INTERPOLATION BY PROPER HOLOMORPHIC EMBEDDINGS OF THE DISC INTO \mathbb{C}^2

Josip Globevnik

Dedicated to the memory of my mother

1. The result

Let Δ be the open unit disc in \mathbb{C}. A map $f: \Delta \to \mathbb{C}^2$ is called a proper holomorphic embedding if it is a holomorphic immersion which is one to one and such that the preimage of every compact set is compact. If $f: \Delta \to \mathbb{C}^2$ is a proper holomorphic embedding then $f(\Delta)$ is a closed submanifold of \mathbb{C}^2 which is, via f, biholomorphically equivalent to Δ.

It is not trivial to prove that there are proper holomorphic embeddings from Δ to \mathbb{C}^2 [St, A, GS]. It is known that given a discrete set $E \subset \mathbb{C}^2$ there is a proper holomorphic embedding $f: \Delta \to \mathbb{C}^2$ such that $E \subset f(\Delta)$ [FGS]. In the present paper we prove a stronger result:

Theorem 1.1 Given a discrete set $S \subset \Delta$ and a proper injection $\varphi: S \to \mathbb{C}^2$ there is a proper holomorphic embedding $f: \Delta \to \mathbb{C}^2$ that extends φ.

In other words, given an injective sequence $\{\zeta_j\} \subset \Delta$ such that $|\zeta_j| \to 1$ and an injective sequence $\{w_j\} \subset \mathbb{C}^2$ such that $|w_j| \to +\infty$ there is a proper holomorphic embedding $f: \Delta \to \mathbb{C}^2$ such that $f(\zeta_j) = w_j$ ($j \in \mathbb{N}$).

The proof of the Carleman approximation theorem of Buzzard and Forstnerič [BFo] can be adapted to prove such a result for proper holomorphic embeddings $f: \mathbb{C} \to \mathbb{C}^2$. In the proof there one uses the fact that \mathbb{C} admits particularly simple embeddings into \mathbb{C}^2 of the form $\zeta \to (\zeta, a(\zeta))$ where a is an entire function. There are no such embeddings for Δ so a different proof is necessary in our case. In the induction step of our proof we use simultaneous composition by automorphisms on the left and on the right, a novelty introduced by Buzzard and Forstnerič.

2. The scheme of the proof

Suppose that $S \subset \Delta$ is a discrete set and let $\varphi: S \to \mathbb{C}^2$ be a proper injection. With no loss of generality assume that S is infinite.

Denote by B the open unit ball in \mathbb{C}^2. We shall construct inductively a sequence K_n of compact subsets of Δ, such that bK_n is a smooth Jordan curve.
for each \(n \in \mathbb{N} \) and such that \(K_n \subset \subset K_{n+1} \) \((n \in \mathbb{N})\), \(\cap_{n=1}^\infty K_n = \Delta \), an increasing sequence \(r_n \) of positive numbers converging to \(+\infty\), a decreasing sequence \(\epsilon_n \) of positive numbers and a sequence \(f_n \) of holomorphic maps from \(\Delta \) to \(\mathbb{C}^2 \) which are one to one and regular and such that the following hold:

(i) \(\varphi((\Delta \setminus K_n) \cap S) \subset \mathbb{C}^2 \setminus r_n \mathbb{B} \)

(ii) \(f_n(\Delta \setminus K_n) \subset \mathbb{C}^2 \setminus r_n \mathbb{B} \)

(iii) \(f_{n+1}(\Delta \setminus K_n) \subset \mathbb{C}^2 \setminus r_{n-1} \mathbb{B} \)

(iv) \(f_n|K_n \cap S = \varphi|K_n \cap S \)

(v) \(|f_{n+1} - f_n| < \epsilon_n/2^n \) on \(K_n \)

(vi) If \(h \) is a holomorphic map on \(\text{Int} K_n \) that satisfies \(|h - f_n| < \epsilon_n \) on \(\text{Int} K_n \), then \(h \) is one to one and regular on \(K_{n-1} \)

(vii) \((1 - 1/n) \Delta \subset K_n \)

Suppose for a moment that we have done this. By (v) and (vii) \(f_n \) converges, uniformly on compacta in \(\Delta \), to a holomorphic map \(f \). By (v), \(|f_n - f| \leq \sum_{j=0}^{\infty} |f_{j+1} - f_j| \leq \sum_{j=0}^{\infty} \epsilon_j/2^j \leq \epsilon_n \) on \(K_n \) which implies by (vi) that \(f \) is regular and one to one on \(K_{n-1} \). As this holds for every \(n \) it follows that \(f \) is regular and one to one on \(\Delta \). By (iv), \(f \) extends \(\varphi \). Let \(\zeta \in K_{n+1} \setminus K_n \). By (v), \(|f_{j+1}(\zeta) - f_j(\zeta)| < \epsilon_j/2^j \) \((j > n + 1)\) which, by (iii) implies that \(|f(\zeta)| \geq |f_{n+1}(\zeta)| - \sum_{j=n+1}^{\infty} |f_{j+1}(\zeta) - f_j(\zeta)| \geq r_{n-1} - \sum_{j=n+1}^{\infty} \epsilon_j/2^j \geq r_{n-1} - \epsilon_{n+1} \).

This holds for every \(n \). Since \(r_n \) increase to \(+\infty\) and since \(\epsilon_n \) are decreasing it follows that the map \(f \) is proper. Thus, \(f \) has all the required properties.

