ON THE POLYNOMIAL MOMENT PROBLEM

F. Pakovich

1. Introduction

In this paper we treat the following “polynomial moment problem”: for complex polynomials \(P(z) \), \(Q(z) = \int q(z) \, dz \) and distinct \(a, b \in \mathbb{C} \) such that \(P(a) = P(b), Q(a) = Q(b) \) to find conditions under which

\[
\int_a^b P^i(z)q(z) \, dz = 0
\]

for all integer non-negative \(i \).

The polynomial moment problem was proposed in the series of papers of M. Briskin, J.-P. Francoise and Y. Yomdin [1]-[5] as an infinitesimal version of the center problem for the polynomial Abel equation in the complex domain in the frame of a programme concerning the classical Poincaré center-focus problem for the polynomial vector field on the plane. It was suggested that the following “composition condition” imposed on \(P(z) \) and \(Q(z) = \int q(z) \, dz \) is necessary and sufficient for the pair \(P(z), q(z) \) to satisfy (*) : there exist polynomials \(\tilde{P}(z), \tilde{Q}(z), W(z) \) such that

\[
\left(\ast\ast\right) \quad P(z) = \tilde{P}(W(z)), \quad Q(z) = \tilde{Q}(W(z)), \quad \text{and} \quad W(a) = W(b).
\]

It is easy to see that the composition condition is sufficient: since after the change of variable \(z \to W(z) \) the way of integration becomes closed, the sufficiency follows from the Cauchy theorem. The necessity of the composition condition in the case when \(a, b \) are not critical points of \(P(z) \) was proved by C. Christopher in [6] (see also the paper of N. Roytvarf [12] for a similar result) and in some other special cases by M. Briskin, J.-P. Francoise and Y. Yomdin in the papers cited above.

Nevertheless, in general the composition conjecture fails to be true. Namely, in the paper [9] a class of counterexamples to the composition conjecture was constructed. These counterexamples exploit polynomials \(P(z) \) which admit double decompositions: \(P(z) = A(B(z)) = C(D(z)) \), where \(A(z), B(z), C(z), \)
$D(z)$ are non-linear polynomials. If $P(z)$ is such a polynomial and, in addition, $B(a) = B(b)$, $D(a) = D(b)$ then for any polynomial $Q(z)$ which can be represented as $Q(z) = E(B(z)) + F(D(z))$ for some polynomials $E(z), F(z)$ condition (*) is satisfied with $q(z) = Q'(z)$. On the other hand, it was shown in [9] that if $\deg B(z)$ and $\deg D(z)$ are coprime then condition (***) is not satisfied already for $Q(z) = B(z) + D(z)$.

Note that double decompositions with $\deg A(z) = \deg D(z)$, $\deg B(z) = \deg C(z)$ and $\deg B(z), \deg D(z)$ coprime are described explicitly by Ritt’s theory of factorization of polynomials. They are equivalent either to decompositions with $A(z) = z^m R(z)$, $B(z) = z^m$, $C(z) = z^m$, $D(z) = z^m R(z^m)$ for a polynomial $R(z)$ and $\gcd(n, m) = 1$ or to decompositions with $A(z) = T_n(z)$, $B(z) = T_n(z)$, $C(z) = T_n(z)$, $D(z) = T_n(z)$ for Chebyshev polynomials $T_n(z)$, $T_m(z)$ and $\gcd(n, m) = 1$ (see [11], [13]).

The counterexamples above suggest to weaken the composition conjecture as follows: polynomials $P(z), q(z)$ satisfy condition (*) if and only if $\int q(z)dz$ can be represented as a sum of polynomials Q_j such that

\[
(*** \quad P(z) = \tilde{P}_j(W_j(z)), \quad Q_j(z) = \tilde{Q}_j(W_j(z)), \quad \text{and} \quad W_j(a) = W_j(b)
\]

for some $\tilde{P}_j(z), \tilde{Q}_j(z), W_j(z) \in \mathbb{C}[z]$. For the case when $P(z) = T_n(z)$ this statement was verified in [10]. Moreover, it was shown that for $P(z) = T_n(z)$ the number of terms in the representation $\int q(z)dz = \sum_j Q_j(z)$ can be reduced to two.

