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GAUSS MAPS OF THE MEAN CURVATURE FLOW

Mu-Tao Wang

Abstract. Let F : Σn × [0, T ) → R
n+m be a family of compact immersed sub-

manifolds moving by their mean curvature vectors. We show the Gauss maps
γ : (Σn, gt) → G(n, m) form a harmonic heat flow with respect to the time-
dependent induced metric gt. This provides a more systematic approach to inves-
tigating higher codimension mean curvature flows. A direct consequence is any
convex function on G(n, m) produces a subsolution of the nonlinear heat equation
on (Σ, gt). We also show the condition that the image of the Gauss map lies in a
totally geodesic submanifold of G(n, m) is preserved by the mean curvature flow.
Since the space of Lagrangian subspaces is totally geodesic in G(n, n), this gives
an alternative proof that any Lagrangian submanifold remains Lagrangian along
the mean curvature flow.

1. Introduction

The maximum principle has been exploited by S-T. Yau and his coauthors
to obtain gradient estimates for various geometric nonlinear partial differential
equations since the ’70s. The principal idea is to identify a suitable expression of
the gradient of the solution to which the differential operator (usually Laplace
or heat operator) is applied. The prototype is the so-called Bochner formula
and the geometry (curvature) of the manifold arises naturally in the calculation.
Such techniques were extended by R. Hamilton to Ricci flows which are nonlinear
parabolic systems. The curvature as second derivatives of the metric satisfies
a certain parabolic system and the geometry of the space of curvature is used
to derive estimates. A powerful theorem of Hamilton says any convex invariant
subset of the space of curvature is preserved by the Ricci flow.

Such curvature estimates were extended to the mean curvature flow of hyper-
surfaces by G. Huisken. Recall a mean curvature flow is an evolution equation
under which a submanifold deforms in the direction of its mean curvature vec-
tor. The mean curvature flow of an immersion F : Σn → R

n+m is a family of
immersions parametrized by t, F : Σ × [0, T ) → R

n+m that satisfies
d

dt
F (x, t) = H(x, t)

F0 = F.

We shall denote the image F (·, t) by Σt, then H(x, t) is the mean curvature
vector of Σt at F (x, t).
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Codimension-one mean curvature flows have been studied by Huisken et al
and many beautiful results have been obtained. In this paper, we shall focus on
higher codimension mean curvature flows, i.e. the m > 1 case.

Consider a system with n variables and n + m functions. The configuration
space of the differentials of the solutions consists of n vectors in R

n+m. If we
assume the n vectors are linear independent, up to isometry this is parametrized
by the Grassmannian G(n, m) of the space of n-dimensional subspaces in R

n+m.
In this paper, we investigate the geometry of Grassmannian to obtain estimates
on first derivatives of the mean curvature flow. Recall the Gauss map γ maps
(Σ, gt) into the Grassmannian G(n, m) by sending x ∈ Σ to TxΣt ⊂ R

n+m, the
tangent space of Σ at x .

Theorem A. The Gauss maps of a mean curvature flow γ : (Σ, gt) → G(n, m)
form a harmonic map heat flow, i.e.

d

dt
γ = tr∇dγ

where dγ is considered as a section of T ∗Σt ⊗ γ−1TG(n, m) and the trace is
taken with respect to the induced metric gt.

Theorem A was conjectured by R. Hamilton and T. Ilmanen in private com-
munications with the author. This generalizes a famous theorem of Ruh-Vilms
[13] which states the Gauss map of a minimal submanifold is a harmonic map.

An immediate corollary of Theorem A is

Corollary A. If ρ is any convex function on G(n, m), then γ ◦ρ is a subsolution
of the (nonlinear) heat equation.

(
d

dt
− ∆)γ ◦ ρ ≤ 0

where ∆ is the Laplace operator of the induced metric gt on Σ.