In the process we shall also construct two sequences \(S_n, T_n \) of positive numbers such that \(S_{n+1} = S_n \) for even \(n \) and \(T_{n+1} = T_n \) for odd \(n \). Each map \(f_n \) will be of the form \(f_n = A_n \circ g_n \) where \(A_n \) is a holomorphic automorphism of \(\mathbb{C}^2 \) and \(g_n \) is a one to one and regular holomorphic map from an open neighbourhood \(U_n \) of \(\Delta \) to \(\mathbb{C}^2 \) which, for even \(n \) is transverse to \(\{ (z, w) : |z| = S_n \} \) and satisfies \(g_n^{-1}(\{|z| = S_n\}) = b\Delta \), and for odd \(n \), is transverse to \(\{ (z, w) : |w| = T_n \} \) and satisfies \(g_n^{-1}(\{|w| = T_n\}) = b\Delta \).

With no loss of generality assume that \(0 \notin S \). To begin the induction, let \(f_1(\zeta) = (0, \zeta) \) and let \(r_1 > r_1 < 1/2 \) be such that \(2r_1 \mathbb{B} \) contains no point of \(S \). Put \(K_0 = r_1 \Delta, K_1 = 2r_1 \Delta \). Then (i), (ii) and (vii) are satisfied for \(n = 1 \) and (iv) is vacuously satisfied for \(n = 1 \). Put \(S_1 = T_1 = 1 \) and \(A_1 = \text{Id} \) so that \(f_1 = A_1 \circ g_1 \) where \(g_1(\zeta) = (0, \zeta) \) and \(U_1 = \mathbb{C} \). Clearly \(g_1 \) is transverse to \(\{|w| = T_1\} \) and \(g_1^{-1}(\{|w| = T_1\}) = b\Delta \). Put \(r_0 = r_1/2 \). Then \(A_1(\{|w| > T_1/2\}) \) misses \(2r_0 \mathbb{B} \). Put \(\epsilon_0 = \min\{1, r_1/2\} \).

Given \(f_n = A_n \circ g_n \) we shall have \(f_{n+1} = A_{n+1} \circ g_{n+1} \) with \(A_{n+1} = \Psi_{n+1} \circ \Theta_{n+1} \circ A_n \) where \(\Theta_{n+1} \) and \(\Psi_{n+1} \) are holomorphic automorphisms of \(\mathbb{C}^2 \) and with \(g_{n+1} = G_{n+1} \circ g_n \circ p_{n+1} \) where \(p_{n+1} \) is a conformal map from a neighbourhood \(U_{n+1} \) of \(\Delta \) to \(p_{n+1}(U_{n+1}) \subset \mathbb{C} \) which is a slight perturbation of the identity on \(\Delta \) and \(G_{n+1} \) is an automorphism of \(\mathbb{C}^2 \) of the form

\[
G_{n+1}(z, w) = \left(z + S_{n+1}\left(\frac{w}{T_n}\right)^{M_{n+1}}, w\right) \quad \text{if } n \text{ is odd},
\]
\[(2.1') G_{n+1}(z, w) = \left(z, w + T_{n+1} \left(\frac{z}{S_n} \right)^{M_{n+1}} \right) \text{ if } n \text{ is even.} \]

3. The induction step, Part 1

Suppose for a moment that we have constructed \(f_n = A_n \circ g_n, K_n, S_n, T_n, r_n \) and \(\varepsilon_{n-1} \). We want to show how to obtain \(\varepsilon_n, K_{n+1}, S_{n+1}, T_{n+1}, r_{n+1} \) and \(f_{n+1} = A_{n+1} \circ g_{n+1} \). Suppose that \(n \) is odd so that \(g_n: U_n \to \mathbb{C}^2 \) is transverse to \(\{(z, w): |w| = T_n\} \) and satisfies \(g_n^{-1}(\{|w| = T_n\}) = b\Delta \). Put \(T_{n+1} = T_n \). Since \(g_n \) is transverse to \(\{|w| = T_n\} \) and \(S \) is discrete one can, after shrinking \(U_n \) if necessary, choose \(T_{n1}, T_{n2}, T_{n3} \) such that

\[
\frac{T_n}{2} < T_{n3} < T_{n2} < T_{n1} < T_n
\]

where \(T_{n3} \) is so close to \(T_n \) that for all \(T, T_{n3} \leq T \leq T_n, g_n \) is transverse to \(\{|w| = T\} \) and \(g_n^{-1}(\{|w| = T\}) \) is a smooth Jordan curve, that

\[
\mathbb{D} \subset g_n^{-1}(\{|w| < T_{n2}\}) \subset \mathbb{D}
\]

that \(g_n^{-1}(\{T_{n3} \leq |w| \leq T_{n2}\}) \) contains no point of \(S \), and that \(g_n^{-1}(\{|w| < T_{n1}\}) \) contains a point in \(S \) that does not belong to \(\mathbb{D} \). Put

\[
P_{n+1} = g_n^{-1}(\{|w| \leq T_{n3}\}), \quad Q_{n+1} = g_n^{-1}(\{|w| \leq T_{n2}\}), \quad K_{n+1} = g_n^{-1}(\{|w| \leq T_{n1}\})
\]

With no loss of generality assume that \(T_{n3} \) has been chosen so close to \(T_n \) that

\[(vii) \]

holds with \(n \) replaced by \(n + 1 \). We have

\[
\mathbb{D} \subset P_{n+1} \subset Q_{n+1} \subset K_{n+1}.
\]

Clearly \(bK_{n+1} \) is a smooth Jordan curve.

By (i), \(r_n < \min\{|\varphi(w)|: w \in (\mathbb{D} \setminus K_n) \cap S\} \). Thus, one can choose \(r_{n+1} > r_n \) such that

\[
(3.1) \quad \min\{|\varphi(w)|: w \in (\mathbb{D} \setminus K_{n+1}) \cap S\} - 1 < r_{n+1} < \min\{|\varphi(w)|: w \in (\mathbb{D} \setminus K_{n+1}) \cap S\}.
\]

Then (i) is satisfied with \(n \) replaced by \(n + 1 \). Choose \(\varepsilon_n, 0 < \varepsilon_n < \varepsilon_{n-1} \), such that

\[
(3.2) \quad \varepsilon_n < r_n - r_{n-1}, \quad \varepsilon_n < r_{n-1},
\]

and such that (vi) holds. Since \(f_n \) is one to one and regular on \(\mathbb{D} \) this is possible by a lemma of Narasimhan [Na, p. 926].