In this paper we give a solution of the polynomial moment problem in the case when $P(z)$ is indecomposable that is when $P(z)$ can not be represented as a composition $P(z) = P_1(P_2(z))$ with non-linear polynomials $P_1(z), P_2(z)$. In this case conditions (**) and (***) are equivalent and the composition conjecture reduces to the following statement.

Theorem 1. Let $P(z), Q(z) = \int q(z)dz$ be complex polynomials and let a, b be distinct complex numbers such that $P(a) = P(b), Q(a) = Q(b)$, and

\[
\int_a^b P^i(z)q(z)dz = 0
\]

for $i \geq 0$. Suppose that $P(z)$ is indecomposable. Then there exists a polynomial $Q(z)$ such that $Q(z) = Q(P(z))$.

We also examine the following condition which is stronger than (*):

\[
\int_a^b P^i(z)Q^j(z)Q'(z)dz = 0
\]

for $i \geq 0, j \geq 0$. If γ is a curve which is the image of the segment $[a, b]$ in \mathbb{C}^2 under the map $z \rightarrow (P(z), Q(z))$ then this condition is equivalent to the condition that $\int_\gamma \omega = 0$ for all global holomorphic 1-forms ω in \mathbb{C}^2 (“the moment condition”). For an oriented simple closed curve δ of class C^2 in \mathbb{C}^2 the moment condition is necessary and sufficient to be a boundary of a bounded analytic variety Σ
in \(\mathbb{C}^2 \); it is a special case of the result of R. Harvey and B. Lawson [7]. The case when \(\delta \) is an image of \(S^1 \) under the map \(z \rightarrow (f(z), g(z)) \), where \(f(z), g(z) \) are functions analytic in an annulus containing \(S^1 \) was investigated earlier by J. Wermer [14]: in this case the moment condition is equivalent to the condition that there exists a finite Riemann surface \(\Sigma \) with border \(S^1 \) such that \(f(z), g(z) \) have an analytic extension to \(\Sigma \).

Unlike condition (*) the more restrictive moment condition imposed on polynomials \(P(z), Q(z) \) turns out to be equivalent to composition condition (**). We show that actually even a weaker condition is needed.

Theorem 2. Let \(P(z), Q(z) \) be complex polynomials and let \(a, b \) be distinct complex numbers such that \(P(a) = P(b), Q(a) = Q(b) \), and

\[
\int_a^b P^i(z)Q^j(z)dz = 0
\]

for \(0 \leq i \leq \infty, 0 \leq j \leq d_a + d_b - 2 \), where \(d_a \) (resp. \(d_b \)) is the multiplicity of the point \(a \) (resp. \(b \)) with respect to \(P(z) \). Then there exist polynomials \(\tilde{P}(z), \tilde{Q}(z), W(z) \) such that \(P(z) = \tilde{P}(W(z)), Q(z) = \tilde{Q}(W(z)), \) and \(W(a) = W(b) \).

Note that if \(a, b \) are not critical points of \(P(z) \) that is if \(d_a = d_b = 1 \) then conditions of the theorem reduce to condition (*) and therefore Theorem 2 includes as a particular case the result of C. Christopher.

2. **Proofs**

2.1. **Lemmata about branches of** \(Q(P^{-1}(z)) \). Let \(P(z) \) and \(Q(z) \) be rational functions and let \(U \subset \mathbb{C} \) be a domain in which there exists a single-valued branch \(p^{-1}(z) \) of the algebraic function \(P^{-1}(z) \). Denote by \(Q(P^{-1}(z)) \) the complete algebraic function obtained by the analytic continuation of the functional element \(\{U, Q(p^{-1}(z))\} \). Since the monodromy group \(G(P^{-1}) \) of the algebraic function \(P^{-1}(z) \) is transitive this definition does not depend of the choice of \(p^{-1}(z) \). Denote by \(d(Q(P^{-1}(z))) \) the degree of the algebraic function \(Q(P^{-1}(z)) \) that is the number of its branches.

