface \(V \).

4. The potential function of a rational map

Let \(f : P^n \to P^n \) be a holomorphic map. Let \(F : C^{n+1} \to C^{n+1} \) be a lift of \(f \) to a homogeneous polynomial, unique up to scalar multiple, so that \(\pi \circ F = f \circ \pi \) where \(\pi \) is the projection \(C^{n+1} \setminus \{0\} \to P^n \). Let \(d \) be the degree of the components of \(F \); then \(f \) has topological degree \(d^n \).

Assume that \(d > 1 \). Following [HP], we define the potential function of \(F \) by

\[
h_F(z) = \lim_{m \to \infty} \frac{1}{d^m} \log \|F^m(z)\|.
\]

The limit converges uniformly on compact subsets of \(C^{n+1} \setminus 0 \), and \(h_F(z) \) is plurisubharmonic on \(C^{n+1} \) since \(\log \| \cdot \| \) is plurisubharmonic. Let \(\Omega_F \subset C^{n+1} \) be the basin of attraction of the origin for \(F \); that is,

\[
\Omega_F = \{ x \in C^{n+1} : F^m(x) \to 0 \text{ as } m \to \infty \}.
\]

Note that \(\Omega_F \) is open and bounded.

From the definition, we obtain the following properties of the potential function \(h_F \) [HP]:

1. \(h_F(\alpha z) = h_F(z) + \log |\alpha| \) for \(\alpha \in C^* \);
2. \(\Omega_F = \{ z : h_F(z) < 0 \} \); and
3. \(h_F \) is independent of the choice of norm \(\| \cdot \| \) on \(C^{n+1} \).
Theorem 4.1. (Hubbard-Papadopol, Ueda, Fornaess-Sibony) The support of the positive (1,1)-current
\[\omega_f = \frac{i}{\pi} \partial \bar{\partial} h_f \]
on \mathbb{C}^{n+1} - 0 is equal to the preimage of the Julia set \(\pi^{-1}(J(f)) \). If \(n = 1 \), then the Brolin-Lyubich measure \(\mu_f \) satisfies \(\pi^* \mu_f = \omega_f \).

Proof. See [HP, Theorem 4.1] for \(n = 1 \) and [U, Theorem 2.2], [FS, Theorem 2.12] for \(n > 1 \).

From Corollary 3.4, we obtain the following ([U, Theorem 2.3], [FS, Theorem 5.2]):

Corollary 4.2. (Ueda, Fornaess-Sibony) The Fatou components of \(f : \mathbb{P}^n \to \mathbb{P}^n \) are Stein.

5. The bifurcation current

In this section we complete the proof of Theorem 1.1. Let \(f : X \times \mathbb{P}^1 \to \mathbb{P}^1 \) be a holomorphic family of rational maps on \(\mathbb{P}^1 \) of degree \(d > 1 \). Let \(\{F_\lambda\} \) be a holomorphic family of homogeneous polynomials on \(\mathbb{C}^2 \), locally lifting the family \(f \), and let \(h_\lambda \) denote the potential function of \(F_\lambda \) (§4). The potential function \(h_\lambda(z) \) is plurisubharmonic as a function of the pair \((\lambda, z) \).

Fix \(\lambda_0 \in X \). In a neighborhood \(U \) of \(\lambda_0 \), we can choose coordinates on \(\mathbb{P}^1 \) so that \(\infty \) is not a critical point of \(f_\lambda, \lambda \in U \). For \(z \in \mathbb{P}^1 - \{\infty\} \), let \(\tilde{z} = (z, 1) \in \mathbb{C}^2 \). Define a function \(H \) on \(U \) by
\[H(\lambda) = \sum_{\{c : f_\lambda^j(c) = 0\}} h_\lambda(\tilde{c}) , \]
where the critical points are counted with multiplicity. Now, let \(N(\lambda) \) be the number of critical points of the rational map \(f_\lambda \) (counted without multiplicity). Let
\[D(f) = \{\lambda_0 \in X : N(\lambda) \text{ does not have a local maximum at } \lambda = \lambda_0\} . \]