Choose \(R, R > 2r_{n+1}, R > 2r_n + \varepsilon_n \), so large that \(f_n(K_n) + \mathbb{B} \subset R\mathbb{B} \) and that \(\varphi(K_{n+1} \cap S) \subset R\mathbb{B} \). We need the following lemma.

Lemma 3.1. Let \(R > 0 \) and let \(w_1, w_2, \ldots, w_n \in R\mathbb{B}, \ w_i \neq w_j \ (i \neq j) \). Given \(\gamma > 0 \) there is a \(\delta > 0 \) such that whenever \(q_1, q_2, \ldots, q_n \in \mathbb{C}^2 \) satisfy \(|q_i - w_i| < \delta, 1 \leq i \leq n \), there is a holomorphic automorphism \(\Psi \) of \(\mathbb{C}^2 \) such that:

(i) \(\Psi(q_i) = w_i \ (1 \leq i \leq n) \)

(ii) \(|\Psi(w) - w| < \gamma \ (w \in R\mathbb{B}). \)
Lemma 3.1 provides a \(\theta_n, 0 < \theta_n < \frac{\varepsilon_n}{2^{n+2}} \), such that

\[
\text{whenever } \psi: K_{n+1} \cap S \to \mathbb{C}^2 \text{ satisfies } |\psi - \varphi| < 3\theta_n \text{ on } K_{n+1} \cap S \text{ there is a holomorphic automorphism } \Psi \text{ of } \mathbb{C}^2 \text{ such that } \\
\Psi \circ \psi = \varphi|_{K_{n+1}} \text{ and such that } |\Psi - \text{Id}| < \varepsilon_n/2^{n+1} \text{ on } R\mathbb{B}.
\]

By (3.2) we may assume that

\[
r_n - 3\theta_n > r_{n-1} + \varepsilon_n + \theta_n, \quad 2r_{n-1} - \theta_n > r_{n-1} + \varepsilon_n + \theta_n.
\]

4. Proof of Lemma 3.1

Sublemma 4.1 Suppose that \(R > 0 \) and let \(\alpha_1, \ldots, \alpha_n \in R\Delta, \alpha_i \neq \alpha_j \) (\(i \neq j \)). There are \(\eta > 0 \) and \(L < \infty \) such that whenever \(\beta_1, \ldots, \beta_n \) satisfy \(|\beta_i - \alpha_i| < \eta \), \(1 \leq i \leq n \), then for every \(j, 1 \leq j \leq n \), there is a polynomial \(Q_j \) such that

(i) \(Q_j(\beta_i) = \delta_{ij} \) (\(1 \leq i, j \leq n \))

(ii) \(|Q_j(\zeta)| \leq L \) (\(\zeta \in 2R\Delta \)).

Proof. Choose \(\eta > 0 \) so small that \(\alpha_i + \eta \Delta \subset R\Delta \) (\(1 \leq i \leq n \)) and let \(|\beta_i - \alpha_i| < \eta (1 \leq i \leq n) \). For each \(j, 1 \leq j \leq n \), the polynomial

\[
Q_j(\zeta) = \prod_{k=1, k \neq j}^{n} \frac{\zeta - \beta_k}{\beta_j - \beta_k}
\]

satisfies (i). If \(|\zeta| < 2R \) then

\[
|Q_j(\zeta)| \leq \frac{(3R)^{n-1}}{(\min_{j \neq k} |\beta_j - \beta_k|)^{n-1}}.
\]

Now, let \(\gamma = \min_{j \neq k} |\alpha_j - \alpha_k| \). Passing to a smaller \(\eta \) we may assume that

\(0 < \eta < \gamma/2 \). If \(|\alpha_i - \beta_i| < \eta \), \(1 \leq i \leq n \), then \(\min_{j \neq k} |\beta_j - \beta_k| \geq \gamma - 2\eta > 0 \) so \(Q_j \) satisfies (ii) with \(L = [3R/(\gamma - 2\eta)]^{n-1} \). This completes the proof. \(\Box \)

Proof of Lemma 3.1. Choose a coordinate system in \(\mathbb{C}^2 \) such that if \(w_i = (w_i^1, w_i^2) \) then \(w_i^1 \neq w_j^1, w_i^2 \neq w_j^2 \) if \(i \neq j, 1 \leq i, j \leq n \). By Sublemma 4.1 there are \(\eta > 0 \) and \(L < \infty \) such that whenever \(\beta_i^1 \) satisfy \(|\beta_i^1 - w_i^1| < \eta \) and \(\beta_i^2 \) satisfy \(|\beta_i^2 - w_i^2| < \eta \), \(1 \leq i \leq n \), then for each \(j, 1 \leq j \leq n \), there are polynomials \(Q_j^1 \) and \(Q_j^2 \) such that \(Q_j^1(\beta_i^1) = 1, Q_j^1(\beta_i^1) = 0 (i \neq j), Q_j^2(\beta_i^2) = 1, Q_j^2(\beta_i^2) = 0 (i \neq j) \) and \(|Q_j^1| < L, |Q_j^2| < L \) on \(2R\Delta \). Let \(|z_j - w_j| < \eta, 1 \leq j \leq n \). Our map \(\Phi \) will be of the form \(\Phi = T \circ S \) where \(T, S \) are the automorphisms of \(\mathbb{C}^2 \)

\[
T(\xi, \zeta) = (\xi, \zeta + Q_1(\xi)), \quad S(\xi, \zeta) = (\xi + Q_2(\zeta), \zeta)
\]

such that

\[
S(R\Delta \times R\Delta) \subset (2R\Delta) \times (R\Delta),
\]

\[
|S(\xi, \zeta) - (\xi, \zeta)| < \gamma/2 \quad ((\xi, \zeta) \in (R\Delta)^2),
\]

\[
|T(\xi, \zeta) - (\xi, \zeta)| < \gamma/2 \quad ((\xi, \zeta) \in (2R\Delta) \times (R\Delta)),
\]
and
\[(4.4) \quad S(z^1_i, z^2_i) = (w^1_i, z^2_i), \quad T(w^1_i, z^2_i) = (w^1_i, w^2_i) \quad (1 \leq i \leq n).\]

