A NOTE ON AKBULUT CORKS

Nikolai Saveliev

ABSTRACT. We prove that the involution on the boundary Σ of the Akbulut cork relating blown up elliptic surfaces to completely decomposable manifolds acts non-trivially on the Floer homology of Σ . We also show that Σ provides an example of an irreducible manifold with non-zero boundary operator in its Floer chain complex.

Let X_0 and X_1 be smooth, closed, oriented, simply connected 4-manifolds. If X_0 is homeomorphic to X_1 then there is a compact contractible 4-manifold $W \subset X_0$ such that by cutting W out of X_0 and re-gluing it by an involution on its boundary, we obtain a smooth 4-manifold diffeomorphic to X_1 , see [6] and [12]. This contractible piece W is called an Akbulut cork corresponding to the pair (X_0, X_1) .

Explicit examples of Akbulut corks were constructed in [1] and [11]. They correspond to pairs $(X_0(n), X_1(n))$ where $X_0(n) = E(n) \# (-\mathbb{C}P^2)$ is a blow up of the elliptic surface E(n), and $X_1(n) = (2n-1) \cdot \mathbb{C}P^2 \# 10n \cdot (-\mathbb{C}P^2)$, with $n \geq 2$. For any given $n \geq 2$, the manifolds $X_0(n)$ and $X_1(n)$ are homeomorphic but not diffeomorphic. Their Akbulut cork W is independent of n and is obtained by attaching a two-handle to $S^1 \times D^3$ along its boundary as shown in Figure 1.

Observe that $\Sigma = \partial W$ is an integral homology sphere obtained by surgery on the link in Figure 1 both components of which are 0-framed, and that it is symmetric with respect to the involution $\tau : \Sigma \to \Sigma$ interchanging the two link components. The manifold $X_1(n)$ is obtained from $X_0(n)$ by cutting out W and re-gluing it using τ .

The goal of this paper is to study the homomorphism $\tau_*: I_*(\Sigma) \to I_*(\Sigma)$ which τ induces on the Floer homology of Σ , see [9].

Theorem 1. Let Σ be the boundary of manifold W shown in Figure 1. Then

- (1) $I_n(\Sigma) = 0$ if n is even, and $I_n(\Sigma) = \mathbb{Z}$ if n is odd, and
- (2) the homomorphism $\tau_*: I_*(\Sigma) \to I_*(\Sigma)$ is a non-trivial involution.

This result gives an insight into how re-gluing of W leads to different smooth structures, via the study of the effect that τ_* has on the Donaldson invariants, see Section 4.

Received May 5, 2001.

Research was supported in part by NSF Grants DMS-9896376 and DMS-0196523 and Max-Planck-Institut für Mathematik, Bonn.

Our proof of Theorem 1 also implies the following result. As far as we know, this is the first example of an irreducible homology sphere having this property.

Theorem 2. The Floer chain complex of Σ has a non-trivial boundary operator.

It should be mentioned that in general constructing diffeomorphisms acting non-trivially on the Floer homology is not an easy task. This is due in part to a close relation between such actions and exotic smooth structures on 4–manifolds. We briefly discuss these and related issues in Section 5.

I am thankful to Selman Akbulut, whose papers [1] and [2] have motivated this research, and to Jim Bryan, Olivier Collin, Ronald Fintushel and Slawomir Kwasik for inspiring discussions concerning the matters in this paper. I am also thankful to the referee for pointing out an omission in the original argument. The Maple software package was used for calculations in Section 2.

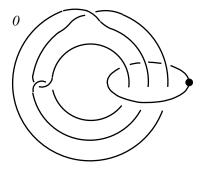


Figure 1

1. Floer homology of Σ

The Floer homology groups of Σ are not difficult to compute by using the Floer exact triangle and Kirby calculus.

Proposition 3. The groups $I_n(\Sigma)$ vanish for even n, and $I_n(\Sigma) = \mathbb{Z}$ for odd n.