Then \(D(f) \) is a complex hypersurface in \(X \), since it is defined by the vanishing of a discriminant. If \(\lambda_0 \not\in D(f) \), there exists a neighborhood \(U \) of \(\lambda_0 \) and holomorphic functions \(c_j : U \to \mathbb{P}^1, j = 1, \ldots, 2d - 2 \), parametrizing the critical points of \(f_\lambda \), such that \(\infty \not\in c_j(U) \) for all \(j \). In this case, we can express \(H \) as the sum
\[H(\lambda) = \sum_j H_j(\lambda) \]
of the plurisubharmonic functions
\[H_j(\lambda) = \frac{1}{d^m} \log \| F_\lambda^m(\tilde{c}_j(\lambda)) \| . \]

For any \(\lambda_0 \in X \), then, \(H \) is defined and continuous in a neighborhood \(U \) of \(\lambda_0 \) and plurisubharmonic on \(U - D(f) \); therefore \(H \) is plurisubharmonic on \(U \).
The bifurcation current T is the positive $(1,1)$-current on parameter space X given locally by

$$T = \frac{i}{\pi} \partial \bar{\partial} H.$$

The next Lemma shows that T is globally well-defined on X.

Lemma 5.1. The current $T = \frac{i}{\pi} \partial \bar{\partial} H$ is independent of (a) the choice of lifts \tilde{c}_j of c_j and (b) the choice of lifts F_λ of f_λ.

Proof. Suppose we define a new lift $\tilde{c}_j(\lambda) = t(\lambda) \cdot \tilde{c}(\lambda)$ for some holomorphic function t taking values in C^*. Property (1) of the potential function h_λ (§4) implies that $h_\lambda(\tilde{c}(\lambda)) = h_\lambda(\tilde{c}(\lambda)) + \log |t(\lambda)|$ and $i \partial \bar{\partial} H$ is unchanged since $\log |t(\lambda)|$ is pluriharmonic, proving (a). If the lifted family $\{F_\lambda\}$ is similarly replaced by $\{t(\lambda) \cdot F_\lambda\}$, a computation shows that h_λ is changed only by the addition of the pluriharmonic term $\frac{1}{d-1} \log |t(\lambda)|$ where d is the degree of the f_λ. This proves (b). \qed

Lemma 5.2. A parameter λ_0 lies in the stable regime $S(f) \subset X$ if and only if the function H is pluriharmonic in a neighborhood of λ_0.

Proof. Let us first suppose that $\lambda_0 \in S(f)$ is not in $D(f)$ (in the notation above). By characterization (6) of stability (§2), for each j, the family of functions $\{\lambda \mapsto f_\lambda^m(c_j(\lambda))\}$ is normal in a neighborhood V of λ_0; hence, there exists a subsequence converging uniformly on compact subsets to a holomorphic function $g_j(\lambda)$. As in [HP, Prop 5.4], we can shrink our neighborhood V if necessary to find a norm $\|\cdot\|$ on C^2 so that $\log \|\cdot\|$ is pluriharmonic on $\pi^{-1}(g_j(V))$; e.g., if $g_j(V)$ is disjoint from $\{|x| = |y|\}$, we can choose norm $\|(x,y)\| = \max\{|x|,|y|\}$. Then, on any compact set in V, the functions

$$\lambda \mapsto \frac{1}{dm_k} \log \|F_\lambda^{m_k}(\tilde{c}_j(\lambda))\|$$

are pluriharmonic if k is large enough. By property (3) of the potential function h_λ (§4), this subsequence converges uniformly to H_j. Therefore, H is pluriharmonic on V.

If λ_0 lies in $D(f) \cap S(f)$, then H is defined and continuous on a neighborhood V of λ_0 and pluriharmonic on $V - D(f)$. As $D(f)$ has codimension 1, H must be pluriharmonic on all of V.