By (4.1)-(4.4) the map Φ satisfies (i) and (ii) in Lemma 3.1. To construct S, put $\beta_j = z^2_j$, $1 \leq j \leq n$, and let Q^2_j, $1 \leq j \leq n$, be as above. In particular, $Q^2_j(z^2_i) = \delta_{ji}$, $1 \leq i, j \leq n$. Put
\[Q_2(\zeta) = \sum_{j=1}^n (w^1_j - z^1_j)Q^2_j(\zeta).\]

We have
\[Q_2(z^2_j) = \sum_{i=1}^n (w^1_i - z^1_i)Q^2_i(z^2_j) = w^1_j - z^1_j\]
and so $S(z^1_i, z^2_i) = (z^1_i + w^1_i - z^1_i, z^2_i) = (w^1_i, z^2_i)$. We have
\[|Q_2(\zeta)| \leq n \cdot \max_{1 \leq j \leq n} |w^1_j - z^1_j| \cdot L, \quad (|\zeta| < R)\]
which implies that
\[|S(\xi, \zeta) - (\xi, \zeta)| = |(Q_2(\zeta), 0)| \leq n \cdot L \cdot \max_{1 \leq j \leq n} |w_j - z_j|, \quad (|\zeta| < R).\]

In particular, if $\eta > 0$ is small enough then $|Q_2(\zeta)| < R$, $(|\zeta| < R)$, so that (4.1) and (4.2) hold. To construct T, put $\beta^1_j = w^1_j$, $1 \leq j \leq n$, and let Q^1_j, $1 \leq j \leq n$, be as above. Put
\[Q_1(\zeta) = \sum_{j=1}^n (w^2_j - z^2_j)Q^1_j(\zeta).\]

We have $Q_1(w^1_j) = w^2_j - z^2_j$ $(1 \leq j \leq n)$, so $T(w^1_i, z^2_i) = (w^1_i, z^2_i + w^2_i - z^2_i) = (w^1_i, w^2_i)$, $(1 \leq i \leq n)$. Again, $|Q_1(\zeta)| \leq n \cdot \max_{1 \leq j \leq n} |w^2_j - z^2_j| \cdot L$, $(|\zeta| < 2R)$, which implies that
\[|T(\xi, \zeta) - (\xi, \zeta)| = |(0, Q_1(\zeta))| \leq n \cdot \max_{1 \leq j \leq n} |w_j - z_j| \cdot L, \quad (|\xi| < 2R).\]

In particular, if $\delta = \eta$ is small enough then (4.3) holds. The equality (4.4) is clear. This completes the proof.

Remark. Lemma 3.1 holds for \mathbb{C}^N, $N \geq 2$. The proof is an easy elaboration of the proof above.

5. The induction step, Part 2

We need the following:

Lemma 5.1 Let $r > 0$ and let $\Phi \colon \mathbb{C} \rightarrow \mathbb{C}^2$ be a proper holomorphic embedding. Let $\Sigma \subset \mathbb{C}$ be a domain bounded by a smooth Jordan curve and assume that $\Phi(b\Sigma) \subset \mathbb{C}^2 \setminus r\mathbb{R}$. Then the set $(r\mathbb{R}) \cup \Phi(\Sigma)$ is polynomially convex.
Proof. Since Σ is a Jordan domain with smooth boundary it is easy to see that if $K \subset \mathbb{C} \setminus \Sigma$ is a compact set, if $a, b \in (\mathbb{C} \setminus \Sigma) \setminus K$, and if p is a path in $\mathbb{C} \setminus K$ joining a and b then there is a path $\tilde{p} \in (\mathbb{C} \setminus \Sigma) \setminus K$ joining a and b. Let $K = \{ \zeta \in \mathbb{C} \setminus \Sigma: |\Phi(\zeta)| \leq r \}$. Since $\Phi(b \Sigma) \subset \mathbb{C}^2 \setminus r \overline{B}$ and since $|\Phi(\zeta)| \to +\infty$ as $|\zeta| \to +\infty$, the set K is compact. Suppose for a moment that $(\mathbb{C} \setminus \Sigma) \setminus K$ is not connected. The preceding discussion implies that $\{ \zeta \in \mathbb{C}: |\Phi(\zeta)| > r \}$ has a bounded component which contradicts the maximum principle. Thus, $(\mathbb{C} \setminus \Sigma) \setminus K$ is connected which implies that for each $q \in \Phi(\mathbb{C}) \setminus (\Phi(\Sigma) \cup r \overline{B})$ there is a path η: $[0, 1] \to \Phi(\mathbb{C}) \setminus (\Phi(\Sigma) \cup r \overline{B})$ such that $\eta(0) = q$ and $|\eta(t)| \to +\infty$ as $t \to 1$. The statement of the lemma now follows from [BF, Lemma 3.1]. This completes the proof.

Remark. It is easy to see that the proof of Lemma 3.1 in [BF] works for \mathbb{C}^N, $N \geq 2$, and so Lemma 5.1. holds for proper holomorphic embeddings Φ: $\mathbb{C} \to \mathbb{C}^N$, $N \geq 2$.