Proof. For an integer p, define an integral homology sphere Σ_p as the boundary of a contractible 4-manifold obtained by surgery on the link shown in Figure 1 with the framing of the two-handle equal to p. Then $\Sigma_0 = \Sigma$ and Σ_3 is orientation preserving diffeomorphic to the Brieskorn homology sphere $\Sigma(2,5,7)$, see [3]. According to [8], we have $I_n(\Sigma(2,5,7)) = 0$ for even n and $I_n(\Sigma(2,5,7)) = \mathbb{Z}$ for odd n. Therefore, the proposition will follow as soon as we prove that $I_*(\Sigma_p)$ is independent of p.

Let us perform a (-1)-surgery along the unknot S shown in Figure 2. This surgery results in replacing framing p by framing p+1 while preserving the rest of the picture. On the other hand, 0-surgery along the same circle yields the

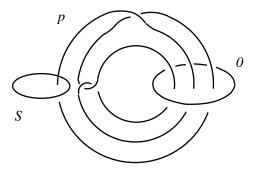
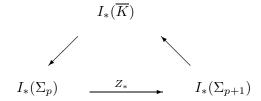


Figure 2

manifold $\overline{K} = S^1 \times S^2$ with the trivial Floer homology, $I_*(\overline{K}) = 0$. The Floer exact triangle [10]



now implies that the trace Z of the (-1)-surgery induces a degree zero isomorphism in Floer homology. This proves that $I_*(\Sigma_p)$ is independent of p.

The homomorphism $\tau_*:I_*(\Sigma)\to I_*(\Sigma)$ induced by the involution τ has degree zero. The fact that $\tau^2=1$ implies that $(\tau_*)^2=1$; therefore, on each of the factors \mathbb{Z} , the homomorphism τ_* is either identity or minus identity. A careful analysis of the Floer chain complex of Σ in the next section will help us sort this out.

2. The representation variety of $\pi_1\Sigma$

After due simplifications, the standard Wirtinger presentation of the fundamental group of Σ is of the form

$$\pi_1 \Sigma = \langle \ a, \ b \mid (ba)^2 (ab)^{-2} b^{-1} (ab)^2 = a^2, \ (ab)^2 (ba)^{-2} a^{-1} (ba)^2 = b^2 \ \rangle$$

where a and b are meridians of the two components of the link in Figure 1 exchanged by the involution τ . Specifying a representation $\alpha: \pi_1\Sigma \to SU(2)$ amounts to specifying two SU(2)-matrices, $A = \alpha(a)$ and $B = \alpha(b)$, satisfying the above relations. Since Σ is an integral homology sphere, its only reducible representation is the trivial one. We will assume therefore that α is irreducible, i.e. A and B do not commute. Conjugating if necessary, we may assume that

$$A = \begin{pmatrix} t + i\sqrt{1 - t^2} & 0\\ 0 & t - i\sqrt{1 - t^2} \end{pmatrix} \quad \text{and} \quad$$

$$B = \begin{pmatrix} u + ir\sqrt{1 - u^2} & \sqrt{(1 - r^2)(1 - u^2)} \\ -\sqrt{(1 - r^2)(1 - u^2)} & u - ir\sqrt{1 - u^2} \end{pmatrix}$$

for some real t, u and r such that -1 < t, u, r < 1. The relations on the matrices A and B can be rewritten as

(1)
$$(AB)^{-2}B(AB)^2 = A^{-2}(BA)^2$$
 and $(BA)^{-2}A(BA)^2 = B^{-2}(AB)^2$.

From this we conclude that $\operatorname{tr} B = \operatorname{tr}(A^{-1}BA \cdot B)$ and $\operatorname{tr} A = \operatorname{tr}(B^{-1}AB \cdot A)$ and, after simplification, that

$$2(u^2 + r^2 - u^2r^2)(t+1) = 1$$
 and $2(t^2 + r^2 - t^2r^2)(u+1) = 1$.

