ON THE REFINED CLASS NUMBER FORMULA FOR
GLOBAL FUNCTION FIELDS

JOONGUL LEE

Abstract. We investigate a conjecture of Gross regarding a congruence relation
of the Stickelberger element. We consider the case when \(k \) is a global function field
of characteristic \(p \) and \(\text{Gal}(K/k) \) is an abelian \(l \)-group where \(l \) is a prime number
different from \(p \). Under the additional assumption that \(k \) does not contain a
primitive \(l \)-th root of unity and that the divisor class number of \(k \) is prime to \(l \),
we prove that the conjecture of Gross holds. This result generalizes the author’s
previous result on the elementary abelian case (cf. [6]).

1. Introduction

We describe the conjecture briefly, and refer the reader to [5] for details.

Let \(K/k \) be a finite abelian extension of global fields with Galois group \(G \).
Let \(S \) be a finite non-empty set of places of \(k \) which contains all archimedean
places and all places ramified in \(K \). Furthermore, let \(T \) be a finite non-empty
set of places of \(k \) which is disjoint from \(S \), such that the \((S,T)\)-unit group \(U_{S,T} \)
is torsion-free. Let \(n = |S| - 1 \) and let \(\hat{G} \) be the group of complex characters of
\(G \).

The Stickelberger element \(\theta_G \) is the unique element in \(\mathbb{Z}[G] \) which satisfies
\[
\chi(\theta_G) = L_{S,T}(\chi, 0)
\]
for all \(\chi \in \hat{G} \), where \(L_{S,T} \) is the \(S \)-truncated, \(T \)-modified Dirichlet \(L \)-function.
Gross has conjectured a congruence relation which bears striking resemblance to
the analytic class number formula. In order to describe the conjecture we need
to introduce some further notation.

Choose an ordered basis \(\{u_1, \ldots, u_n\} \) of \(U_{S,T} \). Pick a place \(v_0 \in S \), and for
each \(v_i \in S \setminus \{v_0\} \), we let \(f_i : k^\times \to G \) denote the homomorphism induced from
local Artin map for \(v_i \). We set
\[
\det_G \lambda := \det_{1 \leq i, j \leq n}(f_i(u_j) - 1).
\]
The conjecture of Gross states that

\[(1) \quad \theta_G \equiv m \cdot \det_G \lambda \pmod{I^{n+1}}.\]

Here \(I\) is the augmentation ideal of \(Z[G]\) and the integer \(m = \pm h_{S,T}\) is the \(T\)-modified class number of the \(S\)-integers of \(k\) whose sign is determined by the \((S,T)\)-version of the analytic class number formula.

Let \(\text{Gr}(K/k, S, T)\) denote the congruence relation (1). For the reader’s convenience, we list (without proofs) some of the basic facts regarding this conjecture. Consult [1] or [8] for details.

Proposition 1. (a) If \(v \notin S \cup T\) and \(S' = S \cup \{v\}\), then \(\text{Gr}(K/k, S, T)\) implies \(\text{Gr}(K/k, S', T)\).

(b) Suppose \(H\) is a subgroup of \(G\). The natural map \(Z[G] \to Z[G/H]\) maps \(\theta_G\) and \(\det_G \lambda\) to \(\theta_{G/H}\) and \(\det_{G/H} \lambda\) respectively, and \(\text{Gr}(K/k, S, T)\) implies \(\text{Gr}(K^H/k, S, T)\).

(c) If \(n = 0\) then \(\text{Gr}(K/k, S, T)\) holds, being equivalent to the analytic class number formula.

We also note that the conjecture has been verified for numerous cases [1, 3, 4, 6, 7].

2. The Main Result

Let \(G = G_0 \times G_1 \times \cdots \times G_m\), and set \(X = \{0, \ldots, m\}\). For each \(i \in X\), we have \(Z[G_i] \cong Z \oplus I_i\) as a direct sum of abelian groups. Here \(I_i\) is the augmentation ideal of \(Z[G_i]\).

As \(G_i\) is a subgroup of \(G\), \(Z[G_i]\) is naturally embedded in \(Z[G]\), and so is \(I_i\). For each non-empty subset \(A\) of \(X\), we define \(I_A := \prod_{i \in A} I_i \subset Z[G]\), and we define \(I_\emptyset := Z\). Then we have

\[Z[G] \cong \bigotimes_{i \in X} Z[G_i] \cong \bigotimes_{i \in X} (Z \oplus I_i) \cong \bigoplus_{A \subset X} I_A.\]

We observe that \(I_A \cdot I_B \subset I_{A \cup B}\). Therefore \(Z[G]\) is a graded ring with respect to the monoid of subsets of \(X\) with union as monoid operation. Also, we have

\[I = \bigoplus_{\emptyset \neq A \subset X} I_A,\]

therefore \(I\) is a homogeneous ideal of \(Z[G]\) and so is \(I^n\) for \(n \geq 1\).

