EXISTENCE OF IRREDUCIBLE \mathbb{R}-REGULAR ELEMENTS IN ZARISKI-DENSE SUBGROUPS

Gopal Prasad and Andrei S. Rapinchuk

Let G be a connected semisimple algebraic group defined over the field \mathbb{R} of real numbers. An element x of $G(\mathbb{R})$ is called \mathbb{R}-regular if the number of eigenvalues, counted with multiplicity, of modulus 1 of $\text{Ad} x$ is minimum possible. (If G is \mathbb{R}-anisotropic, i.e., the group $G(\mathbb{R})$ is compact, every element of $G(\mathbb{R})$ is \mathbb{R}-regular.) The existence of \mathbb{R}-regular elements in an arbitrary subsemigroup Γ of $G(\mathbb{R})$ which is Zariski-dense in G was proved by Y. Benoist and F. Labourie [3] using Oseledet’s multiplicative ergodic theorem, and then reproved by the first-named author [15] by a direct argument. Recently G.A. Margulis and G.A. Soifer asked us a question, which arose in their joint work with H. Abels on the Auslander problem, about the existence of \mathbb{R}-regular elements with some special properties. The purpose of this note is to answer their question in the affirmative. Before formulating the result, we recall (cf. [16], Remark 1.6(1)) that an \mathbb{R}-regular element x is necessarily semisimple, so if in addition it is regular, then $T := Z_G(x)^o$ is a maximal torus; moreover, x belongs to T (see [4], Corollary 11.12).

Theorem 1. Let G be a connected semisimple real algebraic group. Then any Zariski-dense subsemigroup Γ of $G(\mathbb{R})$ contains a \mathbb{R}-regular element x such that the cyclic subgroup generated by it is a Zariski-dense subgroup of the maximal torus $T := Z_G(x)^o$.

Remark 1. Let Γ, x, and $T = Z_G(x)^o$ be as in Theorem 1. Let T_s (resp., T_a) be the maximal \mathbb{R}-split (resp., \mathbb{R}-anisotropic) subtorus of T. Then $T = T_s \cdot T_a$ (an almost direct product), T_s is a maximal \mathbb{R}-split torus of G since x is \mathbb{R}-regular (see [16], Lemma 1.5), and $T_a(\mathbb{R}) \simeq \mathbb{R}/\mathbb{Z}^r$, where $r = \text{dim } T_a$. There is a positive integer d such that $x^d = y \cdot z$ with $y \in T_s(\mathbb{R})$ and $z \in T_a(\mathbb{R})$. Then the cyclic group C generated by z is dense in T_a in the Zariski-topology and since $T_a(\mathbb{R})$ is a compact Lie group, C is actually dense in $T_a(\mathbb{R})$ in the usual compact Hausdorff topology on the latter. Thus, in particular, if $G(\mathbb{R})$ is compact, then any dense subsemigroup contains a Kronecker element, i.e., an element such that the closure of the subsemigroup generated by it is a maximal torus.

Also, since the cyclic subgroup generated by x is dense in T in the Zariski-topology, $Z_G(x) = Z_G(T) = T$. Thus the centralizer of x is connected.

Received March 14, 2002.
Revised version received July 9, 2002.
Remark 2. Let \(\Gamma, x \) and \(T = Z_G(x) \) be as in Theorem 1. Assume, in addition, that \(\Gamma \) is a subgroup. Then the subset \(\{ \gamma x^n \gamma^{-1} \mid \gamma \in \Gamma, n \in \mathbb{Z} - \{0\} \} \), which consists of \(\mathbb{R} \)-regular elements with the properties described in Theorem 1, is Zariski-dense in \(G \). To see this note that the cyclic subgroup generated by \(x \) is dense in \(T \) and, as is well-known, the union of the conjugates of \(T \) under a Zariski-dense subset (of \(G \)) is Zariski-dense in \(G \).

The proof of Theorem 1 uses the result of [15], some facts about \(\mathbb{R} \)-regular elements established in [16] and suitable generalizations of our recent results about irreducible tori [17]. We recall that a torus \(T \) defined over a field \(K \) is called \(K \)-irreducible if it does not contain any proper \(K \)-subtori, and a regular semisimple element \(x \in G(K) \), where \(G \) is a semisimple \(K \)-group, \(K \)-irreducible if the torus \(T = Z_G(x) \) is \(K \)-irreducible. To handle arbitrary semisimple groups, these notions need to be generalized as follows.

Let \(G \) be a connected semisimple algebraic group defined over a field \(K \). Then \(G = G^{(1)} \cdots G^{(s)} \), an almost direct product of connected \(K \)-simple groups \(G^{(i)} \) (cf. [19]). Given a maximal torus \(T \) of \(G \), we let \(T^{(i)} \) denote the maximal torus \(T \cap G^{(i)} \) of \(G^{(i)} \), for any \(i = 1, \ldots, s \). We say that a maximal \(K \)-torus \(T \) of \(G \) is \(K \)-quasi-irreducible if it does not contain any \(K \)-subtori other than those which are almost direct product of some of the \(T^{(i)} \)'s. Furthermore, a regular semisimple element \(x \in G(K) \) will be called \(K \)-quasi-irreducible if \(T = Z_G(x) \) is \(K \)-quasi-irreducible, and \(x \) will be called \(K \)-quasi-irreducible anisotropic if, in addition, \(T \) is anisotropic over \(K \). We also say that an element \(x \in G \) is without components of finite order if in some (equivalently, any) decomposition \(x = x_1 \cdots x_s \) with \(x_i \in G^{(i)} \), all the \(x_i \)'s have infinite order. (Of course, if \(G \) is absolutely, or even \(K \)-, simple, then the notions of \(K \)-irreducibility and \(K \)-quasi-irreducibility for maximal \(K \)-tori of \(G \) and regular semisimple elements of \(G(K) \) coincide, and elements without components of finite order are simply elements of infinite order.) It is easy to see that a \(K \)-quasi-irreducible element \(x \in G(K) \), which is without components of finite order, generates a Zariski-dense subgroup of the corresponding torus \(T = Z_G(x) \).