Solutions of these equations are of two types, t + u = 1/2 and t = u. In terms of matrices A and B, these two types correspond to tr A + tr B = 1 and tr A = tr B.

Representations with $\operatorname{tr} A + \operatorname{tr} B = 1$ can be found in a completely explicit form by solving the rest of the equations (1). There are two such representations, one with $\operatorname{tr} A = (1 - \sqrt{5})/2$ and $\operatorname{tr} B = (1 + \sqrt{5})/2$, and the other with $\operatorname{tr} A = (1 + \sqrt{5})/2$ and $\operatorname{tr} B = (1 - \sqrt{5})/2$. The parameter r for both representations equals $1/\sqrt{5}$. We call these representations β_1 and β_2 , respectively. They are permuted by the involution τ^* and, in particular, they have the same Floer index.

Since tr A = tr B for the representations of the second type, the matrix B is conjugate to A and hence can be written as $B = UAU^{-1}$ for some SU(2)-matrix U with $U^2 = -I$; one may assume that

$$U = \begin{pmatrix} i\rho & \sqrt{1-\rho^2} \\ -\sqrt{1-\rho^2} & -i\rho \end{pmatrix}$$

with $0 < \rho < 1$. Equations (1) then reduce to the single equation

$$(UA)^4(AU)^{-4}U^{-1}A^{-1}U(AU)^4 = A^2,$$

which is equivalent to a system of three polynomial equations in t and ρ . These equations have four solutions corresponding to the following values of t and ρ . The parameter 2t is a real solution of the equation

(2)
$$z^7 + z^6 - 5z^5 - 6z^4 + 6z^3 + 5z^2 - 2z - 1 = 0.$$

This equation has five real solutions but only four of them lie between -2 and 2. Every t uniquely determines ρ by the formula

(3)
$$\rho = (1/5)\sqrt{19 - 68t - 212t^2 + 600t^3 + 1024t^4 - 384t^5 - 832t^6}.$$

We name these four representations α_1 through α_4 . They are preserved by the involution τ^* .

Proposition 4. The SU(2)-representation variety of $\pi_1\Sigma$ consists of a trivial representation θ and six non-degenerate irreducible representations, α_1 , α_2 , α_3 , α_4 , β_1 and β_2 . The involution induced by τ keeps the representations θ and α_1 , α_2 , α_3 , α_4 fixed, and permutes β_1 and β_2 .

Proof. We only need to check that the representations are non-degenerate, that is, the group cohomology $H^1_{\gamma}(\pi_1\Sigma,\mathfrak{su}(2))$ with coefficients in the adjoint representation vanishes for all $\gamma=\alpha_1,\,\alpha_2,\,\alpha_3,\,\alpha_4,\,\beta_1$ and β_2 . This can be seen as follows.

The dimension of the space of 1-coboundaries equals the rank of the operator

(4)
$$\begin{pmatrix} I - \operatorname{Ad}_A \\ I - \operatorname{Ad}_B \end{pmatrix} : \mathbb{R}^3 \to \mathbb{R}^6,$$

where I is the identity matrix and $Ad_A(x) = AxA^{-1}$. Let us consider the threeby-three minor of (4) consisting of the rows with numbers 3, 4, and 6. A direct calculations shows that its determinant equals

$$8t(1-r^2)(1-u^2)\sqrt{1-t^2}$$
.

Since $t \neq 0$ for any of the representations γ , this determinant is not zero, and hence the rank of (4) is three.