In the stationary case, a convex function on G(n, m) gives a subharmonic
function on a minimal submanifold. This approach was developed by Fischer-
Colbrie[7], Hildebrandt-Jost-Widman[10], Jost-Xin[11][12], Tsui-Wang[15] and
[20] to obtain Bernstein type results for higher codimension minimal submani-
folds.

When Σ is compact, it follows from the maximum principle that if γ(Σ0) lies
in a convex set of G(n, m), so does γ(Σt) as long as the flow exists smoothly. In
the codimension-one case, the Grassmannian is a sphere and any hemisphere is
a convex subset. This implies that the condition of being a graph over an affine
hyperplane is preserved along the mean curvature flow, a key step in Ecker-
Huisken’s [4] [5] estimates for hypersurface flows.

Any n form on R
n+m naturally defines a function on G(n, m). We identify a

class of convex functions on G(n, m) in the following theorem.
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Theorem B. Let Ω be a simple unit n form on R
n+m, then − ln Ω, as a function

on G(n, m) is convex on a set Ξ which properly contains {Ω ≥ 1
2}.

The set Ξ will described explicitly in §3. That − ln Ω is convex on the set
{Ω ≥ 1

2} was proved implicitly by Jost-Xin in [11]. Instead of calculating the
function Ω, the authors considered the distance function on G(n, m). Our ap-
proach makes the calculation simpler and more explicit, thus a stronger version
is obtained.

We remark that although Theorem A and B are conceptually easier to under-
stand, all applications rely on explicit formulae. More important information is
contained in the “extra” terms. The explicit formula is derived in [19] and has
been applied to study long-time existence and convergence of mean curvature
flows [19] and Bernstein-type problems for minimal submanifolds in [15] and
[20].

We give another example to illustrate Theorem A. On R
4, take three or-

thonormal self-dual two-forms α1, α2, α3 and anti-self-dual two-forms β1, β2, β3

as in §3 of [17]. These forms serve as coordinate functions on G(2, 2) under the
identification

x ∈ G(2, 2) → (αi(x), βi(x))

An element x in G(2, 2) satisfies
∑3

i=1(αi(x))2 =
∑3

i=1(βi(x))2 = 1
2 . Therefore

G(2, 2) � S2
+( 1√

2
)×S2

−( 1√
2
). It is clear that each αi is a convex function on the

hemisphere where αi > 0. Each αi can be considered as a Kähler form and a
surface is called symplectic with respect to αi if the Gauss map lies in the region
{αi > 0}. This fact is implicit in the derivation of [17] where we show being
symplectic is preserved along the mean curvature flow in a Kähler-Einstein four
manifold, see also Chen-Tian[3].

Indeed, the condition that the image of the Gauss map lies in the set {αi = 0}
which corresponds to a great circle on S2

+ is also preserved. It is a special case
of the following general theorem.

Theorem C. Suppose Σt ⊂ R
n+m , t ∈ [0, T ) are compact immersed subman-

ifolds evolving by the mean curvature flow. If γ(Σ0) lies in a totally geodesic
submanifold of G(n, m), so does γ(Σt) for t ∈ [0, T ).

A compact Lagrangian submanifold remains Lagrangian under the mean cur-
vature flow in a Kähler-Einstein manifold, see for example Smoczyk [14]. When
the ambient space is C

n, since the Lagrangian Grassmannian U(n)/SO(n) is
totally geodesic in G(n, n), this also follows from Theorem C.