We now observe that without loss of generality the subsemigroup \(\Gamma \) in Theorem 1 can be assumed to be finitely generated, hence contained in \(G(K) \), where \(K \) is a suitable finitely generated subfield of \(\mathbb{R} \) over which \(G \) is defined; therefore, we see that Theorem 1 is a consequence of the following.

Theorem 2. Let \(K \) be a finitely generated subfield of \(\mathbb{R} \), and \(G \) be a connected semisimple algebraic \(K \)-group. Then any finitely generated subsemigroup \(\Gamma \) of \(G(K) \) which is Zariski-dense in \(G \) contains a Zariski-dense set of \(\mathbb{R} \)-regular \(K \)-quasi-irreducible anisotropic elements without components of finite order.

One of the ingredients of the proof of Theorem 2 is the following refinement (with a different proof) of Theorem 1 of [17]. We observe that this refinement is valid for an arbitrary semisimple group defined over an infinite field (of any characteristic) while the result in [17] was established only for absolutely almost simple groups over global fields.
Theorem 3. Let G be a connected semisimple algebraic group defined over an infinite field K, r be the number of nontrivial conjugacy classes in the absolute Weyl group of G. Furthermore, let S be a set of r nontrivial inequivalent nonarchimedean valuations of K such that for every $v \in S$, the completion K_v is locally compact and splits G. Then

(i) for each $v \in S$, we can choose a maximal K_v-torus T_v of G so that any K-torus T which is conjugate to T_v under an element of $G(K_v)$, for all $v \in S$, is K-quasi-irreducible and anisotropic over K;
(ii) there exists an open subset U of $G_S := \prod_{v \in S} G(K_v)$ with the following properties:

(a) U intersects every open subgroup of G_S, and for any element $x = (x_v)$ of U, all the x_v’s are elements without components of finite order;
(b) $\delta_S^{-1}(\delta_S(G(K)) \cap U)$, where $\delta_S: G(K) \to G_S$ is the diagonal embedding, consists of K-quasi-irreducible anisotropic elements.

First, we need to fix some notations and conventions. Given a maximal torus T of G, we let $\Phi(G,T)$ denote the root system of G with respect to T. As usual, we will identify the absolute Weyl group $W(G,T) = N_G(T)/T$ with a normal subgroup of $\text{Aut} \Phi(G,T)$. For $x \in W(G,T)$, we let $[x]$ denote the conjugacy class of x in $W(G,T)$, and for a subset X of $W(G,T)$, we let $[X]$ denote the collection of conjugacy classes $[x]$ with $x \in X$ (in particular, $[W(G,T)]$ is the set of all conjugacy classes in $W(G,T)$). Next, given two maximal tori T_1, T_2 and an element $g \in G$ such that $T_2 = gT_1g^{-1}$, we let ι_g denote the isomorphism from $\text{Aut} \Phi(G,T_1)$ to $\text{Aut} \Phi(G,T_2)$ induced by $\text{Int} g$. We notice that given another $g' \in G$ with the property $T_2 = g'T_1(g')^{-1}$, we have $g'g^{-1} \in N_G(T_2)$ and $\iota_{g'} = \text{Int} w \circ \iota_g$, where w is the class of $g'g^{-1}$ in $W(G,T_2)$; in particular, there is a well-defined bijection $\iota_{T_1,T_2} : [W(G,T_1)] \to [W(G,T_2)]$ satisfying the standard properties: $\iota_{T,T} = \text{id}$, $\iota_{T_1,T_2} \circ \iota_{T_2,T_3} = \iota_{T_1,T_3}$, and $\iota_{T_1,T_2} = \iota_{T_2,T_3} \circ \iota_{T_1,T_3}$. Finally, if a maximal torus T is defined over a field $L \supseteq K$, we will denote by L_T its minimal splitting field over L and by $\mathcal{S}(T,L)$ the corresponding Galois group $\text{Gal}(L_T/L)$. Since G is semisimple, $\Phi(G,T)$ generates the character group $X(T)$, and therefore the action of $\mathcal{S}(T,L)$ on $\Phi(G,T)$ allows one to identify it with a subgroup of $\text{Aut} \Phi(G,G)$.

Proof of Theorem 3(i). Let $\pi : \tilde{G} \to G$ be the simply connected cover of G defined over K, where π is a central isogeny. By our assumption, for each $v \in S$, the group G, and hence also its simply connected cover \tilde{G}, splits over K_v and therefore, \tilde{G} possesses a maximal torus \tilde{C}_v which is defined and split over K_v. According to a theorem of A. Grothendieck (see [5], Theorem 7.9, and also [8] for the characteristic zero case), the K-variety \mathcal{T} of maximal tori of G is a K-rational homogeneous space of \tilde{G}, hence has the weak approximation property (see [14], Proposition 7.3). Since the orbit $\tilde{G}(K_v) \cdot \tilde{C}_v$ (which coincides with the $\tilde{G}(K_v)$-conjugacy class of \tilde{C}_v) is open in $\mathcal{T}(K_v)$ for all $v \in S$, by the weak
approximation property of \tilde{T} there exists a maximal K-torus \tilde{T}_0 of \tilde{G} which splits over K_v for all $v \in S$. Set $T_0 = \pi(\tilde{T}_0)$.