For the converse, let us suppose again that $\lambda_0 \notin D(f)$ and that H is pluriharmonic in a neighborhood of λ_0. Each H_j is pluriharmonic and so we may write $H_j = \text{Re} \ G_j$ in a neighborhood V of λ_0. In analogy with [U, Prop. 2.1], we define new lifts $\tilde{c}_j(\lambda) = e^{-G_j(\lambda)} \cdot \tilde{c}(\lambda)$ of c_j and compute

$$h_\lambda(\tilde{c}_j(\lambda)) = h_\lambda(\tilde{c}(\lambda)) + \log |e^{-G_j(\lambda)}|$$

$$= h_\lambda(\tilde{c}(\lambda)) - \text{Re} \ G_j$$

$$= H_j - H_j$$

$$= 0.$$
By property (2) of h_λ, this implies that $\hat{c}_j(\lambda)$ lies in $\partial\Omega_\lambda$ for all $\lambda \in V$. If V is small enough, the set $\bigcup_{\lambda \in V} (\{\lambda\} \times \partial\Omega_\lambda)$ has compact closure in $X \times \mathbb{C}^2$. As the functions F_λ preserve $\partial\Omega_\lambda$, the family $\{\lambda \mapsto F_\lambda^n(\hat{c}_j(\lambda))\}$ is uniformly bounded and thus normal. Of course, $f_\lambda^n \circ c_j = \pi \circ F_\lambda^n \circ \hat{c}_j$ demonstrating that λ_0 is a stable parameter by (6) of Section 2.

Finally suppose that H is pluriharmonic in a neighborhood U of parameter $\lambda_0 \in D(f)$. Then $U - D(f)$ lies in the stable regime and Lemma 2.1 shows that all of U must belong to $S(f)$.

Proof of Theorem 1.1. Let T be the bifurcation current defined above for the family of rational maps f over X. By Lemma 5.2, the support of T is the bifurcation locus $B(f)$.

Corollaries 1.2 and 1.3 now follow immediately from Corollary 3.4.

6. Examples

Example 6.1. In the family $\{f_\lambda(z) = z^d + \lambda\}, \lambda \in \mathbb{C}$, the bifurcation current T takes the form

$$ T = \frac{d-1}{d} \left(\frac{i}{\pi} \partial\bar{\partial} G \right) $$

where G is the Green’s function for the complement of the “degree d Mandelbrot set” $M_d = \{\lambda : f_\lambda^n(0) \not\to \infty \text{ as } n \to \infty\}$. That is, T is a multiple of harmonic measure supported on ∂M_d. The T-mass of ∂M_d is $(d - 1)/d$.

Proof. If G_λ denotes the Green’s function for the complement of the filled Julia set $K(f_\lambda) = \{z : f_\lambda^n(z) \not\to \infty \text{ as } n \to \infty\}$, then $G(\lambda) = G_\lambda(\lambda)$ (see e.g. [CG, VIII.4]). By [HP, Prop 8.1], we have

$$ h_\lambda(x, y) = G_\lambda(x/y) + \log |y| $$

where $(x, y), y \neq 0$, is a point of \mathbb{C}^2. Note that $d - 1$ of the critical points of f_λ are at $z = 0$ and the other $d - 1$ are at $z = \infty$. Computing, we find

$$ T = \frac{i}{\pi} \sum_j \partial\bar{\partial} h_\lambda(\hat{c}_j(\lambda)) $$

$$ = (d-1) \frac{i}{\pi} \partial\bar{\partial} h_\lambda(0, 1) $$

$$ = (d-1) \frac{i}{\pi} \partial\bar{\partial} G_\lambda(0) $$

$$ = \frac{d-1}{d} \frac{i}{\pi} \partial\bar{\partial} G_\lambda(\lambda). $$

Example 6.2. Let f be a polynomial of degree d and G_f the Green’s function for the complement of the filled Julia set. The Lyapunov exponent of f (for the Brolin-Lyubich measure) satisfies ([Prz],[Mn])

$$ L(f) = \log d + \sum_{c \in \mathbb{C}, f'(c) = 0} G_f(c). $$
If \(\{ f_z \} \) is any holomorphic family of polynomials, the Lyapunov exponent as a function of the parameter is a potential function for the bifurcation current; that is,

\[
T = \frac{i}{\pi} \partial \bar{\partial} L.
\]

In the sequel, we examine further the connection between the bifurcation current and the Lyapunov exponent.

References