Theorem A and C are proved in §2. Theorem B is proved in §3. In §4, we
prove Ξ (see Theorem B) is a convex subset of the Grassmannian. In §5, we
discuss briefly the necessary adaptation when the ambient space is a general
Riemannian manifold.
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2. Gauss Maps

We refer to [22], [7], [10], [11] for general facts on Grassmannnian geometry.
We shall adopt the description G(n, m) = SO(n + m)/SO(n) × SO(m). The
tangent space of G(n, m) at the identity can be identified with the space of block
matrices of the form [

0 A
−At 0

]

where A is an n × m matrix. The homogeneous metric on G(n, m) is ds2 =∑
A2

iα.
Let P ∈ G(n, m) be an n-dimensional subspace and TP G = TP G(n, m) be the

tangent space of G(n, m) at P . Let e1(s)∧ · · ·∧ en(s) represent a one-parameter
family of n planes with {e1(s), · · · , en(s)} as their orthonormal bases so that
e1(0) ∧ · · · ∧ en(0) = e1 ∧ · · · ∧ en represents P . We have

d

ds
|s=0e1(s) ∧ · · · ∧ en(s) = e′1(0) ∧ · · · ∧ en + · · · + e1 ∧ · · · ∧ e′n(0).

By the identification TP G ≡ Hom(P, P⊥), we may assume e′i(0) lies in the
orthogonal complement P⊥. The length of this tangent vector in ∧n

R
n+m is

(
∑ |e′i(0)|2) 1

2 . This element is identified with
∑

e∗i ⊗ e′i(0) ∈ Hom(P, P⊥) by
the natural pairing through e1 ∧ · · · ∧ en. It is clearly an isometry.

Now suppose Σ is an immersed submanifold in R
n+m with Gauss map γ :

Σ → G(n, m). Thus we have a canonical identification of bundles

γ−1TG ≡ T ∗Σ ⊗ NΣ.(2.2.1)

We recall the statement of Theorem A and present the proof.

Theorem A. The Gauss maps of a mean curvature flow γ : (Σ, gt) → G(n, m)
form a harmonic map heat flow, i.e.

d

dt
γ = tr∇dγ

where dγ is considered as a section of T ∗Σt ⊗ γ−1TG(n, m) and the trace is
taken with respect to the induced metric gt.

Proof. Recall from Ruh-Vilms[13], the tension field tr∇dγ of the Gauss map γ
can be identified with ∇H, where ∇ is the connection on the normal bundle.
We can identify dγ ∈ Γ(T ∗Σ ⊗ γ−1(TG)) with the second fundamental form
A ∈ Γ(T ∗Σ ⊗ T ∗Σ ⊗ NΣ) through (2.2.1). Now tr∇A = ∇H by the Codazzi
equation.

It suffices to show d
dtγ = ∇H. Express each element in T ∗Σ⊗NΣ as

∑
i e∗i ⊗vi,

vi ∈ NΣ, the corresponding tangent vector in the Grassmannian is

v1 ∧ e2 ∧ · · · ∧ en + · · · + e1 ∧ · · · ∧ en−1 ∧ vn.
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With the identification, it is clear that the element corresponds to ∇H is

∇e1H ∧ e2 ∧ · · · ∧ en + · · · + e1 ∧ · · · ∧ ∇enH.

To calculate dγ
dt at any space-time point (p, t), we fix a coordinate system

x1, · · · , xn on Σ.
The Gauss map is determined by

γt =
1√

det gij

∂Ft

∂x1
∧ · · · ∧ ∂Ft

∂xn
.

We may assume ∂F
∂xi

= ei forms an orthonormal basis at (p, t). Recall the
following evolution equation of the volume element:

d

dt

√
det gij = −|H|2√det gij .

On the other hand, d
dt

∂Ft

∂xi = ∂H
∂xi . By decomposition into tangent and normal

parts, we have

∂H

∂xi
= 〈∂H

∂xi
,

∂F

∂xj
〉gjk ∂F

∂xk
+ ∇ ∂F

∂xi
H.

Using 〈 ∂H
∂xi ,

∂F
∂xj 〉 = −〈H, ∂2F

∂xi∂xj 〉, it is not hard to check

d

dt
|t=0γt = ∇e1H ∧ e2 ∧ · · · ∧ en + · · · e1 ∧ · · · ∧ ∇enH

and the theorem is proved.