We fix a bijection between S and the set of nontrivial conjugacy classes in $W(G, T_0)$ and for $v \in S$, we will denote the corresponding conjugacy class by c_v. We have the following:

Lemma 1. For each $v \in S$, there exists a maximal K_v-torus T_v of G such that $c_v \in \iota_{T_v, T_0}([\mathcal{S}(T_v, K_v) \cap W(G, T_v)])$.

Proof. The central isogeny $\pi: \tilde{G} \to G$ induces an isomorphism

$$\tilde{\pi}: W(\tilde{G}, \tilde{T}_0) \to W(G, T_0).$$

Let \tilde{c}_v be the conjugacy class in $W(\tilde{G}, \tilde{T}_0)$ such that $\tilde{\pi}(\tilde{c}_v) = c_v$, and $x \in W(\tilde{G}, \tilde{T}_0)$ be a representative of \tilde{c}_v. Since \tilde{T}_0 splits over K_v, \tilde{G}/K_v and the torus \tilde{T}_0/K_v are obtained respectively from a Chevalley group-scheme over \mathbb{Z} and a split-torus \mathbb{Z}-subscheme by base change $\mathbb{Z} \to K_v$. From this we see that there exists a finite subgroup \mathcal{N} of $\tilde{N}_0(K_v)$, where $\tilde{N}_0 = N_{\tilde{G}}(\tilde{T}_0)$, that contains representatives of all elements of $W(\tilde{G}, \tilde{T}_0)$. Let $y \in \mathcal{N}$ be a representative of x.

The homomorphism $\zeta: \tilde{\mathbb{Z}} \to \tilde{N}_0(K_v)$ defined by $\zeta(1) = y$ can be thought of as a continuous 1-cocycle on the group $\text{Gal}(\tilde{K}_v^\text{ur}/K_v)$ with values in $\tilde{N}_0(K_v^\text{ur})$, where K_v^ur is the maximal unramified extension of K_v (we recall that being locally compact, K_v is either a finite extension of the field \mathbb{Q}_p of p-adic numbers or it is the field of Laurent power series in one variable over a finite field, and therefore there exists an isomorphism $\tilde{\mathbb{Z}} \simeq \text{Gal}(\tilde{K}_v^\text{ur}/K_v)$ sending 1 to the Frobenius automorphism φ, and hence also as a continuous 1-cocycle on $\mathcal{S}_v := \text{Gal}(K_v^\text{ur}/K_v)$ with values in $\tilde{N}_0(K_v^\text{ur})$, where K_v^s is a separable closure of K_v containing K_v^ur.

Since $H^1(K_v, \tilde{G}) = \{1\}$ (Kneser [10] for characteristic zero and Bruhat-Tits [7] for general local fields with perfect residue field of cohomological dimension ≤ 1), there exists $g \in \tilde{G}(K_v^s)$ such that $\zeta(\gamma) = g^{-1}\gamma(g)$ for all $\gamma \in \mathcal{S}_v$. We claim that the torus $T_v := \pi(g\tilde{T}_0g^{-1})$ is defined over K_v and has the required property. Obviously, it suffices to show that $\tilde{T}_v := g\tilde{T}_0g^{-1}$ is defined over K_v and

$$\gamma(\tilde{T}_v) = \gamma(g)\tilde{T}_0\gamma(g)^{-1} = g(\gamma^{-1}(g)\tilde{T}_0(\gamma^{-1}(g))^{-1}g^{-1} = g\tilde{T}_0g^{-1} = \tilde{T}_v$$

as $\gamma^{-1}(g) = \zeta(\gamma) \in \tilde{N}_0(K_v^s)$, implying that \tilde{T}_v is in fact defined over K_v ([4], AG 14.4). To prove (1), we will consider the action of an arbitrary $\gamma \in \mathcal{S}_v$ on $\Phi(\tilde{G}, \tilde{T}_v)$, and compute the corresponding action of $\iota_{g^{-1}}(\gamma)$ on $\Phi(\tilde{G}, \tilde{T}_0)$. Let $\alpha_0 \in \Phi(\tilde{G}, \tilde{T}_0)$, and let $\alpha \in \Phi(\tilde{G}, \tilde{T}_v)$ be defined by the formula $\alpha(t) = \alpha_0(\gamma^{-1}tg)$. Since \tilde{T}_0 is K_v-split, and hence α_0 is defined over K_v, for any $t \in \tilde{T}_0(K_v^s)$ we obtain the following

$$\iota_{g^{-1}}(\gamma)(\alpha_0)(t) = \gamma(\gamma^{-1}(g)\gamma^{-1}(t)\gamma^{-1}(g)^{-1})$$
\[= \gamma(\alpha_0((g^{-1} \gamma^{-1}(g))\gamma^{-1}(t)(\gamma^{-1}(g)^{-1}g))) = \alpha_0((g^{-1} \gamma(g))^{-1}t(g^{-1} \gamma(g))),\]

i.e. \(\tau_{g^{-1}}(\gamma)\alpha_0 = \tilde{\zeta}(\gamma)\alpha_0\), where \(\tilde{\zeta}(\gamma)\) is the image of \(\zeta(\gamma)\) in \(W(\bar{G}, \bar{T}_0)\). Thus, \(\tau_{g^{-1}}(\mathcal{S}(\bar{T}_v, K_v)) = \text{Im} \tilde{\zeta}\). In particular, \(x = \tilde{\zeta}(\varphi) \in \tau_{g^{-1}}(\mathcal{S}(\bar{T}_v, K_v))\), and (1) follows. The proof of Lemma 1 is complete.