The cocycles are crossed homomorphisms $\xi : \pi_1 \Sigma \to \mathfrak{su}(2)$, which can be identified with vectors $(\xi_A, \xi_B) \in \mathbb{R}^6$ satisfying the linear system of equations

$$\begin{cases} U_A \, \xi_A + U_B \, \xi_B = 0 \\ V_A \, \xi_A + V_B \, \xi_B = 0, \end{cases}$$

arising from the two relations in $\pi_1\Sigma$. Here, U_A , U_B , V_A , and V_B are three-by-three matrices which can be explicitly written in terms of t, u, and r. The dimension of the space of cocycles thus equals the co-rank of the block matrix

(5)
$$X = \begin{pmatrix} U_A & U_B \\ V_A & V_B \end{pmatrix}.$$

For the representation β_1 , consider the three-by-three minor of (5) at the intersection of the rows and columns numbered 1, 2, and 4. A direct calculation shows that it equals the matrix

$$\begin{pmatrix} \sqrt{5}/5 & -1 + 2\sqrt{5}/5 & 1 + \sqrt{5}/5 \\ 1 + 2\sqrt{5}/5 & -5/4 + 11\sqrt{5}/20 & 1 + 2\sqrt{5}/5 \\ 2 - 6\sqrt{5}/5 & 1/2 + \sqrt{5}/10 & -1 - 4\sqrt{5}/5 \end{pmatrix}$$

with determinant $(15 - 5\sqrt{5})/4$. Therefore, the cocycles at β_1 have dimension three, so that β_1 is non-degenerate. An argument for β_2 is similar.

If γ is one of the representations α , it is more convenient to work with parameters t and ρ . We consider the minor of (5) at the intersection of rows 1, 2, and 4, and columns 1, 2, and 5. Its determinant is a polynomial in t and ρ , where t and ρ satisfy equations (2) and (3). Setting the determinant equal to zero gives us three polynomial equations, which do not have common solutions. Therefore, the co-rank of (5) in this case is also three, and all the α_i are non-degenerate. \square

Corollary. There exist non-zero boundary operators in the Floer chain complex of Σ .

Proof. Since the representation variety of Σ is non-degenerate, its Floer chain complex $IC_*(\Sigma)$ is generated by the six irreducible representations. Since only four Floer homology groups are non-trivial, and each of them is isomorphic to \mathbb{Z} , not all boundary operators in the chain complex vanish. The same conclusion can be drawn even more easily from the fact that $IC_*(\Sigma)$ has two generators, β_1 and β_2 , of the same Floer index.

3. The boundary operators

The boundary operators in the Floer chain complex of Σ deserve a closer attention.

Let μ denote the Floer index. From the knowledge of the Floer homology groups $I_*(\Sigma)$ and the representation variety of $\pi_1\Sigma$ we conclude that $\mu(\beta_1) = \mu(\beta_2) = 1 \mod 2$ (keeping in mind that β_1 and β_2 are permuted by the operator τ_* which preserves Floer index) and that exactly one of the representations α_1 through α_4 has even Floer index; let us call it α .

By an obvious dimensional count, the only non-zero incidence numbers can be those between α and β_1 and between α and β_2 . These are determined by signed counts $\#\hat{\mathcal{M}}_g(\alpha,\beta_1)$ and $\#\hat{\mathcal{M}}_g(\alpha,\beta_2)$ of isolated points in the instanton moduli spaces, where g is a generic metric on Σ . Due to the lack of equivariant transversality, in general, it is not clear if one can choose a generic metric g so that τ is an isometry. Therefore, we cannot claim that τ identifies $\hat{\mathcal{M}}_g(\alpha,\beta_1)$ with $\hat{\mathcal{M}}_g(\alpha,\beta_2)$; however, the following weaker result will suffice for our purposes.

Proposition 5. Let g be a generic metric then $\#\hat{\mathcal{M}}_q(\alpha,\beta_1) = \#\hat{\mathcal{M}}_q(\alpha,\beta_2)$.

