THE GROTHENDIECK RING OF VARIETIES IS NOT A DOMAIN

BJORN POONEN

Abstract. If \(k \) is a field, the ring \(K_0(V_k) \) is defined as the free abelian group generated by the isomorphism classes of geometrically reduced \(k \)-varieties modulo the set of relations of the form \([X - Y] = [X] - [Y] \) whenever \(Y \) is a closed subvariety of \(X \). The multiplication is defined using the product operation on varieties. We prove that if the characteristic of \(k \) is zero, then \(K_0(V_k) \) is not a domain.

1. The Grothendieck ring of varieties

Let \(k \) be a field. By a \(k \)-variety we mean a geometrically reduced, separated scheme of finite type over \(k \). Let \(V_k \) denote the category of \(k \)-varieties. Let \(K_0(V_k) \) denote the free abelian group generated by the isomorphism classes of \(k \)-varieties, modulo all relations of the form \([X - Y] = [X] - [Y] \) where \(Y \) is a closed \(k \)-subvariety of a \(k \)-variety \(X \). Here, and from now on, \([X]\) denotes the class of \(X \) in \(K_0(V_k) \). The operation \([X] \cdot [Y] := [X \times_k Y] \) is well-defined, and makes \(K_0(V_k) \) a commutative ring with 1. It is known as the Grothendieck ring of \(k \)-varieties. A completed localization of \(K_0(V_k) \) is needed for the theory of motivic integration, which has many applications: see [Loo00] for a survey.

Our main result is the following.

Theorem 1. Suppose that \(k \) is a field of characteristic zero. Then \(K_0(V_k) \) is not a domain.

Remark. We conjecture that the result holds also for fields \(k \) of characteristic \(p \). But we use a result whose proof relies on resolution of singularities and weak factorization of birational maps, which are known only in characteristic zero.

2. Abelian varieties of \(GL_2 \)-type

If \(A \) is an abelian variety over a field \(k_0 \), and \(k \) is a field extension of \(k_0 \), then \(\text{End}_k(A) \) denotes the endomorphism ring of the base extension \(A_k := A \times_{k_0} k \), that is, the ring of endomorphisms defined over \(k \).
Lemma 2. Let k be a field of characteristic zero, and let \overline{k} denote an algebraic closure. There exists an abelian variety A over k such that $\text{End}_k(A) = \text{End}_{\overline{k}}(A) \simeq \mathcal{O}$, where \mathcal{O} is the ring of integers of a number field of class number 2.

Let us precede the proof of Lemma 2 with a few paragraphs of motivation. Our strategy will be to find a single abelian variety A over \mathbb{Q} such that the base extension A_k works over k.

Let A be a simple abelian variety over \mathbb{Q}. Let $E = \text{End}_{\mathbb{Q}}(A) \otimes \mathbb{Q}$. Since A is simple, E is a division algebra. The Lie algebra $\text{Lie} A$ is a nonzero left E-vector space, so $[E : \mathbb{Q}] \leq \dim_{\mathbb{Q}} \text{Lie} A = \dim A$. If equality holds and E is commutative (hence a number field), then A is said to be of GL_2-type. (The terminology is due to the following: If A is of GL_2-type, then the action of the Galois group $\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ on a Tate module $V_{\ell} A$ can be viewed as a representation $\rho_{\ell} : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \text{GL}_2(E \otimes \mathbb{Q}_{\ell}).$)

Because \mathbb{Q} has class number 1, we must take $[E : \mathbb{Q}] \geq 2$ to find an A over \mathbb{Q} as in Lemma 2. The inequality $\dim A \geq [E : \mathbb{Q}]$ then forces $\dim A \geq 2$. Moreover, if we want $\dim A = 2$, then A must be of GL_2-type.

Abelian varieties of GL_2-type are closely connected to modular forms. For each $N \geq 1$, let $\Gamma_1(N)$ denote the classical modular group, let $X_1(N)$ denote the corresponding modular curve over \mathbb{Q}, and let $J_1(N)$ be the Jacobian of $X_1(N)$. G. Shimura, in Theorem 1 of [Shi71], attached to each weight-2 newform f on $\Gamma_1(N)$ an abelian variety quotient A_f of $J_1(N)$. (Previously, in Theorem 7.14 of [Shi71], he had attached to f an abelian subvariety of $J_1(N)$.) Let E_f be the number field generated over \mathbb{Q} by the Fourier coefficients of f. Theorem 1 of [Shi73] shows also that $\dim A_f = [E_f : \mathbb{Q}]$, and that there is an injective \mathbb{Q}-algebra homomorphism $\theta : E_f \hookrightarrow E := \text{End}_{\mathbb{Q}}(A_f) \otimes \mathbb{Q}$ mapping each Fourier coefficient to the endomorphism of A_f induced by the associated Hecke correspondence on $X_1(N)$. Corollary 4.2 of [Rib80] proves that θ is an isomorphism. It follows that A_f is of GL_2-type.