For all \(v \in S\), we fix a maximal \(K_v\)-torus \(T_v\) of \(G\) as in the preceding lemma. To prove Theorem 3, let \(T\) be a maximal \(K\)-torus of \(G\) such that for every \(v\) in \(S\), there exists a \(g_v \in G(K_v)\) so that \(T = g_v^{-1}T_vg_v\); the existence of such a \(T\) follows from the weak approximation property of the \(K\)-variety \(T\) of maximal tori of \(G\). Then \(\tau_{g_v}(\mathcal{S}(T, K_v)) = \mathcal{S}(T_v, K_v)\), so it follows from Lemma 1 that

\[
c_v \in \tau_{T_v,T_0}(\mathcal{S}(T_v, K_v) \cap W(G, T_v)) = \tau_{T_v,T_0}(\tau_{T,T_v}(\mathcal{S}(T, K_v) \cap W(G, T)))
\]

\[
= \tau_{T,T_0}(\mathcal{S}(T, K_v) \cap W(G, T)) \subset \tau_{T,T_0}(\mathcal{S}(T, K) \cap W(G, T)).
\]

Thus, if \(g \in G\) is chosen so that \(T_0 = gTg^{-1}\), then the subgroup \(\tau_g(\mathcal{S}(T, K) \cap W(G, T))\) of (the finite group) \(W(G, T_0)\) meets every conjugacy class of the latter. However, conjugates of a proper subgroup of a finite group cannot fill up the group, so we conclude that

\[\tau_g(\mathcal{S}(T, K) \cap W(G, T)) = W(G, T_0),\]

and therefore \(\mathcal{S}(T, K) \supset W(G, T)\). This obviously implies that \(T\) is anisotropic over \(K\).

Now, to prove that \(T\) is \(K\)-quasi-irreducible, we observe that each of the \(K\)-simple components \(G^{(i)}\) of \(G\) can in turn be decomposed further into an almost direct product of connected absolutely almost simple groups: \(G^{(i)} = G_1^{(i)} \cdots G_t^{(i)}\), where the subgroups \(G_j^{(i)}\), \(j = 1, \ldots, t_i\), are transitively permuted by the absolute Galois group \(\mathcal{S} = \text{Gal}(K^s/K)\), where \(K^s\) is a separable closure of \(K\). Since \(G\) splits over \(K_T\), all of its connected absolutely almost simple normal subgroups are defined over \(K_T\), so this permutation action of \(\mathcal{S}\) factors through \(\mathcal{S}(T, K)\). Let \(T^{(i)} = T \cap G^{(i)}\) and \(\Phi_j^{(i)}(v)\) be the (direct) sum of the \(V_j^{(i)}\) for \(j = 1, \ldots, t_i\). We claim that any \(\mathcal{S}(T, K)\)-invariant subspace \(V\) of \(V\) is the direct sum of some of the \(V_j^{(i)}\)’s. Indeed, since

\[V = \bigoplus_{i=1}^s \bigoplus_{j=1}^{t_i} V_j^{(i)} \quad \text{and} \quad W(G, T) = \prod_{i=1}^s \prod_{j=1}^{t_i} W(G_j^{(i)}, T_j^{(i)}),\]

the facts that 1) \(W(G_j^{(i)}, T_j^{(i)})\) acts on \(V_j^{(i)}\) irreducibly for all \(i\) and \(j\), and 2) \(\mathcal{S}(T, K)\) contains \(W(G, T)\), imply that \(Y\) is the direct sum of some of the \(V_j^{(i)}\)’s. However, for any fixed \(i\), as \(\mathcal{S}(T, K)\) acts transitively on the set of the \(V_j^{(i)}\)’s our claim follows. If now \(T'\) is a \(K\)-subtorus of \(T\), then the subspace \(\tilde{Y} := \text{Ker}(X(T) \xrightarrow{\text{res}} X(T')) \otimes \mathbb{Q}\) is of the form \(\oplus_{i \in I} V^{(i)}\) for some \(I \subset \{1, \ldots, s\}\), and hence \(T'\) is an almost direct product of the \(T_j^{(i)}\)’s for \(i \in \{1, \ldots, s\} - I\), as claimed.
Proof of Theorem 3(ii). For each \(v \in S \), we let \(R_v \) denote the set of regular elements in \(T_v(K_v) \) and consider the map

\[
\psi_v : G(K_v) \times R_v \to G(K_v), \quad \psi_v(g, x) = gxg^{-1}.
\]

It follows from the implicit function theorem that \(\psi_v \) is an open map. For \(i = 1, \ldots, s \), we let \(\theta^{(i)} : G^{(i)} \to \overline{G}^{(i)} \) be the natural central isogeny to the adjoint group \(\overline{G}^{(i)} \) of \(G^{(i)} \), and let \(\theta : G \to \overline{G}^{(1)} \times \cdots \times \overline{G}^{(s)} \) denote the resulting central isogeny. Furthermore, for \(v \in S \), we let \(T_v^{(i)} = T_v \cap G^{(i)} \), \(\overline{T}_v^{(i)} = \theta^{(i)}(T_v^{(i)}) \), and pick an open torsion-free subgroup \(\Sigma_v^{(i)} \) of \(\overline{T}_v^{(i)}(K_v) \). Set

\[
\Sigma_v = \theta^{-1}(\Sigma_v^{(1)} \times \cdots \times \Sigma_v^{(s)}),
\]