Proof of the induction step, continued. We have already mentioned that for each m, $f_{m+1} = (\Psi_{m+1} \circ \Theta_{m+1} \circ A_m) \circ (G_{m+1} \circ g_m \circ p_{m+1}) = A_{m+1} \circ g_{m+1}$. Thus, $f_n = H_n \circ g_1 \circ (p_2 \circ \cdots \circ p_n)$ where $H_n = (\Psi_n \circ \Theta_n) \circ \cdots \circ (\Psi_2 \circ \Theta_2) \circ (G_n \circ \cdots \circ G_2)$ is a holomorphic automorphism of \mathbb{C}^2. It follows that $f_n(K_n)$ is a compact subset of $(H_n \circ g_1)(\mathbb{C})$, a closed submanifold of \mathbb{C}^2 biholomorphically equivalent to \mathbb{C}, whose boundary $f_n(bK_n)$ is a smooth Jordan curve which is, by (ii), contained in $\mathbb{C}^2 \setminus r_n \overline{B}$. By Lemma 5.1 the set $f_n(K_n) \cup r_n \overline{B}$ is polynomially convex. By (ii) $f_n(K_n) \cup r_n \overline{B}$ contains no point of $f_n((K_{n+1} \setminus K_n) \cap S)$. Since f_n is one to one it follows that $f_n(\zeta) \neq f_n(\eta)$ if $\zeta, \eta \in (K_{n+1} \setminus K_n) \cap S$. By (i), $\varphi((K_{n+1} \setminus K_n) \cap S)$ does not meet $r_n \overline{B}$. However, some points of $\varphi((K_{n+1} \setminus K_n) \cap S)$ may lie in $f_n(K_n)$. Since $f_n(K_n)$ is contained in $(H_n \circ g_1)(\mathbb{C})$, a closed one dimensional complex submanifold of \mathbb{C}^2, one can change φ slightly on $K_{n+1} \cap S$ to $\tilde{\varphi}$ so that

$$|\tilde{\varphi} - \varphi| < \theta_n \text{ on } K_{n+1} \cap S,$$

so that $\tilde{\varphi}$ is one to one on $K_{n+1} \cap S$ and that $f_n(K_n) \cup r_n \overline{B}$ contains no point of $\tilde{\varphi}((K_{n+1} \setminus K_n) \cap S)$. By [FGS] there is an automorphism Θ_{n+1} of \mathbb{C}^2 which fixes each point of $f_n(K_n) \cap S$, that moves each point $f_n(\zeta)$, $\zeta \in (K_{n+1} \setminus K_n) \cap S$ to $\tilde{\varphi}(\zeta)$, and that satisfies

$$|\Theta_{n+1} - \text{Id}| < \theta_n \text{ on } f_n(K_n) \cup r_n \overline{B}. \tag{5.2}$$

By (iv) we have $f_n|K_n \cap S = \varphi|K_n \cap S$. Almost the same equality holds for $\Theta_{n+1} \circ f_n$ in place of f_n since $\Theta_{n+1} \circ f_n|K_{n+1} \cap S = \tilde{\varphi}|K_{n+1} \cap S$. Applying on both sides on the left an automorphism Ψ provided by Lemma 3.1 which satisfies $\Psi \circ \tilde{\varphi} = \varphi$ on $K_{n+1} \cap S$, would produce a map from Δ to \mathbb{C}^2 that would satisfy (iv) with n replaced by $n + 1$. However, such a map does not necessarily satisfy (ii) with $n + 1$ in place of n or (iii) since we have no control over what Θ_{n+1} does with $f_n(\Delta \setminus K_n)$.
6. The induction step, Part 3

We perform our induction process in such a way that

\[(6.1') \quad A_n(\{(z, w): |w| > T_n/2\}) \text{ misses } 2r_{n-1}B \quad \text{if } n \text{ is odd.}\]

and

\[(6.1'') \quad A_n(\{(z, w): |z| > S_n/2\}) \text{ misses } 2r_{n-1}B \quad \text{if } n \text{ is even.}\]

Recall that \((6.1')\) holds for \(n = 1\). We are describing the induction step for odd \(n\) so assume that \((6.1')\) holds. To handle the problem described at the end of the previous section we replace \(g_n\) in \(\Theta_{n+1} \circ A_n \circ g_n = \Theta_{n+1} \circ f_n\) by \(G_{n+1} \circ g_n\) where \(G_{n+1}\) is an automorphism of \(\mathbb{C}^2\) of the form \((2.1')\). Passing to a slightly smaller \(U_n\) if necessary we may assume that \(g_n(U_n)\) is bounded. We want that \(G_{n+1}\) changes \(g_n\) only slightly on \(K_n\) and on \(K_{n+1} \cap S\) while it maps \(g_n(U_n \setminus \text{Int}Q_{n+1})\) so far from the origin that

\[(6.2) \quad (\Theta_{n+1} \circ A_{n+1}) \circ (G_{n+1} \circ g_n)(U_n \setminus \text{Int}Q_{n+1}) \subset \mathbb{C}^2 \setminus 2r_{n+1}B\]

which, since \(g_n(U_n)\) is bounded, and since \(\Theta_{n+1} \circ A_{n+1}\) is an automorphism of \(\mathbb{C}^2\), holds if

\[(6.3) \quad \left| S_{n+1} \left(\frac{w}{T_n} \right)^{M_{n+1}} \right| \geq \rho_n \quad (|w| \geq T_n)\]

provided that \(\rho_n\) is sufficiently large. Choose \(\tau_n > 0\) so small that

\[(6.4) \quad |(\Theta_{n+1} \circ A_n)(p) - (\Theta_{n+1} \circ A_n)(q)| < \theta_n \quad (q \in g_n(P_{n+1}), \ |p - q| < 2\tau_n).\]