Conversely, it is conjectured that each simple abelian variety over \mathbb{Q} of GL_2-type is \mathbb{Q}-isogenous to some A_f. See [Rib92] for more details. The $\dim A = 1$ case of this conjecture is the statement that elliptic curves over \mathbb{Q} are modular, which is known [BCDT01].

Therefore we are led to consider A_f of dimension 2, where f is a newform as above.

Proof of Lemma 2. Tables [Ste] show that there exists a weight-2 newform $f = \sum_{n=1}^{\infty} a_n q^n$ on $\Gamma_0(590)$ (hence also on $\Gamma_1(590)$) such that $E_f = \mathbb{Q}(\sqrt{10})$ and $a_3 = \sqrt{10}$. Let $A = A_f$ be the corresponding abelian variety over \mathbb{Q}. Then $\dim A = [E_f : \mathbb{Q}] = 2$. But $\text{End}_{\mathbb{Q}}(A)$ is an order of $E = E_f$ containing $a_3 = \sqrt{10}$, so $\text{End}_{\mathbb{Q}}(A)$ is the maximal order $\mathbb{Z}[\sqrt{10}]$ of E. Since 590 is squarefree, A is semistable over \mathbb{Q} by Theorem 6.9 of [DR73], and then Corollary 1.4(a) of [Rib75] shows that all endomorphisms of A over any field extension k of \mathbb{Q} are defined over \mathbb{Q}. Finally, the class number of $\mathbb{Z}[\sqrt{10}]$ is 2. \qed
Remarks.
1. After one knows that \(\text{End}_\mathbb{Q}(A) = \mathbb{Z}[\sqrt{10}] \), another way to prove \(\text{End}_\mathbb{Q}(A) = \mathbb{Z}[\sqrt{10}] \) is to use the fact that \(\text{End}_\mathbb{Q}(A) \) injects into the endomorphism ring of the reduction \(A_p \) over \(\overline{\mathbb{F}}_p \) for any prime \(p \) not dividing 590. The latter endomorphism rings can be computed using Eichler-Shimura theory and Honda-Tate theory. Combining the information from a few primes \(p \) yields the result.
2. The smallest \(N \) for which there exists a newform \(f \) on \(\Gamma_0(N) \) with \(E_f \) of class number 2 is 276. The advantage of 590 is that it is squarefree. (In fact, our original proof applied the technique in the previous remark at level 276.)
3. The case \(k = \mathbb{C} \) of Lemma 2 has an easy proof: let \(A \) be an elliptic curve over \(\mathbb{C} \) with complex multiplication by \(\mathbb{Z}[\sqrt{-5}] \).

3. Abelian varieties and projective modules

Let \(A \) be an abelian variety over a field \(k \), and let \(\mathcal{O} = \text{End}_k(A) \). Given a finite-rank projective right \(\mathcal{O} \)-module \(M \), we define an abelian variety \(M \otimes \mathcal{O}A \) as follows: choose a finite presentation \(\mathcal{O}^m \rightarrow \mathcal{O}^n \rightarrow M \rightarrow 0 \), and let \(M \otimes \mathcal{O}A \) be the cokernel of the homomorphism \(A^m \rightarrow A^n \) defined by the matrix that gives \(\mathcal{O}^m \rightarrow \mathcal{O}^n \). It is straightforward to check that this is independent of the presentation, and that \(M \mapsto M \otimes \mathcal{O}A \) defines a fully faithful functor \(T \) from the category of finite-rank projective right \(\mathcal{O} \)-modules to the category of abelian varieties over \(k \). (Essentially the same construction is discussed in the appendix by J.-P. Serre in [Lau01].)

Lemma 3. Let \(k \) be a field of characteristic zero. There exist abelian varieties \(A \) and \(B \) over \(k \) such that \(A \times A \cong B \times B \) but \(A_k \not\cong B_k \).