and consider the open subset \(U_v := \psi_v(G(K_v), R_v \cap \Sigma_v) \) of \(G(K_v) \). Given an open subgroup \(\Omega_v \) of \(G(K_v) \), the \(v \)-adically open subgroup \(\Omega_v \cap \Sigma_v \) of \(T_v(K_v) \) intersects the Zariski-open subset \(R_v \) (cf. [14], Lemma 3.2), and therefore \(U_v \cap \Omega_v \neq \emptyset \). We claim moreover that any \(x_v \in U_v \) is without components of finite order. To prove this claim, after replacing \(x_v \) by a conjugate, we may assume that \(x_v \in R_v \cap \Sigma_v \). If \(x_v = x_v^{(1)} \cdots x_v^{(s)} \) with \(x_v^{(i)} \in G^{(i)} \), then

\[
\theta(x_v) = (\theta^{(1)}(x_v^{(1)}), \ldots, \theta^{(s)}(x_v^{(s)})) \in \Sigma_v^{(1)} \times \cdots \times \Sigma_v^{(s)}.
\]

Now if for some \(i \), \(x_v^{(i)} \) has finite order, then since \(\Sigma_v^{(i)} \) is torsion-free, we obtain that \(\theta^{(i)}(x_v^{(i)}) = 1 \), and therefore, \(x_v^{(i)} \in Z(G^{(i)}) \). But then \(x_v \) is not regular, a contradiction. It follows that \(U := \prod_{v \in S} U_v \) satisfies condition (a).

Finally, if \(\delta_S(x) \in \delta_S(G(K)) \cap U \), then \(x \) is regular semisimple and the torus \(T = Z_G(x)^0 \) is \(G(K_v) \)-conjugate to \(T_v \) for all \(v \in S \). So, by (i), \(T \) is \(K \)-quasi-irreducible and anisotropic. This completes the proof of Theorem 3. \(\Box \)

Remark 3. For \(v \in S \), let \(\mathcal{O}_v \) be the ring of integers in \(K_v \). As \(\overline{T}_0 \), and hence \(\overline{G} \), splits over \(K_0 \), \(\overline{G}/K_v \) and \(\overline{T}_0/K_v \) are obtained respectively from a Chevalley group-scheme \(\overline{G}_v \) over \(\mathbb{Z} \) and a split-torus \(\mathbb{Z} \)-subscheme of \(\overline{G}_v \) by base change \(\mathbb{Z} \to \mathcal{O}_v \to K_v \). From this we can see that the subgroup \(\mathcal{N} \) in the proof of Lemma 1 can be chosen inside \(\overline{N}_0(\mathcal{O}_v) := \overline{N}_0(K_v) \cap \overline{G}_v(\mathcal{O}_v) \). Then \(\zeta \) can be thought of as a continuous 1-cocycle on \(\overline{\mathbb{Z}} \simeq \text{Gal}(K_v^{ur}/K_v) \) with values in \(\overline{G}_v(\mathcal{O}_v^{ur}) \), where \(\mathcal{O}_v^{ur} \) is the ring of integers of \(K_v^{ur} \), and instead of using the triviality of \(H^1(K_v, \overline{G}) \), we can use the triviality of \(H^1(K_v^{ur}/K_v, \overline{G}_v(\mathcal{O}_v^{ur})) \), which easily follows from Lang’s theorem on the triviality of Galois cohomology of connected algebraic groups over finite fields, see Theorem 6.8 of [14].

Remark 4. If \(K \) is a global field, then given any finite set \(V_0 \) of places of \(K \), using, for example, Tchebotarev’s Density Theorem, one can find a set \(S \) of \(r \) nonarchimedean places outside \(V_0 \) (where \(r \) is the same as in the statement of Theorem 3) such that \(G \) splits over \(K_v \) for all \(v \in S \). For every \(v \in S \), we choose a maximal \(K_v \)-torus \(T_v \) of \(G \) so that the assertion of Lemma 1 holds, and let \(T_0 \) be a maximal \(K \)-torus of \(G \) which is \(G(K_v) \)-conjugate to \(T_v \) for each \(v \in S \).
(the existence of such a T_0 follows from the weak approximation property of the K-variety T of maximal tori of G). Now for any maximal K-torus T of G which is $G(K_v)$-conjugate to T_0 for all $v \in S$, $G(T, K) \supset W(G, T)$ (see the proof of Theorem 3(i)), hence such a T is K-quasi-irreducible and anisotropic over K, yielding a generalization, and an alternative proof, of Theorem 1(i) of [17].

Another ingredient of the proof of Theorem 2 is the following proposition which is a variant of Proposition 1 of [18]. For the reader’s convenience we give the full proof although it is similar to the argument given in [18].

Proposition 1. Let K be a finitely generated field of characteristic zero, $R \subset K$ be a finitely generated subring. Then there exists an infinite set Π of primes such that for each $p \in \Pi$ there exists an embedding $\varepsilon_p : K \hookrightarrow \mathbb{Q}_p$ with the property $\varepsilon_p(R) \subset \mathbb{Z}_p$.