Lemma 2. For each \(i \in X\), let \(H_i = G_0 \times \cdots \times G_{i-1} \times G_{i+1} \times \cdots \times G_m\) and let \(\phi_i : Z[G] \to Z[H_i]\) be the map induced by natural projection. Pick an integer \(r\) with \(0 \leq r \leq m\). If \(\alpha\) is an element of \(Z[G]\) with \(\phi_i(\alpha) \in I_{H_i}^{r+1}\) for \(i = 0, \ldots, r\), then \(\alpha \in I^{r+1}\).

Proof. Write \(\alpha = \sum_{A \subset X} \alpha_A\). We need to show that \(\alpha_B \in I^{r+1}\) for all \(B \subset X\).
If \{0, \ldots, r\} \subset B, then by the definition of \(I_B \) it follows that \(\alpha_B \in I^{r+1} \).

Suppose \(i \not\in B \) for some \(0 \leq i \leq r \). It is straightforward to verify that

\[
\phi_i : \bigoplus_{A \subset X} I_A \rightarrow \bigoplus_{A \subset X \setminus \{i\}} I_A
\]

is the projection onto the \(A \)-components with \(i \not\in A \). As \(i \not\in B \), \(\alpha_B = \phi_i(\alpha_B) \) is the \(B \)-component of \(\phi_i(\alpha) \). Since \(\phi_i(\alpha) \in I^{r+1}_i \) by assumption and \(I^{r+1}_i \) is a homogeneous ideal of \(\mathbb{Z}[H_i] \), \(\alpha_B \in I^{r+1} \) as well. If we view \(H_i \) as a subgroup of \(G \), we have \(I_{H_i} \subset I \) and hence \(I^{r+1}_{H_i} \subset I^{r+1} \). Therefore \(\alpha_B \in I^{r+1} \).

\[\square \]

Theorem 3. Let \(K/k \) be a finite abelian extension with Galois group \(G = G_0 \times G_1 \times \cdots \times G_m \) and let \(S = \{v_0, \ldots, v_n\} \). Suppose that for each \(0 \leq i \leq n \), its inertia group \(I_{v_i} \) of \(v_i \) is contained in \(G_i \). Then \(\text{Gr}(K/k, S, T) \) holds.

Proof. We prove the theorem by induction on \(n \). When \(n = 0 \), \(\text{Gr}(K/k, S, T) \) holds as noted in Proposition 1(c).

In the general case, we apply Lemma 2 to \((\theta_G - m \cdot \det_G \lambda)\). As \(v_i \) is unramified in the subextension \(K^{G_i}/k \), the induction hypothesis together with Proposition 1(a) implies that the hypothesis of Lemma 2 is satisfied. Hence we conclude that \(\text{Gr}(K/k, S, T) \) holds.

\[\square \]

Corollary 4. Fix a prime number \(l \). For a global function field \(k \), let \(p \) be its characteristic, \(h \) be its divisor class number and \(w \) be the number of roots of unity in \(k \). If \(l \) does not divide \(phw \), then \(\text{Gr}(K/k, S, T) \) holds whenever \(\text{Gal}(K/k) \) is an abelian \(l \)-group.

Proof. For each positive integer \(e \geq 1 \), let \(k_{S,e} \) be the maximal abelian extension of \(k \) unramified outside of \(S \) whose Galois group has exponent \(l^e \). Thanks to Proposition 1(b), we may assume \(K = k_{S,e} \). Theorem 5 of the next section ensures that the hypothesis of Theorem 3 is satisfied in this case.

\[\square \]

3. Some Class Field Theory

In this section we use the results from class field theory, and study the structure of \(G \) using ideles. The reader may consult [2] for example.

We keep the assumptions of Corollary 4. Let \(\mathbb{F}_q \) be the exact field of constants of \(k \), and for each place \(v \) of \(k \) let \(\mathbb{F}_v \) be its residue field. For each finite nonempty set \(S \) of places of \(k \) and for each integer \(e \geq 1 \), let \(G_{S,e} := \text{Gal}(k_{S,e}/k) \).