Now let ρ be any function on G(n, m), the composite function ρ◦γ : (Σ, gt) →
R satisfies the following equation

d

dt
ρ ◦ γ = dρ(

d

dt
γ) = dρ(tr∇dγ)

where tr∇dγ is the tension field. The following calculation can be found in
Proposition (2.20) of Eells-Lemaire[6]

∆t(ρ ◦ γ) = tr∇dρ(dγ, dγ) + dρ(tr∇dγ)

where ∆t is the Laplace operator on Σt.
Therefore

(
d

dt
− ∆)ρ ◦ γ = −tr∇dρ(dγ, dγ).(2.2.2)

In case ρ is convex, ∇dρ is a positive definite quadratic form and Corollary A
follows from this equation. The following theorem is a direct consequence of the
maximum principle of parabolic equations.

Theorem 2.1. Suppose Σt ⊂ R
n+m are compact immersed submanifolds evolv-

ing by mean curvature flow. If γ(Σ0) lies in a convex set of G(n, m), so does
γ(Σt) for t ∈ [0, T ).
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Next we recall the statement of Theorem C and present the proof.

Theorem C. Suppose Σt ⊂ R
n+m, t ∈ [0, T ) are compact immersed subman-

ifolds evolving by the mean curvature flow. If γ(Σ0) lies in a totally geodesic
submanifold of G(n, m), so does γ(Σt) for t ∈ [0, T ).

Proof. Let T be a totally geodesic submanifold and d(·,T) be the distance func-
tion to T. We consider the second derivative of the square of the distance func-
tion, r(·) = d2(·,T). Fix p0 /∈ T, we assume p0 lies in a sufficiently small tubular
neighborhood of T without focal points. Let α0(t), 0 ≤ t ≤ 1, be a minimizing
geodesic from p0 to p ∈ T which realizes the distance to T. We assume α0(t)
is parametrized so that |α′

0(t)| = d(p0, p) = d(p0,T). Let v(s),−ε ≤ s ≤ ε be
a normal geodesic through p0 = v(0) such that X = v′(0) is perpendicular to
α′(0).

Following Proposition (3.11) of Eells-Lemaire [6] (see also Bishop-O’Neill[1]),
there exists a parametrization

α : [−ε, ε] × [0, 1] → G(n, m)

such that each αs(t) = α(s, t), 0 ≤ t ≤ 1 is a minimizing geodesic from v(s) to
T and α(s, 0) = v(s). Denote T = ∂α

∂t and V = ∂α
∂s , then V is a Jacobi field, i.e.

∇T∇T V = −R(T, V )T .
Thus V (0, 0) = v′(0) and V (s, 1) is tangent to T because α(s, 1) is contained

in T. Also notice that

〈V, T 〉 = 0 at both p0 = α(0, 0) and p = α(0, 1).(2.2.3)

The second variation can be calculated as in Eells-Lemaire [6] and we obtain

∂2r

∂s2
|s=0 = 〈∇V V, T 〉|10 +

∫ 1

0

〈∇T V,∇T V 〉 − 〈R(T, V )T, V 〉 dt.(2.2.4)

Now 〈∇V V, T 〉 = 0 at p0 = α(0, 0) because v(s) is a geodesic. At p = α(0, 1),
T is normal to T and V is tangent to T, therefore 〈∇V V, T 〉 represents a second
fundamental form of T; this terms vanishes as well because T is totally geodesic.

We claim 〈V, T 〉 = 0 along α0. Indeed, taking derivative of 〈V, T 〉 with respect
to t twice, we obtain

T 〈∇T V, T 〉 = 〈∇T∇T V, T 〉 = −〈R(T, V )T, T 〉 = 0.

Thus 〈∇T V, T 〉 = T 〈V, T 〉 is a constant function in t, or 〈V, T 〉 is a linear function
in t along α0. Since 〈V, T 〉 = 0 at p0 and p, we conclude 〈V, T 〉 = 0 along α0.