We want that

\[(6.5) \quad \left| S_{n+1} \left(\frac{w}{T_n} \right)^{M_{n+1}} \right| \leq \tau_n \quad (|w| \leq T_{n+1})\]

which will imply that \(G_{n+1}\) changes \(g_n\) on \(P_{n+1}\) for at most \(\tau_n\). Let

\[S_{n+1} = \rho_n \left(\frac{T_n}{T_{n+1}} \right)^{M_{n+1}}.\]

Notice that \(S_{n+1}\) is arbitrarily large provided that \(M_{n+1}\) is large enough. The choice of \(S_{n+1}\) implies \((6.3)\) while \((6.5)\) becomes equivalent to

\[(6.7) \quad \rho_n \left(\frac{T_{n+1}}{T_{n+2}} \right)^{M_{n+1}} < \tau_n\]

which will hold provided that \(M_{n+1}\) is large enough. Choose \(M_{n+1}\) so large that \(S_{n+1}\) becomes so large that

\[(6.8) \quad (\Theta_{n+1} \circ A_n)(\{|z| > S_{n+1}/2\}) \text{ misses } (2r_n + \varepsilon_n)B.\]

Notice that if an automorphism \(G: \mathbb{C}^2 \to \mathbb{C}^2\) satisfies \(|G(z) - z| < \tau (z \in R\mathbb{B})\) where \(0 < \tau < R\) then \((R-\tau)\mathbb{B} \subset G(R\mathbb{B})\). Choose a compact set
$K'_n \subset \text{Int} K_n$ such that $f_n(\Delta \setminus K'_n) \subset f_n(\Delta \setminus K_n) + \theta_n \mathbb{B}$. Now, (ii) implies that $A_n(g_n(\Delta \setminus K'_n)) = f_n(\Delta \setminus K'_n)$ misses $(r_n - \theta_n)\mathbb{B}$ and (5.2) implies that

$$ (6.9) \quad (\Theta_{n+1} \circ A_n \circ g_n)(\Delta \setminus K'_n) \subset \mathbb{C}^2 \setminus (r_n - 2\theta_n)\mathbb{B}. $$

By (6.5), $|G_{n+1} \circ g_n - g_n| \leq \tau_n$ on P_{n+1} so by (6.4)

$$ |(\Theta_{n+1} \circ A_n \circ G_{n+1} \circ g_n)(\zeta) - (\Theta_{n+1} \circ A_n \circ g_n)(\zeta)| \leq \theta_n \quad (\zeta \in P_{n+1}) $$

which, by (6.9) gives

$$ (6.10) \quad (\Theta_{n+1} \circ A_n \circ G_{n+1} \circ g_n)(P_{n+1} \setminus K'_n) \subset \mathbb{C}^2 \setminus (r_n - 3\theta_n)\mathbb{B}. $$

Let $\zeta \in Q_{n+1} \setminus P_{n+1}$. Since $g_n(Q_{n+1} \setminus P_{n+1}) \subset \{|w| > T_n/2\}$ and since G_{n+1} does not change the w coordinate we have $(G_{n+1} \circ g_n)(\zeta) \in \{|w| > T_n/2\}$ and so $(G_{n+1} \circ g_n)(\zeta) \in A_n(\{|w| > T_n/2\})$. By (6.1') $A_n(\{|w| > T_n/2\})$ misses $2r_{n-1}\mathbb{B}$ which implies that $(G_{n+1} \circ G_{n+1} \circ g_n)(\zeta) \in \mathbb{C}^2 \setminus 2r_{n-1}\mathbb{B}$. By (5.2) it follows that $(\Theta_{n+1} \circ A_n \circ G_{n+1} \circ g_n)(\zeta) \in \mathbb{C}^2 \setminus s\mathbb{B}$ where $s = \min\{r_n - \theta_n, 2r_{n-1} - \theta_n\}$, by (3.4), satisfies $s > r_{n-1} + \theta_n + \varepsilon_n$. By (6.10), (6.2) and (3.4) it follows that

$$ (6.11) \quad (\Theta_{n+1} \circ A_n \circ G_{n+1} \circ g_n)(U_n \setminus K'_n) \subset \mathbb{C}^2 \setminus (r_{n-1} + \theta_n + \varepsilon_n)\mathbb{B}. $$

7. The induction step, Part 4

Note first that $\Theta_{n+1} \circ A_n \circ g_n|K_{n+1} \cap S = \varphi|K_{n+1} \cap S$. This does not necessarily hold if we replace g_n by $G_{n+1} \circ g_n$. However, since all points of $K_{n+1} \cap S$ lie in P_{n+1}, since $|G_{n+1} \circ g_n - g_n| < \tau_n$ on P_{n+1} and since $|\varphi - \varphi| < \theta_n$ on $K_{n+1} \cap S$ it follows by (6.4) that

$$ (7.1) \quad |\Theta_{n+1} \circ A_n \circ G_{n+1} \circ g_n - \varphi| < 2\theta_n \quad \text{on} \quad K_{n+1} \cap S. $$

The problem now is that $(G_{n+1} \circ g_n)^{-1}(\{(z, w): |z| = S_{n+1}\})$ is not necessarily equal to $b\Delta$ so we cannot use $\Theta_{n+1} \circ A_n \circ G_{n+1} \circ g_n$ as f_{n+1} even after composing with a correction automorphism provided by Lemma 3.1. However, $(G_{n+1} \circ g_n)^{-1}(\{|z| = S_{n+1}\})$ is a real analytic curve that is arbitrarily small C^1 perturbation of $b\Delta$ independently of M_{n+1} if only S_{n+1} is large enough [G, Sec. 5]; in our case this means if only M_{n+1} is large enough.