Lemma 1. Let \(P(z), Q(z) \) be rational functions. Then

\[
d(Q(P^{-1}(z))) = \deg P(z)/[\mathbb{C}(z) : \mathbb{C}(P,Q)].
\]

Proof. Since any algebraic relation over \(\mathbb{C} \) between \(Q(p^{-1}(z)) \) and \(z \) supplies an algebraic relation between \(Q(z) \) and \(P(z) \) and vice versa we see that \(d(Q(P^{-1}(z))) = [\mathbb{C}(P,Q) : \mathbb{C}(P)]. \) As \([\mathbb{C}(P,Q) : \mathbb{C}(P)] = [\mathbb{C}(z) : \mathbb{C}(P)]/[\mathbb{C}(z) : \mathbb{C}(P,Q)] \) the lemma follows now from the observation that \([\mathbb{C}(z) : \mathbb{C}(P)] = \deg P(z). \)

Recall that by Lüroth theorem each field \(k \) such that \(\mathbb{C} \subset k \subset \mathbb{C}(z) \) and \(k \neq \mathbb{C} \) is of the form \(k = \mathbb{C}(R), R \in \mathbb{C}(z) \setminus \mathbb{C} \). Therefore, the field \(\mathbb{C}(P,Q) \) is a proper subfield of \(\mathbb{C}(z) \) if and only if \(P(z) = \tilde{P}(W(z)), Q(z) = \tilde{Q}(W(z)) \) for some rational functions \(\tilde{P}(z), \tilde{Q}(z), W(z) \) with \(\deg W(z) > 1 \); in this case we
say that $P(z)$ and $Q(z)$ have a common right divisor in the composition algebra. The Lemma 1 implies the following explicit criterion which is essentially due to Ritt [11] (cf. also [6], [12]).

Corollary 1. Let $P(z), Q(z)$ be rational functions. Then $P(z)$ and $Q(z)$ have a common right divisor in the composition algebra if and only if
\[Q(p^{-1}(z)) = Q(\tilde{p}^{-1}(z)) \]
for two different branches $p^{-1}(z), \tilde{p}^{-1}(z)$ of $P^{-1}(z)$.

Proof. Indeed, by Lemma 1, the field $\mathbb{C}(P, Q)$ is a proper subfield of $\mathbb{C}(z)$ if and only if $d(Q(P^{-1}(z))) < \deg P(z)$. On the other hand, the last inequality is clearly equivalent to condition (1). \qed

Lemma 2. Let $P(z), Q(z)$ be rational functions, $\deg P(z) = n$. Suppose that there exist $a_i \in \mathbb{C}, 1 \leq i \leq n$, not all equal between themselves such that
\[\sum_{i=1}^{n} a_i Q(p_i^{-1}(z)) = 0. \]
If, in addition, the group $G(P^{-1})$ is doubly transitive then $Q(z) = \tilde{Q}(P(z))$ for some rational function $\tilde{Q}(z)$.

Proof. Let $G \subset S_n$ be a permutation group and let $\rho_G : G \to GL(\mathbb{C}^n)$ be the permutation representation of G that is $\rho_G(g), g \in G$ is the linear map which sends a vector $\bar{a} = (a_1, a_2, ..., a_n)$ to the vector $\bar{a}_g = (a_{g(1)}, a_{g(2)}, ..., a_{g(n)})$. It is well known (see e.g. [15], Th. 29.9) that G is doubly transitive if and only if ρ_G is the sum of the identical representation and an absolutely irreducible representation. Clearly, the one-dimensional ρ_G-invariant subspace $E \subset \mathbb{C}^n$ corresponding to the identity representation is generated by the vector $(1, 1, ..., 1)$. Therefore, since the Hermitian inner product $(\bar{a}, \bar{b}) = a_1\bar{b}_1 + a_2\bar{b}_2 + ... + a_n\bar{b}_n$ is invariant with respect to ρ_G, the group G is doubly transitive if and only if the subspace E and its orthogonal complement E^\perp are the only ρ_G-invariant subspaces of \mathbb{C}^n.