From 〈V, T 〉 = 0, we deduce 〈R(T, V )T, V 〉 ≤ K1|V |2|T |2 along α0, where
K1 is an upper bound of the sectional curvature of G(n, m). Moreover, along
α0 we have |V |2 ≤ K2|X|2 for a constant K2 that depends on the sectional
curvature and the size of the tubular neighborhood by a comparison argument.
Now (2.2.4) implies

∂2r

∂s2
|s=0 ≥ −K3|X|2
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or

∇dr(X, X) ≥ −K3|X|2
at any point p0 in a sufficiently small tubular neighborhood of T.

Combine this equation with equation (2.2.2), we derive

(
d

dt
− ∆)(r ◦ γ) ≤ K ′r ◦ γ.(2.2.5)

K ′ involves the second fundamental form (recall A = dγ), but as long as the flow
exists smoothly K ′ is bounded. The assumption implies r ◦ γ = 0 initially and
this remains true afterwards by applying the maximum principle to (2.2.5).

3. Applications

Note the summation convention, repeated indices are summed over, is adopted
in the rest of this article. We first define the set Ξ in the statement of Theorem
B. Ω, as a simple unit n-form, is dual to an n-subspace Q. Given any P that
can be written as the graph of a linear transformation LP : Q → Q⊥ over Q.
Denote by λi(P ) the singular values of LP or the eigenvalues of the symmetric

matrix
√

LT
P LP . Ξ is then defined by

Ξ = {P ∈ G(n, m) | P is a graph overQ and |λiλj | ≤ 1 for any i �= j.}(3.3.1)

It is not hard to see Ω(P ) = 1√∏
(1+λ2

i )
. Therefore

Ω ≥ 1
2

implies |λiλj | ≤ 1.

Theorem B. Let Ω be a simple unit n form on R
n+m, then − ln Ω, as a function

on G(n, m) is convex on Ξ which properly contains the set {Ω ≥ 1
2}.

Proof. Given P = e1∧· · ·∧en ∈ G(n, m) and suppose the orthogonal complement
P⊥ is spanned by {en+α}α=1···m. By a formula of Wong[22], a geodesic through
P parametrized by arc length is given as Ps spanned by {ei + ziα(s)en+α}i=1···n
such that Z = [ziα(s)] is a n × m matrix which satisfies the following ordinary
differential equation:

Z ′′ − 2Z ′ZT (I + ZZT )−1Z ′ = 0.

We assume ziα(0) = 0, i.e. P0 = P , then the geodesic equation implies
z′′iα(0) = 0. We also denote z′iα(0) = µiα in the following calculation.

We shall calculate the second derivative of the ln of

p(s) = Ω(Ps) =
1√

det gij

Ω(e1 + z1α(s)en+α, · · · , en + znα(s)en+α)(3.3.2)

where gij(s) = δij + ziα(s)zjα(s). By direct calculation,

g′ij(0) = 0, and g′′ij(0) = 2µiαµjα.
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Therefore g = det gij satisfies

(
1√
g
)′(0) = 0, and (

1√
g
)′′(0) = −µ2

iα.(3.3.3)

Differentiating equation (3.3.2) and plugging in (3.3.3), we obtain

p′(0) = µ1αΩ(en+α, e2, · · · , en) + · · · + µnαΩ(e1, · · · , en−1, en+α)

p′′(0) = −(
∑
i,α

µ2
iα)Ω(e1, e2, · · · , en) + 2[µ1αµ2βΩ(en+α, en+β , · · · , en) + · · · ],

the expression in the bracket runs through (i, j) with i < j, the general form
is µiαµjβΩ(e1, · · · , en+α, · · · , en+β , · · · , en) where we replace ei and ej by en+α

and en+β , respectively. Now

(ln p)′′ =
1
p2

[p′′p − (p′)2]