Thus, provided that M_{n+1} is large enough the conformal map p_{n+1} mapping Δ to the domain $(G_{n+1} \circ g_n)^{-1}(\{|z| < S_{n+1}\})$ and satisfying $p_{n+1}(0) = 0$, $p'_{n+1}(0) > 0$, is arbitrarily close to the identity on Δ provided that M_{n+1} is sufficiently large [P, p. 286]. Once we have chosen M_{n+1} the map p_{n+1} extends holomorphically to a neighbourhood $U_{n+1} \subset U_n$ of $\overline{\Delta}$ so that the extended map p_{n+1} maps U_{n+1} biholomorphically onto $p_{n+1}(U_{n+1})$ and so that the map $g_{n+1} = G_{n+1} \circ g_n \circ p_{n+1}: U_{n+1} \to \mathbb{C}^2$ is transverse to $\{(z, w): |z| = S_{n+1}\}$ and satisfies $g_{n+1}^{-1}(\{|z| = S_{n+1}\}) = b\Delta |G|$.

Passing to a larger M_{n+1} if necessary we may assume that p_{n+1} is so close to the identity on $\overline{\Delta}$ that

$$ (7.2) \quad |g_{n+1} \circ p_{n+1} - g_n| < \tau_n \quad \text{on} \quad \overline{\Delta} $$
and that

\[\begin{aligned}
&\left\{ \begin{array}{ll}
K_n \subset p_{n+1}^{-1}(P_{n+1}), \\
K_{n+1} \cap S \subset p_{n+1}^{-1}(P_{n+1}) \\
K_n \cap S \subset p_{n+1}^{-1}(Q_{n+1}) \subset \text{Int}K_{n+1}, \\
p_{n+1}^{-1}(K'_n) \subset K_n.
\end{array} \right.
\end{aligned} \tag{7.3} \]

Since \(|G_{n+1} \circ g_n \circ p_{n+1} - g_n \circ p_{n+1}| \leq \tau_n\) on \(P_{n+1}\) it follows that \(|G_{n+1} \circ g_n \circ p_{n+1} - g_n \circ p_{n+1}| \leq \tau_n\) on \(p_{n+1}^{-1}(P_{n+1})\) which, by (7.2) and (7.3) implies that

\[|G_{n+1} \circ g_n \circ p_{n+1} - g_n| < 2\tau_n \text{ on } K_n \cup (K_{n+1} \cap S). \]

Since \(K_n \cup (K_{n+1} \cap S) \subset P_{n+1}\), (6.4) implies that

\[|(\Theta_{n+1} \circ A_n \circ G_{n+1} \circ g_n \circ p_{n+1})(\zeta) - (\Theta_{n+1} \circ A_n \circ g_n)(\zeta)| < \theta_n \quad (\zeta \in K_n \cup (K_{n+1} \cap S)). \]

By (5.2), \(|\Theta_{n+1} f_n(\zeta) - f_n(\zeta)| < \theta_n \quad (\zeta \in K_n)\) so it follows that

\[|v(\zeta)| < 2\theta_n \quad (\zeta \in K_n). \tag{7.4} \]

Further, since \((\Theta_{n+1} \circ A_n \circ g_n)|K_{n+1} \cap S = \tilde{\varphi}\) and since \(|\tilde{\psi} - \psi| < \theta_n\) on \(K_{n+1} \cap S\) it follows also that

\[|v(\zeta)| < 3\theta_n \quad (\zeta \in K_{n+1} \cap S). \tag{7.5} \]

The choice of \(R\) and (3.3) imply that there is a holomorphic automorphism \(\Psi_{n+1}\) of \(\mathbb{C}^2\) such that

\[|\Psi_{n+1} - \text{Id}| < \varepsilon_n/2^{n+1} \text{ on } R \mathbb{B} \tag{7.6} \]

and such that

\[(\Psi_{n+1} \circ \Theta_{n+1} \circ A_n \circ G_{n+1} \circ g_n \circ p_{n+1})(\zeta) = \varphi(\zeta) \quad (\zeta \in K_{n+1} \cap S). \tag{7.7} \]

Put \(f_{n+1} = A_{n+1} \circ g_{n+1}\), where \(A_{n+1} = \Psi_{n+1} \circ \Theta_{n+1} \circ A_n\), and \(g_{n+1} = G_{n+1} \circ g_n \circ p_{n+1}\). By (7.7), (iv) is satisfied with \(n+1\) in place of \(n\). Since \(\theta_n < \varepsilon_n/2^{n+2}\) and since \(f_n(K_n) + \mathbb{B} \subset R \mathbb{B}\), (7.4) and (7.6) imply that \(|f_{n+1}(\zeta) - f_n(\zeta)| < 2\theta_n + \varepsilon_n/2^{n+1} < \varepsilon_n/2^n\) \((\zeta \in K_n)\) so that (v) is satisfied.

By (7.3), \(\zeta \in \Delta \setminus \text{Int}K_{n+1}\) implies that \(p_{n+1}(\zeta) \in U_n \setminus Q_{n+1}\) which, by (6.2) implies that \((\Theta_{n+1} \circ A_n \circ g_n)(\zeta) \in \mathbb{C}^2 \setminus 2r_{n+1} \mathbb{B}\). By (7.6), by the fact that \(R > 2r_{n+1}\) and by (3.2) it follows that \(f_{n+1}(\zeta) \in \mathbb{C}^2 \setminus (2r_{n+1} - \varepsilon_n/2^{n+1}) \mathbb{B} \subset \mathbb{C}^2 \setminus (2r_{n+1} - r_1) \mathbb{B} \subset \mathbb{C}^2 \setminus (r_{n+1} \mathbb{B})\). Thus (ii) holds with \(n\) replaced by \(n+1\).