Proof. Pick a transcendence basis $\{s_1, \ldots, s_l\}$ of K over \mathbb{Q}, and let $A = \mathbb{Z}[s_1, \ldots, s_l]$, $L = \mathbb{Q}(s_1, \ldots, s_l)$. Furthermore, pick an element $\alpha \in K$ so that $K = L[\alpha]$, let $f(x)$ denote the minimal monic polynomial of α over L, and set $B = A[\alpha]$. Since R is finitely generated, there exists a nonzero $a \in A$ with the following properties:

\[(2) \quad R \subset B \left[\frac{1}{a} \right] \quad \text{and} \quad f(x) \in A \left[\frac{1}{a} \right][x].\]

As $f(x)$ is prime to its derivative $f'(x)$, there exist polynomials $u(x), v(x) \in A[x]$ such that

\[(3) \quad u(x)f(x) + v(x)f'(x) = b\]

for some nonzero $b \in A$. Set $c := ab \in A (= \mathbb{Z}[s_1, \ldots, s_l])$ and choose $z_1, \ldots, z_l \in \mathbb{Z}$ so that $c_0 := c(z_1, \ldots, z_l) \neq 0$. Let $\nu : A \rightarrow \mathbb{Z}$ be the homomorphism specializing s_i to z_i, and F be the splitting field over \mathbb{Q} of $g(x) := f''(x)$. It follows from the Tchebotarev Density Theorem that the set of primes

\[\Pi := \{ p \mid F \subset \mathbb{Q}_p \quad \text{and} \quad p \nmid c_0 \}\]

is infinite (this, in fact, can also be proved by an elementary argument). We claim that Π is as required.

Indeed, suppose $p \in \Pi$. Then by our construction all roots of $g(x)$ belong to \mathbb{Q}_p; moreover, since $c_0 \in \mathbb{Z}_p \times$, the coefficients of $g(x)$ belong to \mathbb{Z}_p by (2), and therefore the roots actually belong to \mathbb{Z}_p. Since \mathbb{Z}_p is uncountable, there exist elements $t_1, \ldots, t_l \in \mathbb{Z}_p$ which are algebraically independent over \mathbb{Q} and satisfy the congruences $t_i \equiv z_i \pmod{p}$ for all $i = 1, \ldots, l$. Let $\varepsilon : L \rightarrow \mathbb{Q}_p$ be the embedding sending s_i to t_i. We claim that $h(x) := f^\varepsilon(x)$ splits over \mathbb{Z}_p into linear factors. For this, we first observe that $\varepsilon(c) \equiv c_0 \pmod{p}$, implying that $\varepsilon(c) \in \mathbb{Z}_p \times$, and therefore $h(x) \in \mathbb{Z}_p[x]$ in view of (2). Moreover, for the canonical homomorphism $\mathbb{Z}_p \rightarrow \mathbb{Z}_p/p\mathbb{Z}_p = : \mathbb{F}_p$, $z \mapsto \bar{z}$, one has $\bar{h}(x) = \bar{g}(x)$, hence by the above, $h(x)$ splits over \mathbb{F}_p into linear factors. On the other hand, it follows from (3) that

\[\bar{u}^\varepsilon(x) \bar{h}(x) + \bar{v}^\varepsilon(x) \bar{h}'(x) = \bar{z}(\bar{b}) \neq 0,\]
which implies that $\tilde{h}(x)$ is prime to its derivative $\tilde{h}'(x)$, and so it does not have multiple roots. Invoking Hensel’s Lemma, we now conclude that $h(x)$ splits over \mathbb{Z}_p into linear factors, as was claimed. It follows that for any extension $\tilde{\varepsilon}: K \to \overline{\mathbb{Q}}_p$ (= an algebraic closure of \mathbb{Q}_p) of ε, one has $\tilde{\varepsilon}(K) \subset \mathbb{Q}_p$. Furthermore, as $\tilde{\varepsilon}(\alpha)$ is a root of $h(x)$, and, on the other hand, all the roots of $h(x)$ belong to \mathbb{Z}_p, we obtain that $\tilde{\varepsilon}(\alpha) \in \mathbb{Z}_p$, i.e. $\tilde{\varepsilon}(B) \subset \mathbb{Z}_p$. Since by our construction $\varepsilon(a) \in \mathbb{Z}_p^*$, it follows from (2) that $\varepsilon(\mathcal{R}) \subset \mathbb{Z}_p$. Thus, $\varepsilon_p := \tilde{\varepsilon}$ is an embedding which has all of the required properties.

We shall view G as a K-subgroup of \mathbf{GL}_n in terms of a fixed embedding. For a subring R of a commutative K-algebra C, in the sequel $G(R)$ will denote the group $G(C) \cap \mathbf{GL}_n(R)$.

For the proof of Theorem 2, we also need the following:

Lemma 2. Let G be a semisimple algebraic group defined over a field K of characteristic zero, and let R be a subring of K. Given a finite set S of distinct primes and a system of embeddings $\varepsilon_p: K \to \mathbb{Q}_p$ with the property $\varepsilon_p(\mathcal{R}) \subset \mathbb{Z}_p$, one for each $p \in S$, we let $\varepsilon_S: G(K) \to G_S$ denote the embedding induced by the ε_p’s. Then for any subsemigroup Γ of $G(\mathcal{R})$, which is Zariski-dense in G, the closure of $\varepsilon_S(\Gamma)$ in G_S is open.