Suppose that (2) holds. In this case also
\[\sum_{i=1}^{n} a_i Q(p_{\sigma(i)}^{-1}(z)) = 0 \]
for all $\sigma \in G(P^{-1})$ by the analytic continuation. To prove the lemma it is enough to show that $Q(p_i^{-1}(z)) = Q(p_j^{-1}(z))$ for all $i, j, 1 \leq i, j \leq n$; then by Lemma 1 $[\mathbb{C}(z) : \mathbb{C}(P, Q)] = \deg P(z) = [\mathbb{C}(z) : \mathbb{C}(P)]$ and therefore $Q(z) = \tilde{Q}(P(z))$ for some rational function $\tilde{Q}(z)$. Assume the converse i.e. that there exists $z_0 \in U$ such that not all $Q(p_i^{-1}(z_0)), 1 \leq i \leq n$, are equal between themselves. Without loss of generality we can suppose that all $Q(p_i^{-1}(z_0)), 1 \leq i \leq n$, are finite. Consider the subspace $V \subset \mathbb{C}^n$ generated by the vectors $\bar{v}_\sigma, \sigma \in G(P^{-1})$, where
where $\vec{\sigma} = (Q(p_{\sigma(1)}^{-1}(z_0)), Q(p_{\sigma(2)}^{-1}(z_0)), ..., Q(p_{\sigma(n)}^{-1}(z_0))$. Clearly, V is $\rho_G(P^{-1})$-invariant and $V \neq E$. Moreover, it follows from (3) that V is contained in the orthogonal complement A^\perp of the subspace $A \subset \mathbb{C}^n$ generated by the vector $(\bar{a}_1, \bar{a}_2, ..., \bar{a}_n)$. Since $A \neq E$ we see that V is a proper ρ_G-invariant subspace of \mathbb{C}^n distinct from E and E^\perp that contradicts the assumption that the group $G(P^{-1})$ is doubly transitive.

\begin{proof}
Indeed, by the Riemann theorem V is conformally equivalent to the unit disk \mathbb{D} whenever ∂V contains more than one point. It follows from $c(P) \cap V = \emptyset$ that ∂V contains a unique point if and only if $P(z)$ has a unique finite critical value c and $\partial V = c$; in this case there exist linear functions σ_1, σ_2 such that $\sigma_1(P(\sigma_2(z))) = z^n, n \in \mathbb{N}$ and the lemma is obvious. Therefore, we can suppose that $V \cong \mathbb{D}$. Since $c(P) \cap V = \emptyset$ the restriction of the map $P(z) : \mathbb{C}P^1 \to \mathbb{C}P^1$ on $P^{-1}\{V\} \setminus P^{-1}\{\infty\}$ is a covering map. As $V \setminus \infty$ is conformally equivalent to the punctured unit disc \mathbb{D}^* it follows from covering spaces theory that $P^{-1}\{V\} \setminus P^{-1}\{\infty\}$ is a disjoint union of domains \mathbb{U}_i conformally equivalent to \mathbb{D}^* such that all induced maps $f_i : \mathbb{D}^* \to \mathbb{D}^*$ are of the form $z \to z^{l_i}, l_i \in \mathbb{N}$. But, as $P^{-1}\{\infty\} = \{\infty\}$, there may be only one such a domain. Therefore, the preimage $P^{-1}\{V\}$ is conformally equivalent to the unit disk. In particular, since $P^{-1}\{\partial V\} = \partial P^{-1}\{V\}$ we see that $P^{-1}\{\partial V\}$ is connected.
\end{proof}

\section*{2.2. Lemma about preimages of domains}
For a polynomial $P(z)$ denote by $c(P)$ the set of finite critical values of $P(z)$.

\begin{lemma}
Let $P(z)$ be a polynomial and let $V \subset \mathbb{C}P^1$ be a simply connected domain containing infinity such that $c(P) \cap V = \emptyset$. Then $P^{-1}\{V\}$ is conformally equivalent to the unit disk and $P^{-1}\{\partial V\}$ is connected.
\end{lemma}