We shall assume Ω(P ) > 0, therefore P can be written as a graph over the
plane dual to Ω. By singular value decomposition, we can choose the basis
e1, · · · en for P and en+1, · · · en+m for P⊥ such that

ei =
1√

1 + λ2
i

(ai + λian+i) and en+α =
1√

1 + λ2
α

(an+α − λαaα)(3.3.4)

for i = 1 · · ·n and α = 1 · · ·m where we pretend λi = 0 and λα = 0 for
i, α > min{m, n}. Here {ai} is an orthonormal basis for the plane dual to Ω and
{an+α} an orthonormal basis for the orthogonal complement.

p′(0) = −µi,n+iλip(0)

p′′(0) = [−(
∑
i,α

µ2
i,n+α) + 2

∑
i<j

µi,n+iµj,n+jλiλj − 2
∑
i<j

µi,n+jµj,n+iλiλj ]p(0)

Therefore

(ln p)′′(0) = −(
∑

i,n+α

µ2
i,n+α) + 2

∑
i<j

µi,n+iµj,n+jλiλj

− 2
∑
i<j

µi,n+jµj,n+iλiλj − (
∑

i

µi,n+iλi)2

= −(
∑
i,α

µ2
i,n+α) − 2

∑
i<j

µi,n+jµj,n+iλiλj −
∑

i

(µi,n+iλi)2.

(3.3.5)

By completing square we derive − ln p is a convex function of s if |λiλj | ≤ 1
for any i �= j. Since we can perform this calculation in any direction, − ln Ω is a
convex function on Ξ.

Theorem B should be compared with the explicit formula derived in [19].
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4. Grassmannian Convexity of Ξ

First we give a new characterization of Ξ in terms of the positivity of a bilinear
form. Consider the bilinear form S on R

n+m defined by

S(X, Y ) = 〈π1(X), π1(Y )〉 − 〈π2(X), π2(Y )〉 for X, Y ∈ R
n+m

where π1 and π2 are projections from R
n+m = R

n ⊕ R
m to R

n and to R
m,

respectively. Let P be an n-subspace of R
n+m that is a graph over the base

Q ∼= R
n; we denote the restriction of S to P by S|P .

For any (not necessarily orthonormal) basis {ei} of P , S|P is represented by

Sij = S(ei, ej).

We also define

gij = 〈ei, ej〉 andσj
i =

1
2
(gikSkj + gjkSki)

where gij is the inverse to gij . Then σ = (σj
i ) : P → P becomes a self-adjoint

map and satisfies

〈σ(P )(X), Y 〉 = S|P (X, Y ).

σ induces a linear map on ∧2P by

σ(X ∧ Y ) = σ(X) ∧ Y + X ∧ σ(Y ).

The collection {ei ∧ ej}i<j forms a basis for ∧2P and in terms of this basis

σ(ei ∧ ej) =
∑
k,l

σk
i ek ∧ ej + σl

jei ∧ el =
∑
k<l

(σk
i δl

j + σl
jδ

k
i − σl

iδ
k
j − σk

j δl
i)ek ∧ el.

We can use σ to characterize Ξ, in fact

Ξ = {P ∈ G(n, m) | min
ω∈∧2P

〈σ(P )(ω), ω〉 ≥ 0}.
To see this, apply singular value decomposition to find an orthonormal basis

as in the last section {ei = 1√
1+λ2

i

(ai + λian+i)} for P , then

Sij = σi
j =

1 − λ2
i

1 + λ2
i

δij .

The coefficient of σ on ∧2P is

(4.4.1) σ
(kl)
(ij) = σk

i δl
j + σl

jδ
k
i =

1 − λ2
i

1 + λ2
i

δk
i δl

j +
1 − λ2

j

1 + λ2
j

δl
jδ

k
i

=
2(1 − λ2

i λ
2
j )

(1 + λ2
i )(1 + λ2

j )
δk
i δl

j

if i < j and k < l. Therefore σ(P ) being positive definite on ∧2P is the same as
the area-decreasing condition |λiλj | ≤ 1.