Theorem 5. \(G_{S,e} \cong \prod_{v \in S} I_v \times \mathbb{Z}/l^e \mathbb{Z} \).

Proof. For each place \(v \) of \(k \), let \(k_v \) be the completion of \(k \) at \(v \), \(U_v \) the set of local units in \(k_v \), and \(U^1_v \subset U_v \) the local units which are congruent to 1 \(\pmod{v} \). Also let \(U := \prod_v U_v \) and let \(U_S := \prod_{v \in S} U_v \cdot \prod_{v \in S} U^1_v \).

There is an exact sequence

\[
0 \rightarrow U/\mathbb{F}_q^* \cdot U_S \rightarrow J/k^* \cdot U_S \rightarrow J/k^* \cdot U \rightarrow 0.
\]
We note that the profinite completion of $J/k^* \cdot U_S$ is $\text{Gal}(k_S/k)$ where k_S is the maximal abelian extension of k unramified outside of S and tamely ramified in S. Similarly, the profinite completion of $J/k^* \cdot U$ is $\text{Gal}(k_{unr}/k)$ where k_{unr} is the maximal unramified abelian extension of k.

Let J_0 be the group of ideles of k of degree 0. Then J is isomorphic to $J_0 \times \langle c \rangle$, where c is an idele of degree 1. Therefore we may rewrite the above sequence as

\[
0 \to \left(\prod_{v \in S} \mathbb{F}_v^*/ \mathbb{F}_v^{*l_v} \right)/\mathbb{F}_q^* \to (J_0/k^* \cdot U_S) \times \mathbb{Z} \to (J_0/k^* \cdot U) \times \mathbb{Z} \to 0.
\]

Note that for each $v \in S$, the inertia group of v is the image of \mathbb{F}_v^* in the first term of the sequence (2).

As we assume that the order of $J_0/k^* \cdot U$ (which is canonically isomorphic to the divisor class group of k) is not divisible by l, we have $(J_0/k^* \cdot U \times \mathbb{Z}) \otimes \mathbb{Z}/l^e \mathbb{Z} = \mathbb{Z}/l^e \mathbb{Z}$ and $\text{Tor}(J_0/k^* \cdot U \times \mathbb{Z}, \mathbb{Z}/l^e \mathbb{Z}) = 0$. Hence tensoring the exact sequence with $\mathbb{Z}/l^e \mathbb{Z}$ preserves the exactness;

\[
0 \to \left(\prod_{v \in S} \mathbb{F}_v^*/ \mathbb{F}_v^{*l_v} \right)/\mathbb{F}_q^* \to (J_0/k^* \cdot U_S) \times \mathbb{Z}/l^e \mathbb{Z} \to (J_0/k^* \cdot U) \times \mathbb{Z}/l^e \mathbb{Z} \to 0,
\]

where \mathbb{F}_q^* is the image of \mathbb{F}_q^* in $\prod_{v \in S} \mathbb{F}_v^*/ \mathbb{F}_v^{*l_v}$. Therefore $G_{S,e}$, the middle term of the above exact sequence, is isomorphic to $\left(\prod_{v \in S} \mathbb{F}_v^*/ \mathbb{F}_v^{*l_v} \right)/\mathbb{F}_q^* \cong \mathbb{Z}/l^e \mathbb{Z}$.

As we assume that k does not contain a primitive l-th root of unity, $\mathbb{F}_q^* \cong \{1\}$, and hence $G_{S,e} \cong \prod_{v \in S} \mathbb{F}_v^*/ \mathbb{F}_v^{*l_v} \times \mathbb{Z}/l^e \mathbb{Z} \cong \prod_{v \in S} I_v \times \mathbb{Z}/l^e \mathbb{Z}$.

\[\square\]

Remark. If we assume that k contains an l-th root of unity, one can prove that $G_{S,e}$ is isomorphic to $\prod_{v \in S'} I_v \times H'$ where $S' = S \setminus \{v_0\}$ for a suitable choice of $v_0 \in S$. Therefore, one may apply Lemma 2 to θ_G to conclude that $\theta_G \in I^n$.

Acknowledgements

This paper grew out of some stimulating discussions with Noboru Aoki, and I would like to thank him for his generosity. I also thank Ki-Seng Tan and John Tate for many suggestions for improvement.

References

School of Mathematics, Korea Institute for Advanced Study, 207-43 Cheongryangri-dong, Dongdaemun-gu, Seoul, Republic of Korea

E-mail address: jglee@kias.re.kr