Proof. We begin by showing that the signed counts $\#\mathcal{M}_g(\alpha,\beta_i)$, i=1,2, are independent of the choice of generic metric g. Given two such metrics, g_0 and g_1 , consider the product cobordism $W = \Sigma \times I$ with metric extending g_0 and g_1 at the two boundary components. This cobordism induces a degree zero chain map

$$W_*: IC_*(\Sigma, g_0) \to IC_*(\Sigma, g_1).$$

An easy calculation shows that $W_*(\alpha) = \#\mathcal{M}_W(\alpha, \alpha) \cdot \alpha = \alpha$, since the only isolated instanton in $\mathcal{M}_W(\alpha, \alpha)$ is flat. Similarly, $W_*(\beta_1) = \#\mathcal{M}_W(\beta_1, \beta_1) \cdot \beta_1 + \#\mathcal{M}_W(\beta_1, \beta_2) \cdot \beta_2 = \beta_1$ and $W_*(\beta_2) = \beta_2$. The last two formulas use the observation that all isolated instantons in $\mathcal{M}_W(\beta_1, \beta_2)$ and $\mathcal{M}_W(\beta_2, \beta_1)$ are flat, which is due to the fact that the Chern-Simons functional takes the same value on both β_1 and β_2 . However, there are no flat connections on W interpolating between $\beta_1 \neq \beta_2$. The fact that W_* is a chain map now easily implies that $\#\hat{\mathcal{M}}_{g_0}(\alpha, \beta_i) = \#\hat{\mathcal{M}}_{g_1}(\alpha, \beta_i)$ for i = 1, 2.

To finish the proof, choose a generic metric g on Σ . The metric τ_*g is then also generic, and we have a natural bijective correspondence $\hat{\mathcal{M}}_g(\alpha, \beta_1) = \hat{\mathcal{M}}_{\tau_*g}(\alpha, \beta_2)$. This correspondence is orientation preserving, since τ preserves

both orientation and homology orientation. Therefore,

$$#\hat{\mathcal{M}}_g(\alpha, \beta_1) = #\hat{\mathcal{M}}_{\tau_*g}(\alpha, \beta_2) = #\hat{\mathcal{M}}_g(\alpha, \beta_2).$$

Since there is no torsion in $I_*(\Sigma)$, the above proposition implies that $\#\hat{\mathcal{M}}_g(\alpha,\beta_1) = \#\hat{\mathcal{M}}_g(\alpha,\beta_2) = \pm 1$. If $n = \mu(\beta_1) = \mu(\beta_2)$ then $I_n(\Sigma) = \mathbb{Z}$ is generated by β_1 , and $\tau_*: I_n(\Sigma) \to I_n(\Sigma)$ is minus identity.

4. Gluing formulas and equivariant Floer homology

Let X be a smooth closed simply connected 4-manifold split as $X=U\cup V$ with U and V smooth compact simply connected 4-manifolds such that $\partial U=\Sigma$ and $\partial V=-\Sigma$, where Σ is an integral homology 3-sphere. Let D(X) be a degree d Donaldson polynomial corresponding to a bundle P over X, and let $u_1,\ldots,u_r\in H_2(U,\mathbb{Z})$ and $v_1,\ldots,v_{d-r}\in H_2(V,\mathbb{Z})$. In favorable circumstances, there exist well-defined relative Donaldson polynomials $D(U)(u_1,\ldots,u_r)$ and $D(V)(v_1,\ldots,v_{d-r})$ with coefficients in equivariant Floer homology $I_*^{\mathcal{G}}(\Sigma)$ and $I_*^{\mathcal{G}}(-\Sigma)$, respectively, such that $D(X)(u_1,\ldots,u_r,v_1,\ldots,v_{d-r})$ is obtained from them by pairing $I_*^{\mathcal{G}}(\Sigma)$ with $I_*^{\mathcal{G}}(-\Sigma)$, see [4].