By (6.11)

\[(\Theta_{n+1} \circ A_n \circ g_n)(U_n \setminus K'_n) \subset \mathbb{C}^2 \setminus (r_{n-1} + \theta_n + \varepsilon_n) \mathbb{B}. \]

If \(\zeta \in \Delta \setminus K_n\) then, by (7.3), \(p_{n+1}(\zeta) \in p_{n+1}(\Delta) \setminus K'_n \subset U_n \setminus K'_n\) so

\[(\Theta_{n+1} \circ A_n \circ g_n)(\Delta \setminus K_n) \subset \mathbb{C}^2 \setminus (r_{n-1} + \theta_n + \varepsilon_n) \mathbb{B}, \]

and since \(R_{n-1} + \theta_n + \varepsilon_n < R\) it follows by (7.6) that \(f_{n+1}(\Delta \setminus K_n) \subset \mathbb{C}^2 \setminus r_{n-1} \mathbb{B}\), that is, (iii) is satisfied.

Finally, (6.8) implies that

\[(\Psi_{n+1} \circ \Theta_{n+1} \circ A_n)(\{|z| > S_{n+1}/2\}) \text{ misses } \Psi_{n+1}(2r_n + \varepsilon_n) \mathbb{B}. \]

Since \(2r_n + \varepsilon_n < R\), (7.6) implies that \(2r_n \mathbb{B} \subset \Psi_{n+1}(2r_n + \varepsilon_n) \mathbb{B}\) so \(A_{n+1}(\{|z| > S_{n+1}/2\}) \text{ misses } 2r_n \mathbb{B}\), that is, \(6.1''\) holds with \(n\) replaced by \(n+1\).
This completes the proof of the induction step.

Since the map \(\varphi \) is proper, (vii) and the fact that (3.1) holds for every \(n \) imply that \(r_n \to +\infty \) as \(n \to \infty \). The proof of Theorem 1.1 is complete. \(\square \)

8. Remarks

Theorem 1.1 holds with \(\mathbb{C}^2 \) replaced by \(\mathbb{C}^N, \ N \geq 2 \).

Theorem 8.1 Let \(N \geq 2 \). Given a discrete set \(S \subset \Delta \) and a proper injection \(\varphi : S \to \mathbb{C}^N \) there is a proper holomorphic embedding \(f : \Delta \to \mathbb{C}^N \) that extends \(\varphi \).

If \(N \geq 3 \) then one proves Theorem 8.1. as in the case \(N = 2 \) with a slight modification: Let \(\iota : \mathbb{C}^2 \to \mathbb{C}^N \) be the standard embedding \(\iota(\zeta_1, \zeta_2) = (\zeta_1, \zeta_2, 0, \ldots, 0) \). In the proof we replace \(f_n = A_n \circ g_n \) by \(f_n = A_n \circ \iota \circ g_n \) where \(A_n \) is a holomorphic automorphism of \(\mathbb{C}^N \) and \(g_n \), as in the proof in the case \(N = 2 \), is a one to one and regular holomorphic map from an open neighbourhood \(U_n \) of \(\Delta \) to \(\mathbb{C}^2 \) which, for even \(n \) is transverse to \(\{(z, w) : |z| = S_n \} \) and satisfies \(g_n^{-1}(\{|z| = S_n\}) = b\Delta \), and for odd \(n \), is transverse to \(\{(z, w) : |w| = T_n \} \) and satisfies \(g_n^{-1}(\{|w| = T_n\}) = b\Delta \). Also, in the induction step, the maps \(\Theta_{n+1} \) and \(\Psi_{n+1} \) are automorphisms of \(\mathbb{C}^N \) and \(G_{n+1} \) is an automorphism of \(\mathbb{C}^2 \). In (6.1') and (6.1'') we replace \(A_n \) by \(A_n \circ \iota \).

We say that two proper holomorphic embeddings \(f_1, f_2 : \Delta \to \mathbb{C}^N \) are \(\text{Aut}(\mathbb{C}^N) \)-equivalent if there is an automorphism \(\Psi : \mathbb{C}^N \to \mathbb{C}^N \) such that \(f_2 = \Psi \circ f_1 \).

Corollary 8.2 Let \(N \geq 2 \). The set of \(\text{Aut}(\mathbb{C}^N) \)-equivalence classes of proper holomorphic embeddedings of \(\Delta \) into \(\mathbb{C}^N \) is uncountable.

Proof. [BFo] It is known [RR, Remark 5.2] that there is an uncountable family \(E \) of discrete injective sequences in \(\mathbb{C}^N \) such that if \(\{z_n, \ n \in \mathbb{N}\} \) and \(\{w_n, \ n \in \mathbb{N}\} \) are distinct elements of \(E \) then there is no automorphism \(\Psi \) of \(\mathbb{C}^N \) such that \(\Psi(z_n) = w_n \ (n \in \mathbb{N}) \). Let \(\{\zeta_n\} \subset \Delta \) be an injective sequence, \(\lim_{n \to \infty} |\zeta_n| = 1 \), and let \(\{z_n, \ n \in \mathbb{N}\}, \{w_n, \ n \in \mathbb{N}\} \) be distinct elements of \(E \). By Theorem 8.1 there are proper holomorphic embeddings \(f_1, f_2 : \Delta \to \mathbb{C}^N \) such that \(f_1(\zeta_j) = z_j, f_2(\zeta_j) = w_j (j \in \mathbb{N}) \). Every automorphism \(\Psi \) of \(\mathbb{C}^N \) such that \(f_2 = \Psi \circ f_1 \) would have to satisfy \(\Psi(z_n) = w_n \ (n \in \mathbb{N}) \) and there is no such \(\Psi \). Thus, in this way, each element of \(E \) produces a proper holomorphic embedding of \(\Delta \) into \(\mathbb{C}^N \) and the embeddings associated with distinct elements of \(E \) are not \(\text{Aut}(\mathbb{C}^N) \)-equivalent. This completes the proof. \(\square \)

Acknowledgements

The author is indebted to Frank Kutzschebauch for a helpful remark.

This work was supported in part by a grant from the Ministry of Science and Technology of the Republic of Slovenia. A part of work was done in January...
2000 during the author’s visit at Bar Ilan University, Ramat Gan, Israel which was supported by a Slovene-Israeli grant.

References