Now we use this characterization by σ to prove the convexity of Ξ.

Theorem 4.1. Ξ is a convex subset with respect to the Grassmannian metric.
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Proof. The proof is inspired by Hamilton’s maximum principle [8] [9] for tensors.
Let P be a boundary point of Ξ, so σ(P ) is non-negative definite on ∧2P . Let
ω ∈ ∧2P be a zero eigenvector of σ(P ) so that 〈σ(P )ω, ω〉 = 0. Consider a
(Grassmannian) geodesic P (s) through P and an extension of ω, ωs on P (s)
and denote f(s) = 〈σ(P (s))(ωs), ωs〉. To check the convexity, it suffices to show
for any geodesic P (s) we can find an (arbitrary) extension ωs so that f ′(0) = 0
and f ′′(0) < 0. We remark that an arbitrary extension of ω is good enough
as the minimum function minω∈∧2P 〈σ(P )(ω), ω〉 is always less than or equal to
f(s) along P (s).

As in the previous section, we choose an orthonormal basis {ei} for P , so
that P = e1 ∧ · · · ∧ en ∈ G(n, m) and suppose the orthogonal complement P⊥

is spanned by {en+α}α=1···m. A geodesic parametrized by arc length is given as
Ps spanned by {ei + ziα(s)en+α}i=1···n.

Denote

Sij(s) = S(ei + ziα(s)en+α, ej + zjβ(s)en+β),(4.4.2)

gij(s) = 〈ei + ziα(s)en+α, ej + zjβ(s)en+β〉 = δij + ziα(s)zjα(s).

For any element of ∧2Ps,

ωs =
∑
i<j

ωij(s)(ei + ziα(s)en+α) ∧ (ej + zjβ(s)en+β),

we have

|ωs|2 =
∑

i<j,k<l

ωij(s)ωkl(s)(gik(s)gjl(s) − gil(s)gjk(s)).(4.4.3)

We shall choose ωs so that |ωs|2 is constant up to second order at s = 0.
On the other hand,

f(s) = 〈σ(Ps)(ωs), ωs〉 =
∑

i<j,k<l

ωij(s)ωkl(s)σ(ij)(kl)(s)

where

σ(ij)(kl)(s) = Sik(s)gjl(s) + Sjl(s)gik(s) − Sil(s)gjk(s) − Sjk(s)gil(s).(4.4.4)

We recall that ziα(0) = z′′iα(0) = 0 and z′iα(0) = µiα, also

g′ij(0) = 0, and g′′ij(0) = 2µiαµjα.

In the following calculations, all derivatives are taken at s = 0.
By equation (4.4.2),

S′
ij = µiαS(en+α, ej) + µjβS(ei, en+β), S′′

ij = 2µiαµjβS(en+α, en+β),

By (4.4.4), we derive for i < j and k < l,

σ′
(ij)(kl) = S′

ikδjl + S′
jlδik − S′

ilδjk − S′
jkδil

and

(σ(ij)(kl))′′ = S′′
ikδjl+S′′

jlδik−S′′
ilδjk−S′′

jkδil+Sikg′′jl+Sjlg
′′
ik−Silg

′′
jk−Sjkg′′il.
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Since ω is a zero eigenvector of σ on ∧2P , ω = ei ∧ ej where ei and ej are
eigenvectors of σ on P . By reordering the basis, we may assume ω = e1 ∧ e2.
We extend ω to ωs so that (ωij)′(0) = 0 to make (|ωs|2)′(0) = 0.