The equivariant Floer homology $I_*^{\mathcal{G}}(\Sigma)$ of Austin and Braam [4] is the homology of a chain complex built from all representations of $\pi_1\Sigma$, including reducible. When the representation variety of Σ is non-degenerate, which is the case for $\Sigma = \partial W$, the boundary of the Akbulut cork W, this equivariant Floer homology is roughly described as follows. The group SO(3) acts by conjugation on the representation space $R(\Sigma) = \text{Hom}(\pi_1\Sigma, SU(2))$ with quotient the representation variety in Proposition 4. Let us consider the equivariant cohomology

$$H_{SO(3)}^*(R(\Sigma), \mathbb{Z}) = H^*(ESO(3) \times_{SO(3)} R(\Sigma), \mathbb{Z})$$

where $ESO(3) \to BSO(3)$ is the universal SO(3)-bundle. The connected components of $R(\Sigma)$ correspond to the points in the representation variety of Σ . Let R_{α} be the component containing a representation α . If α is irreducible, we have $R_{\alpha} = SO(3)$ and

$$H_{SO(3)}^*(R_\alpha, \mathbb{Z}) = H^*(R_\alpha/SO(3), \mathbb{Z}) = \mathbb{Z}.$$

The component R_{θ} is a point so that $H_{SO(3)}^*(R_{\theta}, \mathbb{Z}) = H^*(BSO(3), \mathbb{Z})$. These cohomology groups together form the E_1 term of a Morse-Bott spectral sequence which converges to $I_*^{\mathcal{G}}(\Sigma)$, see [4].

If the intersection forms of both U and V have maximal positive subspaces of dimensions $b_+(U) > 0$ and $b_+(V) > 0$, the instantons restricting to reducible flat connections on Σ can be perturbed away, and the regular Floer homology $I_*(\Sigma)$ can be used in the gluing formula instead of $I_*^{\mathcal{G}}(\Sigma)$.

Let now W be the Akbulut cork shown in Figure 1, and consider the splittings

$$X_0(n) = W \cup_{\mathrm{id}} Q$$
 and $X_1(n) = W \cup_{\tau} Q$

where $Q = X_0(n) \setminus \text{int } W$ is a smooth compact simply connected 4-manifold with boundary $-\Sigma$. The manifold W is contractible so that $b_+(W) = 0$. An attempt to use $I_*(\Sigma)$ instead of $I_*^{\mathcal{G}}(\Sigma)$ in the gluing formula leads to a contradiction as follows.

The only relative Donaldson polynomial of W has degree zero and an easy index calculation shows that $D(W) \in I_5(\Sigma) = \mathbb{Z}$. Since $X_0(n)$ is an algebraic surface, there exist homology classes $v_1, \ldots, v_d \in H_2(Q, \mathbb{Z}) = H_2(X_0(n), \mathbb{Z})$ such that $D(X_0(n))(v_1, \ldots, v_d) \neq 0$, see [7]. Then

$$D(X_0(n))(v_1,\ldots,v_d) = D(W) \cdot D(Q)(v_1,\ldots,v_d) \neq 0$$

is a product of two non-zero numbers, and the involution $\tau_*: I_5(\Sigma) \to I_5(\Sigma)$ can only change sign of this product. On the other hand, we know that re-gluing by τ makes $X_0(n)$ into $X_1(n)$. Since $X_1(n)$ is completely decomposable, all its Donaldson polynomials vanish.

This contradiction shows that there exist instantons on $X_0(n)$ which do not factor through irreducible flat connections on Σ , and the full group $I_*^{\mathcal{G}}(\Sigma)$ should be taken into account. This last remark clarifies the statement of [2].

5. Concluding remarks

The fact that the action $\tau_*: I_*(\Sigma) \to I_*(\Sigma)$ is non-trivial implies that the mapping cylinder C_{τ} of the involution τ is not diffeomorphic to the product $\Sigma \times I$ rel boundary (although manifolds C_{τ} and $\Sigma \times I$ are in fact diffeomorphic).

Proposition 6. The manifolds C_{τ} and $\Sigma \times I$ are not homeomorphic (or homotopy equivalent) rel boundary.

Proof. Let us identify the two boundary components of each of C_{τ} and $\Sigma \times I$ by using identity maps. We end up with closed manifolds M_{τ} , which is the mapping torus of τ , and $\Sigma \times S^1$, respectively. If C_{τ} and $\Sigma \times I$ were homeomorphic (or homotopy equivalent) rel boundary, we would have that $\pi_1(M_{\tau}) = \pi_1(\Sigma \times S^1)$. However, the latter is not the case, which can be seen as follows.