\begin{proof}
Indeed, by the Riemann theorem V is conformally equivalent to the unit disk \mathbb{D} whenever ∂V contains more than one point. It follows from $c(P) \cap V = \emptyset$ that ∂V contains a unique point if and only if $P(z)$ has a unique finite critical value c and $\partial V = c$; in this case there exist linear functions σ_1, σ_2 such that $\sigma_1(P(\sigma_2(z))) = z^n, n \in \mathbb{N}$ and the lemma is obvious. Therefore, we can suppose that $V \cong \mathbb{D}$. Since $c(P) \cap V = \emptyset$ the restriction of the map $P(z) : \mathbb{C}P^1 \to \mathbb{C}P^1$ on $P^{-1}\{V\} \setminus P^{-1}\{\infty\}$ is a covering map. As $V \setminus \infty$ is conformally equivalent to the punctured unit disc \mathbb{D}^* it follows from covering spaces theory that $P^{-1}\{V\} \setminus P^{-1}\{\infty\}$ is a disjoint union of domains \mathbb{U}_i conformally equivalent to \mathbb{D}^* such that all induced maps $f_i : \mathbb{D}^* \to \mathbb{D}^*$ are of the form $z \to z^{l_i}, l_i \in \mathbb{N}$. But, as $P^{-1}\{\infty\} = \{\infty\}$, there may be only one such a domain. Therefore, the preimage $P^{-1}\{V\}$ is conformally equivalent to the unit disk. In particular, since $P^{-1}\{\partial V\} = \partial P^{-1}\{V\}$ we see that $P^{-1}\{\partial V\}$ is connected.
\end{proof}

\section*{2.3. Proof of Theorem 2: the case of a regular value}
In this section we investigate the case when $t_0 = P(a) = P(b)$ is not a critical value of the polynomial $P(z)$. For a simple closed curve $M \subset \mathbb{C}$ denote by D_M^+ (resp. by D_M^-) the domain that is interior (resp. exterior) with respect to M.

Let $L \subset \mathbb{C}$ be a simple closed curve such that $t_0 \in L$ and $c(P) \subset D_L^+$. Denote by \bar{L} the same curve considered as an oriented graph embedded into the complex plane. By definition, the graph \bar{L} has one vertex t_0 and one counter-clockwise oriented edge l. Let $\bar{\Omega} = P^{-1}\{\bar{L}\}$ be an oriented graph which is the preimage of the graph \bar{L} under the mapping $P(z) : \mathbb{C} \rightarrow \mathbb{C}$, i.e. vertices of $\bar{\Omega}$ are preimages of t_0 and oriented edges of $\bar{\Omega}$ are preimages of l. As $L \cap c(P) = \emptyset$ the graph $\bar{\Omega}$ has $n = \deg P(z)$ vertices and n edges. Furthermore, by Lemma 3 the graph $\bar{\Omega} = P^{-1}\{\partial D_L^-\}$ is connected. Therefore, as a point set in \mathbb{C} the graph $\bar{\Omega}$ is a simple closed curve. Let $l_j, 1 \leq j \leq n$, be oriented edges of $\bar{\Omega}$ and let a_j (resp. b_j) be the starting (resp. ending) point of l_j. We will suppose that edges of $\bar{\Omega}$ are numerated by such a way that $a_1 = a$ and that under a moving around the domain $P^{-1}\{D_L^-\}$ along its boundary $\bar{\Omega}$ the edge $l_i, 1 \leq i \leq n - 1$, is followed by the edge l_{i+1} (see fig. 1).
Let $U \subset \mathbb{C}$ be a simply connected domain such that $U \cap c(P) = \emptyset$ and $L \setminus \{t_0\} \subset U$. By the monodromy theorem, in such a domain there exist n single-valued branches of $P^{-1}(t)$. Denote by $p_j^{-1}(t)$, $1 \leq j \leq n$, the single-valued branch of $P^{-1}(t)$ defined in U by the condition $p_j^{-1}(t \setminus t_0) = l_j \setminus \{a_j, b_j\}$; such a numeration of branches of $P^{-1}(t)$ means that the analytic continuation of the functional element \(\{U, p_j^{-1}(t)\}, 1 \leq j \leq n - 1\), along L is the functional element \(\{U, p_{j+1}^{-1}(t)\}\). Let l_k, $k < n$, be the edge of Ω such that $b_k = b$ and let $\Gamma = \{l_1, l_2, ..., l_k\}$ be the oriented path in the graph Ω joining the vertices $a_1 = a$ to $b_k = b$. For $t \in U$ set $\varphi(t) = \sum_{j=1}^k Q(p_j^{-1}(t))$.