Proof. Let \(A \) and \(\mathcal{O} \) be as in Lemma 2. Let \(I \) be a nonprincipal ideal of \(\mathcal{O} \). Since \(\mathcal{O} \) is a Dedekind domain, the isomorphism type of a direct sum of fractional ideals \(I_1 \oplus \ldots \oplus I_n \) is determined exactly by the nonnegative integer \(n \) and the product of the classes of the \(I_i \) in the class group \(\text{Pic}(\mathcal{O}) \). Since \(\text{Pic}(\mathcal{O}) \cong \mathbb{Z}/2 \), we have \(\mathcal{O} \oplus \mathcal{O} \cong I \oplus I \) as \(\mathcal{O} \)-modules. Applying the functor \(T \) yields \(A \times A \cong B \times B \), where \(B := I \otimes \mathcal{O}A \). Since \(\text{End}_{\overline{k}}(A) \) also equals \(\mathcal{O} \), we have \(B_{\overline{k}} = I \otimes \mathcal{O}A_{\overline{k}} \). Since \(T \) for \(\overline{k} \) is fully faithful, \(A_{\overline{k}} \not\cong B_{\overline{k}} \).

4. Stable birational classes and Albanese varieties

For any extension of fields \(k \subseteq k' \), there is a ring homomorphism \(K_0(V_k) \rightarrow K_0(V_{k'}) \) mapping \([X] \) to \([X_{k'}] \).

Let \(k \) be a field of characteristic zero. Smooth, projective, geometrically integral \(k \)-varieties \(X \) and \(Y \) are called \textit{stably birational} if \(X \times \mathbb{P}^m \) is birational to \(Y \times \mathbb{P}^n \) for some integers \(m, n \geq 0 \). The set \(\text{SB}_k \) of equivalence classes of this relation is a monoid under product of varieties over \(k \). Let \(\mathbb{Z}[\text{SB}_k] \) denote the corresponding monoid ring.
When \(k = \mathbb{C}\), there is a unique ring homomorphism \(K_0(V_k) \to \mathbb{Z}[SB_k]\) mapping the class of any smooth projective integral variety to its stable birational class [LL01]. (In fact, this homomorphism is surjective, and its kernel is the ideal generated by \(\mathbb{L} := [A^1]\).) The proof in [LL01] requires resolution of singularities and weak factorization of birational maps [AKMW00, Theorem 0.1.1], [Wlo01, Conjecture 0.0.1]. The same proof works over any algebraically closed field of characteristic zero.

The set \(AV_k\) of isomorphism classes of abelian varieties over \(k\) is a monoid. The Albanese functor mapping a smooth, projective, geometrically integral variety to its Albanese variety induces a homomorphism of monoids \(SB_k \to AV_k\), since the Albanese variety is a birational invariant, since formation of the Albanese variety commutes with products, and since the Albanese variety of \(\mathbb{P}^n\) is trivial. Therefore we obtain a ring homomorphism \(\mathbb{Z}[SB_k] \to \mathbb{Z}[AV_k]\).

5. Zerodivisors

Proof of Theorem 1. Let \(A\) and \(B\) be as in Lemma 3. Then \(([A] + [B])([A] - [B]) = 0\) in \(K_0(V_k)\). On the other hand, \([A] + [B]\) and \([A] - [B]\) are nonzero, because their images under the composition

\[
K_0(V_k) \to K_0(V_k) \to \mathbb{Z}[SB_k] \to \mathbb{Z}[AV_k]
\]

are nonzero. (The Albanese variety of an abelian variety is itself.)

\(\square\)

Acknowledgements

I thank Ken Ribet for several comments regarding Section 2, and in particular for suggesting a less computational proof of Lemma 2. I thank also Eduard Looijenga and Arthur Ogus for discussions. The tables [St] were developed using MAGMA, C++, LiDIA, and GP-PARI. The package GP-PARI was used also to search the data from [St] for a newform \(f\) suitable for the proof of Lemma 2.

References

[Lau01] Kristin Lauter, The maximum or minimum number of rational points on curves of genus three over finite fields, with an appendix by Jean-Pierre Serre, preprint, 2001; math.AG/0104086

[LL01] Michael Larsen and Valery A. Lunts, Motivic measures and stable birational geometry, preprint, 2001; math.AG/0110255

Department of Mathematics, University of California, Berkeley, CA 94720-3840, U.S.A.

E-mail address: poonen@math.berkeley.edu