Proof. Given a subset X of $G(K)$, let $\overline{X}^{(S)}$ denote the closure of $\varepsilon_S(X)$ in G_S. Also, for an individual $p \in S$, we let $\delta_p: G(K) \to G(\mathbb{Q}_p)$ denote the embedding induced by ε_p and will use $\overline{X}^{(p)}$ to denote the closure of $\delta_p(X)$ in $G(\mathbb{Q}_p)$. Since a closed subsemigroup of a profinite group is in fact a subgroup (simply because the set of natural numbers \mathbb{N} is dense in the profinite completion $\hat{\mathbb{Z}}$ of \mathbb{Z}), we have $\overline{\Gamma}^{(S)} = \overline{\Delta}^{(S)} (\subset \prod_{p \in S} G(\mathbb{Z}_p))$, where Δ is the subgroup of $G(\mathcal{R})$ generated by Γ, so we may assume from the outset that Γ is a subgroup. A standard argument (going back to Platonov’s proof [13] of the strong approximation property) shows that $H(p) := \overline{\Gamma}^{(p)}$ is open in $G(\mathbb{Q}_p)$, for every $p \in S$. Indeed, let $G = G^{(1)} \cdot \cdots \cdot G^{(l)}$ be a decomposition of G as an almost direct product of its \mathbb{Q}_p-simple factors. Then the Lie algebra \mathfrak{g} of G is the direct sum of the Lie algebras $\mathfrak{g}^{(i)}$ of $G^{(i)}$, $i = 1, \ldots, l$. Moreover, since $G^{(l)}$ is \mathbb{Q}_p-simple, the algebra $\mathfrak{g}^{(l)}_{\mathbb{Q}_p}$ does not have any proper ideals. Now, by the p-adic analogue of Cartan’s theorem on closed subgroups (see [6], Ch. III, §8, n°2, Thm. 2), $H(p)$ is a p-adic Lie group. Let $\mathfrak{h}(p)$ denote its Lie algebra. Since Γ is Zariski-dense in G, $\mathfrak{h}(p)$ is an ideal of $\mathfrak{g}_{\mathbb{Q}_p}$ (cf. [14], Proposition 3.4), and therefore $\mathfrak{h}(p) = \oplus_{i \in I} \mathfrak{g}^{(i)}_{\mathbb{Q}_p}$ for some subset $I \subset \{1, \ldots, l\}$. If we assume that there is an $i \in \{1, \ldots, l\} - I$, then $F := H(p) \cap \overline{G}^{(i)}(\mathbb{Q}_p)$, where $\overline{G}^{(i)} = G^{(1)} \cdot \cdots \cdot G^{(i-1)}G^{(i+1)} \cdots G^{(l)}$, has the same Lie algebra as $H(p)$, hence is open in $H(p)$. But being a closed subgroup of $G(\mathbb{Z}_p)$, the subgroup $H(p)$ is compact, so $[H(p): F] < \infty$, and hence $[\Gamma : \Gamma \cap \overline{G}^{(i)}] < \infty$. This contradicts the fact that Γ is Zariski-dense in G, proving that in fact $\mathfrak{h}(p) = \mathfrak{g}_{\mathbb{Q}_p}$, and therefore $H(p)$ is open in $G(\mathbb{Q}_p)$, as claimed.
Now, let $H = \Gamma^{(S)}$. It suffices to show that

$$H \cap G(Q_p) \text{ is open in } G(Q_p),$$

for all $p \in S$. If $\pi_p: G_S \to G(Q_p)$ is the projection corresponding to p, then $\pi_p(H) = H(p)$. Since $H(p)$ possesses an open pro-p subgroup, it follows that for a Sylow pro-p subgroup H_p of H, the subgroup $\pi_p(H_p)$ is open in $H(p)$, hence also in $G(Q_p)$. But $\pi_q(H_p)$ is finite for any $q \neq p$, so $H_p \cap G(Q_p)$ is open in H_p, and (4) follows.

Remark 5. The strong approximation theorem of Nori and Weisfeiler (see [11], [20], and also [12]) provides a substantially more precise information about the closure of Γ, but the (almost obvious) assertion of Lemma 2 is sufficient for our purpose.

Proof of Theorem 2. Since Γ is finitely generated, there exists a finitely generated subring R of K such that $\Gamma \subset G(R) = G \cap GL_n(R)$. Fix a maximal K-torus T of G, and let L denote the splitting field of T over K. Let r be the number of nontrivial conjugacy classes of the Weyl group $W(G,T)$. Using Proposition 1, one can find a set S consisting of r distinct rational primes such that for each $p \in S$, there exists an embedding $\varepsilon_p: L \hookrightarrow Q_p$ so that $\varepsilon_p(R) \subset Z_p$. Let v_p denote the restriction of the p-adic valuation to $K \simeq \varepsilon_p(K)$ (in the sequel, we will make no distinction between p and v_p; in particular, we will think of S as also as the set of all the v_p's). Then $K_{v_p} = Q_p$ and G splits over K_{v_p}, for all $p \in S$. This means that Theorem 3 applies in our set-up, and we let U denote the open subset of G_S given by assertion (ii) of that theorem. Now if G is \mathbb{R}-isotropic, by [15], Γ contains an \mathbb{R}-regular element y, and then by Lemma 3.5 of [16], there exists a nonempty Zariski-open subset W of G (W can clearly be assumed to be defined over K) such that for any $x \in G(\mathbb{R}) \cap W$, the element xy^m is \mathbb{R}-regular for all sufficiently large m. If G is anisotropic over \mathbb{R}, we let $y = 1$ and $W = G$. Let $W_S = \prod_{v \in S} W(K_v) \subset G_S$.