Consider an analytic function on $\mathbb{C}P^1 \setminus L$

$$I(\lambda) = \oint_L \frac{\varphi(t)}{t - \lambda} \, dt = \int_\Gamma \frac{Q(z)P'(z)dz}{P(z) - \lambda}.$$

More precisely, the integral above defines two analytic functions: one of them $I^+(\lambda)$ is analytic in D_L^+ and the other one $I^-(\lambda)$ is analytic in D_L^-. Furthermore, calculating the Taylor expansion of $I^-(\lambda)$ at infinity and using integration by part we see that condition (*) reduces to the condition that $I^-(\lambda) \equiv 0$ in D_L^-. By a well-known result about integrals of the Cauchy type (see e.g. [8]) the last condition implies that $\varphi(t)$ is the boundary value on L of the analytic function $I^+(\lambda)$ in D_L^+. It follows from the uniqueness theorem for boundary values of analytic functions that the functional element \(\{U, \varphi(t)\}\) can be analytically continued along any curve $M \subset D_L^+$. As $c(P) \subset D_L^+$ this fact implies that \(\{U, \varphi(t)\}\) can be analytically continued along any curve $M \subset \mathbb{C}$. Therefore, by the monodromy theorem, the element \(\{U, \varphi(t)\}\) extends to a single-valued analytic function in the whole complex plane. In particular, the analytic continuation of \(\{U, \varphi(t)\}\) along any closed curve coincides with \(\{U, \varphi(t)\}\). On the other hand, by construction the analytic continuation of \(\{U, \varphi(t)\}\) along the curve L is \(\{U, \varphi_L(t)\}\), where $\varphi_L(t) = \sum_{j=2}^{k+1} Q(p_j^{-1}(t))$. It follows from $\varphi(t) = \varphi_L(t)$ that $Q(p_1^{-1}(t)) = Q(p_{k+1}^{-1}(t))$ and by Corollary 1 we conclude that $P(z)$ and $Q(z)$ have a common right divisor in the composition algebra.
As the field \(\mathbb{C}(P,Q) \) is a proper subfield of \(\mathbb{C}(z) \) and \(P(z), Q(z) \) are polynomials it is easy to prove that \(\mathbb{C}(P,Q) = \mathbb{C}(W) \) for some polynomial \(W(z) \), \(\deg W(z) > 1 \). It means that \(P(z) = \tilde{P}(W(z)), Q(z) = \tilde{Q}(W(z)) \) for some polynomials \(\tilde{P}(z), \tilde{Q}(z) \) such that \(\tilde{P}(z) \) and \(\tilde{Q}(z) \) have no a common right divisor in the composition algebra. Let us show that \(W(a) = W(b) \). Since \(t_0 \) is not a critical value of the polynomial \(P(z) = \tilde{P}(W(z)) \) the chain rule implies that \(t_0 \) is not a critical value of the polynomial \(\tilde{P}(z) \). Therefore, if \(W(a) \neq W(b) \) then after the change of variable \(z \to W(z) \) in the same way as above we find that \(P(z) = \tilde{P}(U(z)), Q(z) = \tilde{Q}(U(z)) \) for some polynomials \(P(z), Q(z), U(z) \) with \(\deg U(z) > 1 \) that contradicts the fact that \(\tilde{P}(z), \tilde{Q}(z) \) have no a common right divisor in the composition algebra. This completes the proof in the case when \(z_0 \) is not a critical value of \(P(z) \).