Now

f ′(0) = (σ(ij)(kl))′ωijωkl = (σ(12)(12))′ = 2µ1αS(en+α, e1) + 2µ2αS(en+α, e2)

By (3.3.4), S(en+α, ek) = − 2λk

1+λ2
k
δαk, so f ′(0) = 0 implies

λ1

1 + λ2
1

µ11 +
λ2

1 + λ2
2

µ22 = 0.(4.4.5)

On the other hand, f(0) = 0 implies σ
(12)
(12) = 0 or λ1λ2 = 1. It follows that

λ1
1+λ2

1
= λ2

1+λ2
2

and by (4.4.5),

µ2
11 = µ2

22.(4.4.6)

To keep (|ωs|2)′′(0) = 0, it suffices to set

2(ω12)′′(0) = −g′′11 − g′′22 = −2
∑
α

µ2
1α − 2

∑
α

µ2α2 .

We shall assume m ≥ n in the following calculation, the case m < n can be car-
ried out similarly. The second derivative of f can be calculated in the following.

−(f)′′(0) = −(σ(ij)(kl))′′ωijωkl − (σ(ij)(kl))(ωij)′′ωkl − (σ(ij)(kl))ωij(ωkl)′′

= −(σ(12)(12))′′ − 2(ω12)′′σ(12)(12)

= −2µ1αµ1βS(en+α, en+β) − 2µ2αµ2βS(en+α, en+β) − 2(
∑
α

µ2
1α)S22

− 2(
∑
α

µ2
2α)S11 + 2(

∑
α

µ2
1α + µ2

2α)(S11 + S22)

Write Tαα = S(en+α, en+α) and deduce from (3.3.4) T11 = −S11 and T22 =
−S22, the last expression is equal to

2
∑
α

µ2
1αS11 + 2

∑
α

µ2
2αS22 + 2

∑
k

µ2
1αTαα + 2

∑
k

µ2
2αTαα

= 4µ2
11S11 + 4µ2

22S22 + 2µ2
12(S11 + S22) + 2µ2

21(S11 + S22)

+ 2
∑
α≥3

µ2
1α(S11 − Tαα) + 2

∑
α≥3

µ2
2α(S22 − Tαα).

Now S11 +S22 = 0 and it is not hard to check S11 −Tαα and S22 −Tαα are both
non-negative for any α ≥ 3. Therefore

−f ′′(0) ≥ 4µ2
11S11 + 4µ2

22S22.

It follows from equation (4.4.6) that f ′′(0) is non-positive and the theorem is
proved.

We remark a similar calculation in the mean curvature flow case is presented
in Tsui-Wang [16].
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5. Riemannian Ambient Manifolds

When applying theorem A and C to general ambient Riemannian submanifold
M , the validity of the theorem depends on the curvature of M . The Gauss
map γ is a section of the Grassmannian bundle G over the ambient space M .
Now γ−1(TG) can be identified with T ∗Σ ⊗ NΣ as before. dγ is a section of
T ∗Σ ⊗ T ∗Σ ⊗ NΣ which is exactly the second fundamental form A.

By the Codazzi equation,

tr∇dγ = tr∇A = ∇H + (R(·, ek)ek)⊥(5.5.1)

where R(X, Y )Z = −∇X∇Y Z+∇Y ∇XZ−∇[X,Y ]Z is the curvature operator of
M and {ek}k=1···n is an orthonormal basis for TΣ. Notice that our convention
is 〈R(X, Y )X, Y 〉 > 0 if M has positive sectional curvature. (5.5.1) is considered
as an equation of sections of T ∗Σ ⊗ NΣ.

Therefore, as in Theorem A we have
d

dt
γ = tr∇dγ + (R(ek, ·)ek)⊥

Now if Ω is any n form on M , it defines a function on the Grassmannian
bundle. When Ω = ρ is a parallel form, we get as before

(
d

dt
− ∆)ρ ◦ γ = −tr∇dρ(dγ, dγ) + ∇ρ · (R(ek, ·)ek)⊥(5.5.2)

where ∇ρ is consider as a tangent vector on the Grassmannian. The curvature
term usually prefers positive ambient curvature, we refer to [17], [18] and [19]
for explicit calculations under various curvature conditions.

When Ω is not parallel, the formula involves the covariant derivatives of Ω
and the general equation was derived in [21].
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