Let δ_S be as in the preceding lemma and H be the closure of $\delta_S(\Gamma)$ in G_S. According to Lemma 2, H is open. Hence by property (a) of U described in Theorem 3(ii), $H \cap U \neq \emptyset$. It follows that $X := H \cap U \cap W_S$ is a nonempty open subset of H, and $\delta_S(\Gamma) \cap X$ is dense in X. Let x be an element of Γ such that $\delta_S(x) \in X$. There exists an open normal subgroup Ω of $\prod_{p \in S} G(\mathbb{Z}_p)$, of index, say, d, such that

$$\delta_S(x)\Omega \subset U.$$

For all large positive integers m, say for $m \geq s(x)$, the element xy^{dm} is \mathbb{R}-regular. Since $\delta_S(y)^d \in \Omega$, it follows from (5) that $\delta_S(xy^{dm}) \in \delta_S(\Gamma) \cap U$, so by Theorem 3, xy^{dm} is a \mathbb{R}-regular K-quasi-irreducible anisotropic element without components of finite order. The Zariski-closure of the set $\{xy^{dm} \mid m \geq s(x)\}$ clearly contains x. As x was an arbitrary element of Γ such that $\delta_S(x) \in X$, and the set of such elements is a Zariski-dense subset of G, we conclude that the subset of
\(\Gamma\) consisting of all \(\mathbb{R}\)-regular \(K\)-quasi-irreducible anisotropic elements without components of finite order is Zariski-dense in \(G\). This proves Theorem 2. \(\square\)

Remark 6. Let \(K\) and \(G\) be as in Theorem 2 and \(\Gamma\) be a finitely generated Zariski-dense subgroup of \(G(K)\). Let \(L, S,\) for \(p \in S, \varepsilon_p, H, U\) and \(X\) be as in the proof of Theorem 2 and \(\delta_S\) be as in Lemma 2. We fix an element \(x\) of \(\Gamma\) such that \(\delta_S(x) \in X\). Let \(\Omega\) be an open normal subgroup of \(\prod_{p \in S} G(\mathbb{Z}_p)\) as in the proof of Theorem 2 and let \(\Delta = \delta_S^{-1}(\delta_S(\Gamma) \cap \Omega)\). As \(H\) is compact, \(\Delta\) has finite index in \(\Gamma\), hence it is Zariski-dense in \(G\). By Theorem 6.8 of [1], there exists a finite subset \(M\) of \(\Delta\) such that for every \(g \in G(\mathbb{R})\) at least one of the elements \(\gamma g, \gamma \in M,\) is \(\mathbb{R}\)-regular. Let \(Q\) be the set of \(\mathbb{R}\)-regular elements in \(x\Delta\). Then we have \(x\Delta = M^{-1}Q\).

Clearly,
\[
\delta_S(x\Delta) \subset \delta_S(x)\Omega \subset U,
\]
and hence, every element of \(x\Delta\) is \(K\)-quasi-irreducible anisotropic and none of them have components of finite order. This implies the following strengthening of Theorem 2:

The subgroup \(\Gamma\) is the union of finitely many translates of the subset consisting of all \(\mathbb{R}\)-regular \(K\)-quasi-irreducible anisotropic elements which do not have components of finite order.

In conclusion, we point out that \(\mathbb{R}\)-regular elements are closely related to the so-called *proximal* elements, which are defined as invertible linear transformations of a finite dimensional vector space, over a nondiscrete locally compact field, which have a unique eigenvalue of maximum absolute value which, in addition, occurs with multiplicity one. We recall that according to Lemma 3.4 of [16] an element \(g \in G(\mathbb{R})\) is \(\mathbb{R}\)-regular if and only if the element \(\rho(g)\) is proximal, where \(\rho\) is the representation of \(G(\mathbb{R})\) constructed as follows: let \(G(\mathbb{R}) = KAN\) be a fixed Iwasawa decomposition, \(g\) and \(n\) be the (real) Lie algebras of \(G(\mathbb{R})\) and \(N\) respectively, and \(k = \dim n\); let \(\sigma\) denote the representation of \(G(\mathbb{R})\) on \(\wedge^k g\) obtained from the adjoint representation, and let \(V\) be the smallest \(G(\mathbb{R})\)-submodule of \(\wedge^k g\) containing the 1-dimensional subspace \(\wedge^k n\); then \(\rho\) is the restriction of \(\sigma\) to \(V\).

Proximal elements were used by H. Furstenberg to analyze the “universal boundary” of a Lie group, and more recently in [2] to investigate the Auslander problem about properly discontinuous groups of affine transformations (not to mention the fact that proximal elements in the nonarchimedean set-up were used by J. Tits in the proof of his celebrated theorem on the existence of free subgroups in nonvirtually solvable linear groups).

Gol’dsheid and Margulis ([9]) have proved that if \(G\) is a connected semisimple \(\mathbb{R}\)-subgroup of \(GL(V)\) such that \(V\) is irreducible as a \(G\)-module, and \(G(\mathbb{R})\) contains a proximal element, then so does any Zariski-dense subsemigroup \(\Gamma\) of \(G(\mathbb{R})\) (a more precise result in this direction was obtained in [1]). Using the result of Gol’dsheid-Margulis in place of the result of [15] and an obvious analogue
of Lemma 3.5 of [16] for proximal elements and repeating verbatim the above argument, one obtains the following.

Theorem 4. Let G be a connected semisimple real algebraic subgroup of $GL(V)$ such that V is irreducible as a G-module and $G(\mathbb{R})$ contains a proximal element. Then any Zariski-dense subsemigroup Γ of $G(\mathbb{R})$ contains a regular semisimple proximal element x which generates a Zariski-dense subgroup of the torus $T := Z_G(x)$.

Acknowledgements

Both the authors were supported by grants from NSF and BSF. They thank Margulis and Soifer for their question.

References

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MICHIGAN, ANN ARBOR, MI 48109, U.S.A.
E-mail address: gprasad@umich.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF VIRGINIA, CHARLOTTESVILLE, VA 22904, U.S.A.
E-mail address: asr3x@wyl.math.virginia.edu