The fundamental groups of both $\Sigma \times S^1$ and M_{τ} are HNN–extensions of $\pi_1(\Sigma)$. This easily implies that irreducible SU(2)–representations of $\pi_1(\Sigma \times S^1)$, respectively, $\pi_1(M_{\tau})$, are in two-to-one correspondence with irreducible SU(2)–representations of $\pi_1(\Sigma)$, respectively, irreducible SU(2)–representations of $\pi_1(\Sigma)$ equivariant with respect to τ . Since there exist irreducible SU(2)–representations of $\pi_1(\Sigma)$ which are not τ –equivariant, we conclude that $\pi_1(M_{\tau}) \neq \pi_1(\Sigma \times S^1)$.

The above proposition shows that the mapping cylinder of τ fails to give an example of an exotic smooth structure on $\Sigma \times I$. No such examples are currently known, although exotic smooth structures do exist on all non-compact manifolds $M \times \mathbb{R}$ where M is a closed oriented 3-manifold, see [5].

Any orientation preserving diffeomorphism $f: \Sigma \to \Sigma$ of an integral homology sphere Σ induces an automorphism $f_*: I_*(\Sigma) \to I_*(\Sigma)$ in its Floer homology. This automorphism is often an identity. Theorem 1 gives an example

of $\tau: \Sigma \to \Sigma$ with $\tau_* \neq id$; the manifold Σ is in fact hyperbolic. Examples of irreducible graph homology spheres with involutions acting non-trivially on their Floer homology can be found in [13] and [14].

References

- [1] S. Akbulut, A fake compact contractible 4-manifold, J. Diff. Geom. 33 (1991), 335–356.
- [2] _____, An involution permuting Floer homology, Turkish J. Math. 18 (1994), 16–22.
- [3] S. Akbulut, R. Kirby, Mazur manifolds, Michigan Math. J. 26 (1979), 259–284.
- [4] D. Austin, P. Braam, Equivariant Floer theory and gluing Donaldson polynomials, Topology 35 (1996), 167–200.
- [5] Ž. Bižaca, J. Etnyre, Smooth structures on collarable ends of 4-manifolds, Topology 37 (1998), 461–467.
- [6] C. Curtis, M. Freedman, W. Hsiang, R. Stong, A decomposition theorem for h-cobordant smooth simply-connected compact 4-manifolds, Inv. Math. 123 (1996), 343–348.
- [7] S. Donaldson, P. Kronheimer, The geometry of four-manifolds, Oxford Univ. Press, 1990
- [8] R. Fintushel, R. Stern, Instanton homology of Seifert fibred homology three spheres. Proc. London Math. Soc. **61** (1990), 109–137
- [9] A. Floer, An instanton-invariant for 3-manifolds, Comm. Math. Phys. 118 (1988), 215-240.
- [10] _____, Instanton homology, surgery, and knots, Geometry of low-dimensional manifolds, I (Durham, 1989), 97–114, LMS Note Ser., 150, Cambridge Univ. Press, Cambridge, 1990.
- [11] R. Gompf, A. Stipsicz, 4-Manifolds and Kirby Calculus, AMS Graduate Studies in Mathematics, 20, Providence, 1999.
- [12] R. Matveyev, A decomposition of smooth simply-connected h-cobordant 4-manifolds, J. Diff. Geom. 44 (1996), 571–582.
- [13] D. Ruberman, N. Saveliev, Rohlin's invariant and gauge theory, II. Mapping tori, Preprint, 2003. http://arXiv.org/math.GT/0306188.
- [14] N. Saveliev, An involution permuting Floer homology, J. Knot Theory 9 (2000), 543–556.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MIAMI, PO Box 249085, FL 33124 E-mail address: saveliev@math.miami.edu