2.4. Proof of Theorem 2: the case of a critical value. Assume now that \(t_0 = P(a) = P(b) \) is a critical value of \(P(z) \). In this case let \(L \) be a simple closed curve such that \(t_0 \in L \) and \(c(P) \setminus t_0 \subset D_L^+ \). Consider again a graph \(\tilde{\Omega} = P^{-1}\{\tilde{L}\} \). Since \(P^{-1}\{D_L^-\} \) is still conformally equivalent to the unit disk by Lemma 3, we see that the graph \(\tilde{\Omega} \) topologically is the boundary of a disc although it is not a simple closed curve any more. Let \(l_j, 1 \leq j \leq n \), be oriented edges of \(\tilde{\Omega} \) and let \(a_j \) (resp. \(b_j \)) be the starting (resp. the ending) point of \(l_j \). Let us fix again such a number of edges of \(\tilde{\Omega} \) that \(a_1 = a \) and that under a moving around the domain \(P^{-1}\{D_L^-\} \) along its boundary \(\tilde{\Omega} \) the edge \(l_i, 1 \leq i \leq n - 1 \), is followed by the edge \(l_{i+1} \). As above denote by \(U \) a domain in \(\mathbb{C} \) such that \(U \cap c(P) = \emptyset, L \setminus \{t_0\} \subset U \) and let \(p_j^{-1}(t_1), 1 \leq j \leq n \), be the single-valued branch of \(P^{-1}(t) \) defined in \(U \) by the condition \(p_j^{-1}\{l \setminus t_0\} = l_j \setminus \{a_j, b_j\} \). If \(k < n \) is a number such that \(b_k = b \) then for the same reason as above the function \(\varphi(t) = \sum_{j=1}^{k} Q(p_j^{-1}(t)) \) extends to an analytic function in \(U \cup D_L^+ \) but this fact does not imply now that \(\varphi(t) \) extends to an analytic function in the whole complex plane since \(D_L^+ \) does not contain \(t_0 \in c(P) \). Nevertheless, if \(V \) is a simply connected domain such that \(U \subset V \) and \(t_0 \notin V \) then \(\varphi(t) \) still extends to a single-valued analytic function in \(V \). In particular, the analytic continuation of \(\{U, \varphi(t)\} \) along any simple closed curve \(M \) such that \(t_0 \subset D_M^- \) coincides with \(\{U, \varphi(t)\} \).

Let \(t_1 \in U \) be a point and let \(M_1 \) (resp. \(M_2 \)) be a simple closed curve such that \(t_1 \in M_1, M_1 \cap c(P) = \emptyset \) and \(D_{M_1}^+ \cap c(P) = t_0 \) (resp. \(t_1 \in M_2, M_2 \cap c(P) = \emptyset \) and \(D_{M_2}^+ \cap c(P) = c(P) \setminus t_0 \)). Define a permutation \(\rho_1 \in S_n \) (resp. \(\rho_2 \in S_n \)) by the condition that the functional element \(\{U, p_{\rho_1(j)}^{-1}(t)\} \) (resp. \(\{U, p_{\rho_2(j)}^{-1}(t)\} \)) is the result of the analytic continuation of the functional element \(\{U, p_j^{-1}(t)\}, 1 \leq j \leq n \), from \(t_1 \) along the curve \(M_1 \) (resp. \(M_2 \)). Having in mind the identification of the set of elements \(\{U, p_j^{-1}(t)\}, 1 \leq j \leq n \), with the set of oriented edges of the graph \(\tilde{\Omega} \) the permutations \(\rho_1, \rho_2 \) can be described as follows: \(\rho_1 \) cyclically permutes the edges of \(\tilde{\Omega} \) around the vertices from which they go
\[\rho_1 = (28)(467), \quad \rho_2 = (18)(237)(45) \]

Figure 2

while cycles \((j_1, j_2, ..., j_k)\) of \(\rho_2\) correspond to simple cycles \((l_{j_1}, l_{j_2}, ..., l_{j_k})\) of the graph \(\bar{\Omega}\) and \(\rho_1 \rho_2 = (12...n)\) (see fig. 2).

To unload notation denote temporarily the element \(\{U, Q(p_i^{-1}(t))\}, 1 \leq i \leq n,\) by \(s_i\). Since \(t_0 \subset D_{M_2}^+\) we have:

\[0 = \sum_{j=1}^{k} s_{\rho_2(j)} - \sum_{j=1}^{k} s_j = s_{\rho_2(k)} + \sum_{j=1}^{k-1} [s_{\rho_2(j)} - s_{j+1}] - s_1. \]

Using \(\rho_1 \rho_2 = (12...n)\) we can rewrite (4) as

\[s_{\rho_1^{-1}(k+1)} - s_1 + \sum_{j=1}^{k-1} [s_{\rho_2(j)} - s_{\rho_1 \rho_2(j)}] = 0. \]

