A COMPACT SYMMETRIC SYMPLECTIC NON-KAHLER MANIFOLD: REVISIT

MIN KYU KIM

Abstract. Lerman constructed a twelve dimensional Hamiltonian circle action with an isolated fixed point on a non-Kaehler manifold. In this report, the author constructs such an example which is eight dimensional.

1. Introduction

In [Ler], Lerman constructed a twelve dimensional Hamiltonian circle action with an isolated fixed point on a non-Kaehler manifold. In this report, the author constructs an eight dimensional semifree Hamiltonian circle action with an isolated fixed point on a simply connected non-Kaehler manifold. The example raises the following question: Can we construct such an example which is six dimensional?

2. Construction

Gompf constructed a six dimensional simply connected symplectic non-Kaehler manifold M^6 such that $M^6 \times S^2$ is also non-Kaehler [Gom, Theorem 7.1]. He shows that there exists a nontrivial element q in $H^2(M^6 \times S^2)$ such that $q \wedge w^2 = 0$ for all w in $H^2(M^6 \times S^2)$. Hence by the Hard Lefschetz Theorem, the manifold $M^6 \times S^2$ (also $M^6 \times S^2 \# \mathbb{CP}^4$) is non-Kaehler.

We give the trivial circle action on M^6 and the usual rotation on S^2. Hence the manifold $M^6 \times S^2$ has a Hamiltonian circle action with two copies of M^6 as the fixed set. If we blow up $M^6 \times S^2$ at a fixed point with the action of weight $(1,0,0,0)$, then a simple computation shows that the blown up manifold has an isolated fixed point with the action of weight $(1,-1,-1,-1)$. Also, it is non-Kaehler since it is diffeomorphic to $M^6 \times S^2 \# \mathbb{CP}^4$.

References

Received February 26, 2002.
This work was supported by BK21 Project, KAIST, in 2002.
Key words and phrases. Hamiltonian action, non-Kaehler manifold.
Department of Mathematics, Korea Advanced Institute of Science and Technology, Korea.

E-mail address: minkyu@math.kaist.ac.kr