Therefore, by the analytic continuation

\[s_{\rho_1^{-1}(k+1)} - s_{\rho_1(1)} + \sum_{j=1}^{k-1} [s_{\rho_1 \rho_2(j)} - s_{\rho_1^{-1} \rho_2(j)}] = 0 \]

for \(f \geq 0\). Summing equalities (5) from \(f = 1\) to \(f = o(\rho_1)\), where \(o(\rho_1)\) is the order of the permutation \(\rho_1\), changing the order of summing, and observing that

\[\sum_{f=0}^{o(\rho_1)-1} [s_{\rho_1 \rho_2(j)} - s_{\rho_1^{-1} \rho_2(j)}] = s_{\rho_2(j)} - s_{\rho_1^{-1} \rho_2(j)} = 0 \]

we conclude that

\[\sum_{s=0}^{o(\rho_1)-1} Q(p_{\rho_1^{-1}(k+1)}(t)) = \sum_{s=0}^{o(\rho_1)-1} Q(p_{\rho_1^{-1}(1)}(t)) \]

in \(U\). Note that if \(a, b\) are regular points of \(P(z)\) then \(\rho_1(1) = 1, \rho_1(k+1) = k+1\) and (6) reduces to the equality \(Q(p_{k+1}^{-1}(t)) = Q(p_1^{-1}(t)).\)
Since (6) holds for any polynomial $Q(z)$ such that $q(z) = Q'(z)$ satisfies (*), substituting in (6) $Q^j(z)$, $2 \leq j \leq d_a + d_b - 1$, instead of $Q(z)$ we see that

$$
(7) \quad \sum_{s=0}^{o(p_1)-1} Q^j(p_1^{-1}(k+1)(t)) = \sum_{s=0}^{o(p_1)-1} Q^j(p_1^{-1}(t))
$$

for all j, $1 \leq j \leq d_b + d_b - 1$. Consider a Vandermonde determinant $D = \| d_{j,i} \|$, where $d_{j,i} = Q^j(p_1^{-1}(t))$, $0 \leq j \leq d_a + d_b - 1$ and i ranges the set of different indices from the cycles of p_1 containing 1 and $k + 1$. Since (7) implies that $D = 0$ we conclude again that $Q(p_1^{-1}(t)) = Q(p_1^{-1}(t))$ for some $i \neq j$, $1 \leq i, j \leq n$. Therefore, $P(z)$ and $Q(z)$ have a common right divisor in the composition algebra and we can finish the proof by the same argument as in section 2.3 taking into account that the multiplicity of a point $c \in \mathbb{C}$ with respect to $P(z) = \tilde{P}(W(z))$ is greater or equal than the multiplicity of the point $W(c)$ with respect to $\tilde{P}(z)$.

\textbf{2.5. Proof of Theorem 1.} Suppose at first that $n = \deg P(z)$ is a prime number. In this case the degree of the algebraic function $Q(P^{-1}(t))$ equals either n or 1 since $d(Q(P^{-1}(t)))$ divides $\deg P(z)$. If $d(Q(p^{-1}(t))) = n$ then Puiseux expansions at infinity

$$
(8) \quad Q(p_1^{-1}(t)) = \sum_{k \leq k_0} a_k \varepsilon^k t^k,
$$

$1 \leq i \leq n$, $a_k \in \mathbb{C}$, $\varepsilon = \exp(2\pi i/n)$, contain a coefficient $a_k \neq 0$ such that k is not a multiple of n. Substituting (8) in the equality obtained by the analytic continuation of (6) along a curve going to the domain where series (8) converge, we conclude that ε^k is a root of a polynomial with integer coefficients distinct from the n-th cyclotomic polynomial $\Phi_n(z) = 1 + z + \ldots + z^{n-1}$. Since ε^k is a primitive n-th root of unity it is a contradiction. Therefore, $d(Q(p^{-1}(t))) = 1$ and $Q(z) = \tilde{Q}(P(z))$ for some polynomial $\tilde{Q}(z)$.

Suppose now that n is composite. Since $P(z)$ is indecomposable the group $G(P^{-1})$ is primitive by the Ritt theorem [11]. By the Schur theorem (see e.g. [15], Th. 25.3) a primitive permutation group of composite degree n which contains an n-cycle is doubly transitive. Therefore, by Lemma 2 equality (6) implies that $Q(z) = \tilde{Q}(P(z))$ for some polynomial $\tilde{Q}(z)$.

\textbf{Acknowledgements}

I am grateful to Y. Yomdin for drawing my attention to the polynomial moment problem and for stimulating discussions.

\textbf{References}

Max-Planck-Institut für Mathematik, P.O. Box 7280, D-53072 Bonn, Germany.
E-mail address: pakovich@mpim-bonn.mpg.de